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SUMMARY

In order to compute the smallest eigenvalue together with an eigenfunction of a self-adjoint elliptic partial
differential operator one can use the preconditioned inverse iteration scheme, also called the preconditioned
gradient iteration. For this iterative eigensolver estimates on the poorest convergence have been published
by several authors. In this paper estimates on the fastest possible convergence are derived. To this end
the convergence problem is reformulated as a two-level constrained optimization problem for the Rayleigh
quotient. The new convergence estimates reveal a wide range between the fastest possible and the slowest
convergence.

1. Introduction

Why derive estimates on the fastest possible convergence of an iterative eigensolver? This is a
reasonable question in so far as the predicted convergence rate is determined by estimates on the
slowest (or poorest) convergence.

However, convergence rate estimates for iterative eigensolvers for self-adjoint eigenvalue problems
are sometimes unduly pessimistic! Prominent examples of solvers are iterations like the power
method, the complementary inverse iteration or the Lanczos scheme. For all these iterations the
convergence rate estimates depend on the eigenvalue distribution or, more specific, on quantities
like the ratio of consecutive smallest/largest eigenvalues or on the spectral condition number of
the matrix whose eigenvalues are to be computed. However, for certain iteration vectors these
eigensolvers may converge much more rapidly than reflected by the (worst case) convergence
estimates. There is a simple explanation for this quick convergence: the eigenvector expansion
of the initial iterate might show only little contribution from eigenspaces which are responsible
for the poorest convergence. In the extremal case of no contribution from certain eigenvectors, the
iteration will take place in their orthogonal complement and any unfavorable influence of these
eigenvalues disappears.

In this paper we analyze an inexact version of inverse iteration, called preconditioned inverse
iteration or preconditioned gradient iteration. This eigensolver uses a preconditioner for convergence
acceleration which is assumed to satisfy a certain quality constraint. Similarly to the existence
of vectors associated with best/poorest convergence, there are also preconditioners which are
associated with fastest or slowest convergence. Thus for a preconditioned eigensolver there are
two factors which determine the convergence decisively: first of all the initial iteration vector and
secondly the preconditioner.
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Here we do not treat the important questions of how to find an appropriate initial vector and
how to construct a favorable preconditioner in order to gain a fast converging iteration. Instead, our
aim is to investigate the range between the fastest and the slowest theoretically possible convergence
for a basic preconditioned eigensolver under reasonable assumptions on the preconditioner and on
the initial vector. The practical question of how to accelerate the iteration due to an appropriate
preconditioner is non-trivial; the present paper might prepare the ground for a better understanding
of the whole problem and of the potential of preconditioned eigensolvers. Therefore the present
analysis should be understood as a step towards an improved analytical understanding of practically
successful preconditioned eigensolvers.

Sharp estimates on the slowest possible convergence have already been given in [9]. Hence,
our present aim is to derive sharp estimates on the fastest convergence. These upper and lower
estimates enclose a wide range between fastest and poorest convergence. The analysis shows that
theoretically even one-step convergence to an eigenvector is possible. Such single-step convergence is
an interesting phenomenon. It is totally different from that of iterative solvers like inverse iteration,
which converges in infinitely many steps.

The paper is organized as follows: In Sec. 2 a basic preconditioned eigensolver is introduced
and the problem to derive convergence estimates for this eigensolver is reformulated as a two-
level optimization problem. In Sec. 3 the inner optimization problem to determine an optimal
preconditioner is treated. The outer optimization problem on a level set of the Rayleigh quotient
is analyzed in Sec. 4. Finally, all results are merged into the central convergence theorem in Sec. 5.
Here we re-use arguments from [10, 11] which can partially be extended to local extrema; but we
also point out certain non-trivial differences.

2. Preconditioned eigensolvers

Preconditioned eigensolvers are well suited for the partial solution of generalized eigenvalue
problems which occur from a mesh discretization of a self-adjoint elliptic partial differential
operator. Among other areas of application such eigenproblems appear in structural mechanics, see
the references in [6, 8] for typical applications. Usually, only one or a modest number of the smallest
eigenvalues together with the eigenvectors are to be determined. For instance these eigenpairs
determine the lowest vibration modes of a mechanical system. The generalized matrix eigenproblem
reads

Axi = λiMxi (1)

with A ∈ R
n×n (M ∈ R

n×n) being called the discretization (mass) matrix and (xi, λi) denoting
an eigenpair. The matrices A and M are symmetric positive definite and, usually, very large and
sparse. To simplify the representation we reduce (1) to the standard eigenproblem

Axi = λixi. (2)

This reduction is justified by a change from the Euclidean inner product to the inner product
induced by M ; see [8]. In our setup there is no necessity to factor A or A − σI , σ ∈ R and I the
identity matrix. Such factorizations should be avoided because of storage and computation time
limitations. Consequently, the application of an eigensolver which requires matrix factorizations
(like the QR algorithm) appears to be impractical.

