Sequential allocation of indivisible goods

Thomas Kalinowski

Institut für Mathematik, Universität Rostock

Newcastle
Tuesday, January 22, 2013

Nina Narodytska

Toby Walsh

NICTA and UNSW in Sydney

Outline

(1) Introduction
(2) Sequential allocation policies
(3) Maximizing the social welfare

A simple example

Suppose you are coaching a football team and you want to divide your players into two teams for a practice match.

A simple example

Suppose you are coaching a football team and you want to divide your players into two teams for a practice match.

- Nominate two captains and let them take turns in picking team members

A simple example

Suppose you are coaching a football team and you want to divide your players into two teams for a practice match.

- Nominate two captains and let them take turns in picking team members
- What is the best picking order?
- alternating: $1,2,1,2,1,2,1,2,1,2,1,2$
- alternating and reversing: $1,2,2,1,1,2,2,1,1,2,2,1$
- ???

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating policy

- Captain 1

- Captain 2

121212

Example: Alternating and reversing policy

- Captain 1

- Captain 2

122112

Example: Alternating and reversing policy

- Captain 1

- Captain 2

122112

Example: Alternating and reversing policy

- Captain 1

- Captain 2

$12 \mathbf{2} 112$

Example: Alternating and reversing policy

- Captain 1

- Captain 2

122112

Example: Alternating and reversing policy

- Captain 1

- Captain 2

122112

Example: Alternating and reversing policy

- Captain 1

- Captain 2

122112

Example: Alternating and reversing policy

- Captain 1

- Captain 2

122112

Preference orders

- Captain 1
- Captain 2

Alternating

- Captain 1

- Captain 2

Alternating and reversing

- Captain 1

- Captain 2

- How do we best share resources between competing agents?
- Best can mean different things (fair, efficient, ...)
- Resources can be
- divisible (mineral rights, viewing times, etc.) or
- indivisible (machines, holiday slots, time slots for landing and take-off, etc.)
- How do we best share resources between competing agents?
- Best can mean different things (fair, efficient, ...)
- Resources can be
- divisible (mineral rights, viewing times, etc.) or
- indivisible (machines, holiday slots, time slots for landing and take-off, etc.)
- The allocation of scarce resources is an abundant problem in many economic and social contexts, in engineering, algorithm design, etc.
- Therefore, it is of great interest to
- theoretically understand the related phenomena, and
- develop good allocation mechanisms.

Cut-and-choose

- Dividing a cake between two persons
- The first person cuts the cake into two parts
- The second person chooses which part to take

Cut-and-choose

- Dividing a cake between two persons
- The first person cuts the cake into two parts
- The second person chooses which part to take

More agents

- Different solutions depending on fairness notion
- Banach, Knaster, Steinhaus 1947
- Selfridge; Conway 1960
- Brams, Taylor 1995
- To compare division mechanisms the agent's shares have to be evaluated using a utility function.
- Fair division usually tries to balance utilities: Every agent should be satisfied with the outcome.
- Game theory studies the effect of strategic decision making.

A different aspect

A central agency that manages the allocation process might be interested in maximizing a global quality measure, while the opinions of individual agents might be irrelevant.

- To compare division mechanisms the agent's shares have to be evaluated using a utility function.
- Fair division usually tries to balance utilities: Every agent should be satisfied with the outcome.
- Game theory studies the effect of strategic decision making.

A different aspect

A central agency that manages the allocation process might be interested in maximizing a global quality measure, while the opinions of individual agents might be irrelevant.

Problem [Bouveret, Lang 2011]

Maximize the social welfare over a class of allocation mechanisms.

