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0 Introduction
9 Sequential allocation policies

© Maximizing the social welfare



Sequential allocation

A simple example

Suppose you are coaching a football team and you want to
divide your players into two teams for a practice match.




Sequential allocation

A simple example

Suppose you are coaching a football team and you want to
divide your players into two teams for a practice match.

@ Nominate two captains and let them take turns in picking
team members



Sequential allocation

A simple example

Suppose you are coaching a football team and you want to
divide your players into two teams for a practice match.

@ Nominate two captains and let them take turns in picking
team members

@ What is the best picking order?
e alternating: 1,2,1,2,1,2,1,2,1,2,1,2

e alternating and reversing: 1,2,2,1,1,2,2,1,1,2,2,1
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Example: Alternating policy
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Example: Alternating and reversing policy
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Example: Alternating and reversing policy
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Example: Alternating and reversing policy
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Example: Alternating and reversing policy
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Example: Alternating and reversing policy
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Example: Alternating and reversing policy

@ Captain 1

@ Captain 2

-
v /A
- b

122112



Example: Alternating and reversing policy
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The order makes a difference

Preference orders
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Background

@ How do we best share resources between competing agents?
@ Best can mean different things (fair, efficient, . ..)

@ Resources can be

e divisible (mineral rights, viewing times, etc.) or
e indivisible (machines, holiday slots, time slots for landing
and take-off, etc.)



Background

@ How do we best share resources between competing agents?
@ Best can mean different things (fair, efficient, . ..)

@ Resources can be

e divisible (mineral rights, viewing times, etc.) or
e indivisible (machines, holiday slots, time slots for landing
and take-off, etc.)

@ The allocation of scarce resources is an abundant problem in
many economic and social contexts, in engineering, algorithm
design, etc.

@ Therefore, it is of great interest to

o theoretically understand the related phenomena, and
e develop good allocation mechanisms.




Cake-cutting (fair division)

Cut-and-choose

@ Dividing a cake between two persons
@ The first person cuts the cake into two
parts

@ The second person chooses which part
to take
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Cake-cutting (fair division)

Cut-and-choose

@ Dividing a cake between two persons
@ The first person cuts the cake into two
parts

@ The second person chooses which part
to take

v

More agents

@ Different solutions depending on
fairness notion
e Banach, Knaster, Steinhaus 1947
e Selfridge; Conway 1960
e Brams, Taylor 1995




From fair division to social welfare maximization

@ To compare division mechanisms the agent’s shares have
to be evaluated using a utility function.

@ Fairdivision usually tries to balance utilities: Every agent
should be satisfied with the outcome.

@ Game theory studies the effect of strategic decision
making.

A different aspect

A central agency that manages the allocation process might be
interested in maximizing a global quality measure, while the
opinions of individual agents might be irrelevant.

10/27



From fair division to social welfare maximization

@ To compare division mechanisms the agent’s shares have
to be evaluated using a utility function.

@ Fairdivision usually tries to balance utilities: Every agent
should be satisfied with the outcome.

@ Game theory studies the effect of strategic decision
making.

A different aspect

A central agency that manages the allocation process might be
interested in maximizing a global quality measure, while the
opinions of individual agents might be irrelevant.

| A\

Problem [Bouveret, Lang 2011]

Maximize the social welfare over a class of allocation
mechanisms.
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Formal setup

@ n agents compete for k items

Preference order

Permutation = of the set [k] = {1,...,k}
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Formal setup

@ n agents compete for k items

Preference order

Permutation = of the set [k] = {1,...,k}

Preference profile
n-tuple R = (w4, ..., mn) of preference orders

Values k, k —1,k—2,...,1

Additivity assumption

The utility of a subset A C [k] is the sum of the utilities of the
elements of A.
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Example for n = 2, k = 6, alternating

Available items
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(1,2,3,4,5,6), (1,4,2,5,3,6)
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Example for n = 2, k = 6, alternating

Available items

-@ 2-@ 3-@ 4- 5—@« 6- &

=
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Allocation

Agent 1 Agent 2

o

Utilities

Agent 1:

Agent 2:
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Example for n = 2, k = 6, alternating

Available items
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Example for n = 2, k = 6, alternating
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Example for n = 2, k = 6, alternating

Available items
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Example for n = 2, k = 6, alternating

Available items
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Example for n = 2, k = 6, alternating

Available items

(1,2,3,4,5,6), (1,4,2,5,3,6)

Allocation
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Agent 1: 6+5+4=15
Agent 2: 5+3+1=9

— social welfare 15 +9 =24
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Example for n = 2, k = 6, alternating and reversing

Available items

(1,2,3,4,5,6), (1,4,2,3,5,6)
Allocation
S & M
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Utilities

Agent 1: 6+4+2=12
— social welfare 12+10 = 22
Agent 2: 5+4+1=10
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Allocation policies

p=pi...px €[N In step i agent p; picks an item.