In this paper we consider the problem to determine only the smallest eigenvalue λ1 together
with an eigenvector x1 of (2); see [1, 13] for a related subspace scheme. The “classical” derivation
of preconditioned eigensolvers amounts to considering the eigenvalue problem as a minimization
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problem for the Rayleigh quotient

λ(x) =
(x,Ax)

(x, x)
(3)

whose minimum is λ1. Since the gradient ∇λ(x) is a multiple of the residual vector Ax− λ(x)x, a
gradient method for minimizing the Rayleigh quotient maps a given iterate x to

x′ = x− ω(Ax− λ(x)x), (4)

in order to attain λ(x′) < λ(x) for an appropriate choice of ω ∈ R. The aim is to construct a sequence
of iterates converging to an eigenvector corresponding to the smallest eigenvalue. Unfortunately,
it is well known that the convergence of the gradient method (4) depends on the mesh size and
therefore on the number of unknowns [3]. Thus the gradient scheme cannot be considered as an
effective solver for mesh eigenproblems.

Preconditioning can assure grid-independent convergence. A preconditioner B−1 ∈ Rn×n is
a symmetric positive definite matrix which approximates the inverse of A. Especially for A
being a mesh discretization of an elliptic partial differential operator, the preconditioner can be
characterized by a spectral equivalence

γ0(x,Bx) ≤ (x,Ax) ≤ γ1(x,Bx) (5)

for real positive constants γ0 and γ1. We assume an optimally scaled preconditioner (such a scaling
can often be guaranteed implicitly, cf. [8]), i.e., we have instead of (5)

‖I −B−1A‖A ≤ γ, 0 ≤ γ < 1 (6)

with γ controlling the quality of B−1. Here, we do not raise the issue of how to construct such
preconditioners satisfying (6), but refer to the references in [1, 3, 6].

A basic preconditioned eigensolver can be constructed from (4) just by premultiplying the residual
vector by B−1. This has been interpreted as a change of the underlying geometry in a way which
accelerates convergence [3, 14]. Thus the new iterate x′ ∈ Rn is given by

x′ = x−B−1(Ax − λ(x)x). (7)

There is a vast literature on the convergence theory of (7), see the references in [3, 8]. While the
older analysis has resulted in non-sharp or, at best, in asymptotically sharp convergence estimates,
one can derive sharp convergence estimates using an alternative derivation of (7), see [10, 11]. The
key idea is to interpret (7) as an approximate variant of inverse iteration. Inverse iteration for A
amounts to solving the linear system

Ax̄ = λ(x)x (8)

for the new iterate x̄; in contrast to the standard representation of inverse iteration the right-hand
side is additionally scaled with λ(x). Approximate solution of (8) using preconditioning leads to
the error propagation equation

x′ − λ(x)A−1x = (I −B−1A)(x − λ(x)A−1x) (9)

with x′ approximating the exact solution x̄ = λ(x)A−1x. Eq. (9) is not only a reformulation of (7),
but establishes a relation between preconditioned gradient eigensolvers and approximate inverse
iteration or preconditioned inverse iteration. A favorable property of (9) is the appearance of the
error propagation matrix I − B−1A, which allows a new approach to the analysis. A convergence
analysis exploiting the structure of (9) is contained in [10, 11]. In this paper the very same techniques
are used to derive estimates on the fastest possible convergence.
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2.1. Convergence analysis as an optimization problem

Our aim is to compute the smallest eigenvalue λ1 of (2) together with an eigenvector by using (7).
As introduced above, this partial eigenvalue problem is considered as a minimization problem for
the Rayleigh quotient. Thus the task to derive estimates on the fastest possible convergence of (7)
can be reformulated as a two-level optimization problem. The two levels are as follows:

1. Inner optimization problem: For given γ ∈ [0, 1) let

Bγ := {B−1 ∈ R
n×n; B symmetric positive definite, ‖I −B−1A‖A ≤ γ}

be the set of admissible preconditioners. The optimization problem consists in finding the
specific B−1 ∈ Bγ which minimizes λ(x′) with x′ by (7). This problem is analyzed in Sec. 3.