- n agents compete for k items

Preference order

Permutation π of the set $[k]=\{1, \ldots, k\}$

- n agents compete for k items

Preference order

Permutation π of the set $[k]=\{1, \ldots, k\}$

Preference profile
 n-tuple $R=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of preference orders

- n agents compete for k items

Preference order
 Permutation π of the set $[k]=\{1, \ldots, k\}$

Preference profile
 n-tuple $R=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of preference orders

Utilities
Values $k, k-1, k-2, \ldots, 1$

Formal setup

- n agents compete for k items

Preference order
 Permutation π of the set $[k]=\{1, \ldots, k\}$

Preference profile

n-tuple $R=\left(\pi_{1}, \ldots, \pi_{n}\right)$ of preference orders

Utilities

Values $k, k-1, k-2, \ldots, 1$
Additivity assumption
The utility of a subset $A \subseteq[k]$ is the sum of the utilities of the elements of A.

Example for $n=2, k=6$, alternating

Available items

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Example for $n=2, k=6$, alternating

Available items

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation
Agent 1
Agent 2

Utilities

Agent 1:
Agent 2:

Example for $n=2, k=6$, alternating

Available items

$$
\text { 1- } 2-43450
$$

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation

Agent 2

Utilities

Agent 1:
Agent 2:

Example for $n=2, k=6$, alternating

Available items

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation

Agent 2

Utilities
Agent 1:
Agent 2:
5

Example for $n=2, k=6$, alternating

Available items

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation
Agent 1

Agent 2

Utilities

Agent 1: $\quad 6+5$
Agent 2: 5

Example for $n=2, k=6$, alternating

Available items

$$
3-y \quad 5-y^{2} 5 \sin 5
$$

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation

Utilities
Agent 1: $\quad 6+5$
Agent 2: $5+3$

Example for $n=2, k=6$, alternating

Available items
$3-y$

$$
6-\frac{5}{3}
$$

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation

Utilities
Agent 1: $\quad 6+5+4=15$
Agent 2: $5+3$

Example for $n=2, k=6$, alternating

Available items

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,5,3,6)
$$

Allocation

Utilities
Agent 1: $\quad 6+5+4=15$
\Longrightarrow social welfare $15+9=24$
Agent 2: $\quad 5+3+1=9$

Example for $n=2, k=6$, alternating and reversing

Available items

Profile

$$
(1,2,3,4,5,6), \quad(1,4,2,3,5,6)
$$

Allocation

Utilities

Agent 1: $\quad 6+4+2=12$
\Longrightarrow social welfare $12+10=22$
Agent 2: $\quad 5+4+1=10$

Allocation policies

Policy

$p=p_{1} \ldots p_{k} \in[n]^{k} \quad$ In step i agent p_{i} picks an item.

Truthful behaviour

Among the available items, the agent always picks the best according to her ranking.

Individual utilities

$u_{i}(R, p)$ - Utility of agent i for profile R and policy p

Social welfare

$$
\operatorname{sw}(R, p)=\sum_{i=1}^{n} u_{i}(R, p)
$$

For a given probability P on the set \mathcal{R} of all profiles we consider
Expected utilities and social welfare

$$
\bar{u}_{i}(p)=\sum_{R \in \mathcal{R}} P(R) u_{i}(R, p) \quad \text { and } \quad \overline{\operatorname{sw}}(p)=\sum_{R \in \mathcal{R}} P(R) \operatorname{sw}(R, p)
$$

- Linearity of expectation: $\overline{\operatorname{sw}}(p)=\sum_{i=1}^{n} \bar{u}_{i}(p)$.
- Here P is always the uniform distribution on \mathcal{R}.

Conjecture [Bouveret \& Lang 2011]

The expected social welfare is maximized by the alternating policy

$$
p=12 \ldots(n-1) n 12 \ldots(n-1) n \ldots \ldots 12 \ldots(n-1) n \ldots
$$

Main results

Theorem (K,Narodytska,Walsh 2013+)

The expected utilities $\bar{u}_{i}(p)$ can be computed in linear time.

Theorem (K,Narodytska,Walsh 2013+)

For a linear utility function and $n=2$ agents the expected social welfare is maximized by the alternating policy $p=121212 \ldots$

Theorem (K,Narodytska,Walsh 2013+)

For Borda utility and n agents the expected social welfare is $n k^{2}$
$\frac{n+1}{n+1}+(k)$ and this is asymptotically optimal.