Truthful behaviour

Among the available items, the agent always picks the best according
to her ranking.

Individual utilities

ui(R, p) — Utility of agent i for profile R and policy p

Social welfare

S

sw(R,p) = : ui(R, p)

Il
-
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Problem formulation

For a given probability P on the set R of all profiles we consider

Expected utilities and social welfare

Ui(p) = Y P(R)u(R,p) and swW(p)= ) P(R)sw(R,p)

ReR ReR

n
@ Linearity of expectation: sw(p) = ZU,-(p).
i=1

@ Here P is always the uniform distribution on R.

Conjecture [Bouveret & Lang 2011]

The expected social welfare is maximized by the alternating policy

p=12...(n—1)n12...(n—1)n ...... 12...(n—1)n ...
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Main results

Theorem (K,Narodytska,Walsh 2013+)

The expected utilities U;(p) can be computed in linear time.

Theorem (K,Narodytska,Walsh 2013+)

For a linear utility function and n = 2 agents the expected social
welfare is maximized by the alternating policy p = 121212.. ..

Theorem (K,Narodytska,Walsh 2013+)

For Borda utility and n agents the expected social welfare is
nk?

+ O(k) and this is asymptotically optimal.
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The policy tree

Level k — 1

alternate don't alter- 1=2,2=1

nate

Level k CPiP1P2---Px-1
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The policy tree

Reducing symmetry

T(1211) = Tx(2122),  Tp(1211) = T;(2122).
— sw(1211) = sW(2122)
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The policy tree

Reducing symmetry

T(1211) = Tx(2122),  Tp(1211) = T;(2122).
— sw(1211) = sW(2122)

— |t is sufficient to consider the left subtree.
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Recursive computation of the expected utilities

@ With a policy we associate a pair (x, y) where

e x is the expected utility for the starting agent,
o y is the expected utility for the other agent.

@ The root node (k = 1):

The recursion for kK > 2
Levelk — 1 @
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Utilities for the first four levels
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Utilities for the first four levels
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Solution for the alternating policy

@ Let pX denote the alternating policy of length k,
pF=1212...

Theorem (K,Narodytska,Walsh 2013+)
The expected social welfare for the alternating policy is

sw (p*) = "('2"3” + O(Vk).

The expected utility difference between the agents is

= (B) ~ T (BF) = & + O(VK).
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Reformulation

Defect pairs

For a policy p we measure the deviation from p¥ by the pair

(Xp, Yp) = (U1 (p) — U (5") , Ua(p) — o <5k))

© SW(p) ~ SW(BF) = Xp + o

@ The optimality of p* for all k is equivalent to

For all k > 1, if (x, y) is the defect pair for a policy of length k
then

x+y<0.
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Defect pairs for k = 10
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“Small” defect pairs for k = 10
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Recursion for defect pairs

@ (0,0) is the only defect pair for k = 1.

Recursion for k > 2

Level k — 1
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Recursion for defect pairs

@ (0,0) is the only defect pair for k = 1.

Recursion for k > 2

Level k — 1

where d is the utility difference for the alternating policy:

dk = Uy (lA?k) — Uz (5k) -
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Defect pairs in the policy tree
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Proof strategy

Prove by induction on k the following statement:

If (x, y) is a defect pair for a policy of length k then
Q x+y<0o,

Q@ Vvm=>1: (X,y)=Rkim10--0Rk(Xx,y) = X +y <0,

Q@ vm=>1: (X,y)=Rkym10---oRkp10lk(x,y) = x'+y' <O0.
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Outlook

@ Generalize the optimality result for the alternating policy to
e more than two agents,

e convex utility functions, i.e. the utility difference between
consecutive items decreases with the rank,

e different probability distributions on the set of profiles.

@ Study different social welfare measures.

@ What happens if agents behave strategically?
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