2. Outer optimization problem: Consider the level set

L(λ) := {x ∈ R
n; λ(x) = λ}

of vectors whose Rayleigh quotient equals a real number λ between the smallest and the
largest eigenvalue of A. Minimization is to be done with respect to the level set L(λ), i.e.,
to find that x ∈ L(λ) which minimizes the Rayleigh quotient λ(x′) of the new iterate. The
analysis is presented in Sec. 4.

The optimal choices from both Bγ and from L(λ) lead to the fastest possible convergence and result
in the smallest attainable Rayleigh quotient

min
x∈L(λ)

min
B−1∈Bγ

λ(x −B−1(Ax − λx)). (10)

Note that exact preconditioning solves (8) exactly, i.e., B = A results in x′ = x̄. In contrast to this,
the optimal preconditioner minimizes (10). This makes a fundamental difference between optimal
preconditioning for linear systems and for eigenvalue problems.

2.2. Geometric representation and change of the basis

Lemma 2.1 provides a geometric description of the constraint B−1 ∈ Bγ and yields a more
convenient reformulation of the optimization problem (10).

Lemma 2.1. Let x ∈ Rn, x 6= 0, and let

Bγ(x) := {λA−1x+ y; y ∈ R
n, ‖y‖A ≤ γ‖(I − λA−1)x‖A},

which is a ball with respect to the norm induced by A with the center x̄ = λA−1x, i.e., the solution
of (8). Then the mapping Ex given by

Ex : Bγ → Bγ(x) : B−1 7→ x′ = x−B−1(Ax− λx)

is a surjection.

The proof follows from Lemmata 2.2 and 2.3 of [10]. Therefore the inner optimization problem of
Sec. 2.1 is equivalent to finding the minimum of λ(·) on the ball Bγ(x). We transform this problem
in a more convenient form by introducing a basis of A-orthonormal eigenvectors of A, see Sec. 2 in
[10]. The initial basis (“x-basis”) is mapped to a new basis (briefly “c-basis”) by

c = Λ1/2XTx. (11)

Therein, the orthogonal matrix X diagonalizes A, i.e., XTAX = Λ = diag(λ1, . . . , λn) with
XTX = I . The eigenvalues λi are assumed to be simple (see Sec. 3 in [10] for a treatment of
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Figure 1. One-step convergence.

the multiple eigenvalue case) and the corresponding eigenvector ei is the ith column of the identity
matrix I . Then the c-basis representation of the Rayleigh quotient of a vector d ∈ R

n reads

λ(d) =
(d, d)

(d,Λ−1d)
. (12)

Reformulation of the two-level optimization problem (10) results in

min
c∈L(λ)

min
d∈Eγ(c)

λ(d). (13)

Therein the c-basis representation of the level set using (12) is

L(λ) := {c ∈ R
n; λ(c) = λ}. (14)

Moreover, the ball

Eγ(c) := {λΛ−1c+ z; z ∈ R
n, ‖z‖ ≤ γ‖(I − λΛ−1)c‖ } (15)

is the c-basis representation of Bγ(x); ‖ · ‖ denotes the Euclidean norm.
Next we make certain non-restrictive assumptions on c ∈ Rn; see Sec. 4 in [10] for a justification.

Assumption 2.2. For given λ ∈ (λ1, λn) the vector c ∈ Rn satisfies

1. c ∈ L(λ) and ‖c‖ = 1,
2. c is not equal to any of the unit vectors ei, i = 1, . . . , n,
3. c ≥ 0 componentwise.

3. The inner optimization problem: Optimal preconditioning

In this section the inner optimization problem of (13), i.e.,

min
d∈Eγ(c)

λ(d) (16)

is to be solved. As the Rayleigh quotient is invariant with respect to a scaling of its argument,
we can alternatively consider the minimization with respect to the set Cγ(c) being the smallest
circular cone enclosing Eγ(c) and with vertex at the origin

Cγ(c) := {ξd; d ∈ Eγ(c), ξ > 0}. (17)
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3.1. Localization of minima

The preconditioned eigensolver (7) exhibits the surprising property that for certain c ∈ L(λ) even
one-step convergence may occur; i.e. in only one iteration the eigenvector e1 corresponding to the
smallest eigenvalue λ1 can be reached. A corresponding geometric setup in R2 is shown in Figure 1.
One-step convergence is possible if the cone Cγ(c) contains the eigenvector e1. Lemma 3.1 provides
a condition for one-step convergence.

