ÜBUNGSAUFGABEN

Mathematik für Wirtschaftsingenieure und -informatiker

SERIE 4 Vorlesung: Prof. Dr. H.–D. Gronau

Termin: (12.11.2002) Übungen: E. Neidhardt / Dr. M. Grüttmüller

Aufgabe 4.1

Man konstruiere auf der Menge $M = \{1, 2, 3, 4\}$ Relationen R_1, R_2, R_3, R_4 , für die folgende Aussagen gelten.

- (a) R_1 ist reflexiv, transitiv, aber nicht symmetrisch.
- (b) R_2 ist reflexiv, symmetrisch, aber nicht transitiv.
- (c) R_3 ist reflexiv, nicht transitiv und nicht symmetrisch.
- (d) R_4 ist nicht reflexiv, nicht irreflexiv, transitiv und symmetrisch.

Aufgabe 4.2

Auf \mathbb{N} sind zwei Relationen R und O definiert durch:

 $aRb \iff a \text{ und } b \text{ haben die gleiche Quersumme}$

bzw.

 $aOb \iff a \text{ teilt } b \text{ (Bezeichnung: } a|b).$

- (a) Zeigen Sie, dass R eine Äquivalenzrelation ist.
- (b) Zeigen Sie, dass O eine Halbordnung ist. Warum ist O keine Ordnung?

Aufgabe 4.3

Die innere Verknüpfung \circ ist auf \mathbb{N} definiert durch

$$a \circ b = \max\{a, b\}.$$

Ist die Relation R aus Aufgabe 4.2 verträglich mit \circ ?

(D.h.: Gilt $aRb \wedge a'Rb' \implies (a \circ a')R(b \circ b')$?)

Aufgabe 4.4

Es sei M die Menge aller Zahlen der Form $a+b\sqrt{2}$, wobei a und b ganze Zahlen sind. Man entscheide, ob M zur Menge der natürlichen Zahlen oder zur Menge der reellen Zahlen gleichmächtig ist.

Aufgabe 4.5

Bestimmen Sie den größten gemeinsamen Teiler von 111 und 81 mit Hilfe des Euklidischen Algorithmus'.