The policy tree

Reducing symmetry

$$
\begin{gathered}
\bar{u}_{1}(1211)=\bar{u}_{2}(2122), \quad \bar{u}_{2}(1211)=\bar{u}_{1}(2122) \\
\\
\Longrightarrow \overline{\operatorname{sw}}(1211)=\overline{\operatorname{sw}}(2122)
\end{gathered}
$$

Reducing symmetry

$$
\begin{aligned}
\bar{u}_{1}(1211)= & \bar{u}_{2}(2122), \quad \bar{u}_{2}(1211)=\bar{u}_{1}(2122) \\
& \Longrightarrow \overline{\operatorname{sw}}(1211)=\overline{\operatorname{sw}}(2122)
\end{aligned}
$$

\Longrightarrow It is sufficient to consider the left subtree.

- With a policy we associate a pair (x, y) where
- x is the expected utility for the starting agent,
- y is the expected utility for the other agent.
- The root node $(k=1)$:

The recursion for $k \geqslant 2$

Utilities for the first four levels

Solution for the alternating policy

- Let \hat{p}^{k} denote the alternating policy of length k, $\widehat{p}^{k}=1212 \ldots$

Theorem (K,Narodytska,Walsh 2013+)

The expected social welfare for the alternating policy is

$$
\overline{\mathrm{sw}}\left(\hat{p}^{k}\right)=\frac{k(2 k+1)}{3}+O(\sqrt{k})
$$

The expected utility difference between the agents is

$$
d_{k}:=\bar{u}_{1}\left(\hat{p}^{k}\right)-\bar{u}_{2}\left(\hat{p}^{k}\right)=\frac{k}{3}+O(\sqrt{k}) .
$$

Defect pairs

For a policy p we measure the deviation from \hat{p}^{k} by the pair

$$
\left(x_{p}, y_{p}\right)=\left(\bar{u}_{1}(p)-\bar{u}_{1}\left(\hat{p}^{k}\right), \bar{u}_{2}(p)-\bar{u}_{2}\left(\hat{p}^{k}\right)\right)
$$

- $\overline{\operatorname{sw}}(p)-\overline{\operatorname{sw}}\left(\hat{p}^{k}\right)=x_{p}+y_{p}$
- The optimality of \hat{p}^{k} for all k is equivalent to

Theorem

For all $k \geqslant 1$, if (x, y) is the defect pair for a policy of length k then

$$
x+y \leqslant 0 .
$$

Defect pairs for $k=10$

- $(0,0)$ is the only defect pair for $k=1$.

Recursion for $k \geqslant 2$
Level k - 1

- $(0,0)$ is the only defect pair for $k=1$.

Recursion for $k \geqslant 2$

Level $k-1$

where d_{k} is the utility difference for the alternating policy:

$$
d_{k}=\bar{u}_{1}\left(\hat{p}^{k}\right)-\bar{u}_{2}\left(\hat{p}^{k}\right) .
$$

Defect pairs in the policy tree

Prove by induction on k the following statement:

Proposition

If (x, y) is a defect pair for a policy of length k then
(1) $x+y \leqslant 0$,
(2) $\forall m \geqslant 1:\left(x^{\prime}, y^{\prime}\right)=R_{k+m-1} \circ \cdots \circ R_{k}(x, y) \Longrightarrow x^{\prime}+y^{\prime} \leqslant 0$,
(3) $\forall m \geqslant 1:\left(x^{\prime}, y^{\prime}\right)=R_{k+m-1} \circ \cdots \circ R_{k+1} \circ L_{k}(x, y) \Longrightarrow x^{\prime}+y^{\prime} \leqslant 0$.

- Generalize the optimality result for the alternating policy to
- more than two agents,
- convex utility functions, i.e. the utility difference between consecutive items decreases with the rank,
- different probability distributions on the set of profiles.
- Study different social welfare measures.
- What happens if agents behave strategically?