Lemma 3.1. Let c ∈ Rn be given according to Assumption 2.2. Then one-step convergence, i.e.,
e1 ∈ Cγ(c), may occur if and only if

c1 ≥ λ1

λ

(

‖λΛ−1c‖2 − γ2‖(I − λΛ−1)c‖2
)1/2

. (18)

Proof. The acute angle χ between e1 and λΛ−1c is given by

cosχ =
λλ−1

1 c1
‖λΛ−1c‖ .

For the opening angle ϕ of Cγ(c) by using the orthogonal decomposition from Thm. 4.3 in [10] one
obtains that

cos2 ϕ =
‖λΛ−1c‖2 − γ2‖(I − λΛ−1)c‖2

‖λΛ−1c‖2
.

Then χ ≤ ϕ yields λλ−1
1 c1 ≥

(

‖λΛ−1c‖2 − γ2‖(I − λΛ−1)c‖2
)1/2

which proves (18). 2

Inequality (18) is not a hard condition and is further weakened for increasing γ. Increasing of γ
results in a larger set Bγ and, due to Lemma 2.1, in a larger ball Bγ . The limit cone limγ→1 Cγ(c)
contains e1, if and only if

c1 ≥ λ1

λ
, (19)

which follows from (18) together with ‖λΛ−1c‖2 = ‖c‖2 + ‖(I − λΛ−1)c‖2. See Fig. 3 in Sec. 3.2
for an example satisfying condition (19).

From now on we restrict our attention to the non-trivial case e1 /∈ Cγ(c), i.e.,

min
d∈Cγ(c)

λ(d) > λ1.

Our next aim is to locate points of extrema of the Rayleigh quotient on Eγ(c) (or equivalently
Cγ(c)) by analyzing its local behavior. The following Lemma 3.2 shows that the minima are taken
on the (n− 2)-dimensional manifold

M = (∂Cγ(c)) ∩ Eγ(c), (20)

with ∂Cγ(c) denoting the boundary of Cγ(c). The manifold M is characterized by the constraints
(22a) and (22b).

Lemma 3.2. Let c satisfy Assumption 2.2 and e1 /∈ Cγ(c). Then

arg minλ(Eγ(c)) ⊂ M, (21)

with arg min denoting the set of minimum points. For any w ∈ arg minλ(Eγ(c)) it holds that

(w,w − λΛ−1c) = 0, (22a)

‖λΛ−1c‖2 = ‖w‖2 + ‖w − λΛ−1c‖2, (22b)

‖w − λΛ−1c‖ = γ‖(I − λΛ−1)c‖, (22c)
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Proof. The minimum (16) cannot be taken in the interior of the cone Cγ(c) as e1 /∈ Cγ(c), and all
other stationary points of λ(·) on Cγ(c) are saddle points, see Lemmata 4.1 and 4.2 of [10]. Hence,
(21) holds. The orthogonality (22a) and the decomposition (22b) is true for any w ∈ M, since the
tangent plane to ∂Cγ(c) in w is also a tangent plane to ∂Eγ(c) in w. Finally, by (22c) the radius
‖w − λΛ−1c‖ of Eγ(c) is expressed as γ times the radius of the maximal ball E1(c). 2

Let us now determine those w from the manifold M in which the Rayleigh quotient takes a
relative extremum. We apply the method of Lagrange multipliers in order to derive a necessary
condition on a local extremum of λ(·) |M. For given c the norm ‖w‖ is a constant on M, i.e. by
(22b) and (22c) it holds that

(w,w) = ‖λΛ−1c‖2 − γ2‖(I − λΛ−1)c‖2, ∀w ∈ M.

Hence extrema of λ(w) and those of the quadratic function (w,Λ−1w), w ∈ M, are taken in
the same arguments. Thus the Lagrange function with respect to the constraints (22a) and (22b)
determining M with the Lagrange multipliers µ and ν reads

L(w, µ, ν) = (w,Λ−1w) + µ
(

‖w‖2 + γ2‖(I − λΛ−1)c‖2 − ‖λΛ−1c‖2
)

+ ν(w,w − λΛ−1c).

We obtain from ∇wL = 0 a condition on w

2(Λ−1 + (µ+ ν)I)w = νλΛ−1c. (23)

An equivalent condition can be derived by noticing that the gradient ∇λ(w) in a local extremum
on Eγ(c) is orthogonal to the tangent plane to Eγ(c) in w [5].

Note that ν 6= 0 in (23). Otherwise any solution w of (23) would be a multiple of a unit vector
ei. Here we do not present the somewhat technical proof that in unit vectors ei, i ≥ 2, the Rayleigh
quotient never takes a minimum on Eγ(c). We refer to Lemma A.1 in [11] whose arguments can be
extended to minima.

In order to solve (23) for w, the diagonal matrix D := Λ−1 + (µ + ν)I has to be inverted. If in
w a local maximum is taken, then D is invertible as shown by Thm. 4.8 in [10]. But this is not
always the case for minimum points; see Sec. 3.2 for a numerical example. Problems occur if c1 = 0.
Nevertheless, Lemma 3.3 guarantees Dii 6= 0 for i > 1.

Lemma 3.3. On the assumptions of Lemma 3.2 let w ∈ arg minλ(Eγ(c)). If ck > 0, then

wk =
λν

2 + 2λk(µ+ ν)
ck > 0. (24)

for k = 1, . . . , n. If ck = 0, then wk = 0 for k = 2, . . . , n. Finally, c1 = 0 does not imply w1 = 0,
see Sec. 3.2.

The proof of Lemma 3.3 follows along the lines of Lemma 4.7 in [10]: For non-zero ck the
representation (24) immediately follows from (23). Then it is shown that wk 6= 0 together with
ck = 0 can hold for not more than a single k. By slightly adapting the arguments of Lemma 4.7 in
[10], one can show that only w1 6= 0 together with c1 = 0 can occur; see also [12].

In the following we assume c1 6= 0 which is the case if λ(c) < λ2. The latter assumption is often
used, e.g., in the classical convergence analysis of preconditioned gradient methods [2, 4]. Thm. 3.4
shows that for each γ ∈ [0, 1) the minimum of λ(Eγ(c)) is taken in a unique point. Moreover, the
set of all minimum points for all γ ∈ [0, 1) is a curve parametrized in α.

Theorem 3.4. On the assumptions of Lemma 3.2 and if c1 > 0, then the minimum λ(Eγ(c)) is
taken in

w[α] = β(αI + Λ)−1c, (25)
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for a unique real number α ∈ (−λ1, 0]. Therein β = β[α] is given by

β[α] =
(λΛ−1c, (αI + Λ)−1c)

((αI + Λ)−1c, (αI + Λ)−1c)
> 0.

Then all Rayleigh quotients λ(w[α]) for γ ∈ [0, 1) form a subinterval of the image of the strictly
monotone increasing function

ρ : (−λ1, 0] → (λ1, λ(Λ
−1c)] : α 7→ λ(w) = λ((αI + Λ)−1c). (26)

Proof. From (23) and Lemma 3.3 any w ∈ arg minλ(Eγ(c)) can be written in the form (25) for
certain α, β ∈ R. The coefficients α and β depend on γ ∈ [0, 1).

First it is shown that β > 0 and α > −λ1. For w = β(αI + Λ)−1c it holds β/(α + λi) > 0
for any nonzero component ci by Lemma 3.3. If β < 0, then α < −λl (with l being the largest
index so that cl > 0) and the sequence β

α+λi
, only for indexes i with ci > 0, is strictly monotone

increasing. Hence, λ(w) > λ(c), which contradicts the monotone decrease of the Rayleigh quotient
or convergence of (7), see [11]. Thus β > 0 and α + λ1 > 0. The explicit form of β > 0 can be
gained from (22a).

In order to show that ρ is a strictly monotone increasing function, note that for α > −λ1 the
diagonal matrix (αI+Λ) is invertible. Let −λ1 < α1 < α2 be given and define w(1) := (α1I+Λ)−1c
and w(2) := (α2I + Λ)−1c. Then for i = 1, . . . , n

w
(1)
i =

α2 + λi

α1 + λi
w

(2)
i .

The positive coefficients (α2 + λ1)/(α1 + λ1), . . . , (α2 + λn)/(α1 + λn) form a strictly monotone
decreasing sequence. Thus Lemma A.1 in [10] shows that ρ is a strictly monotone increasing
function. Furthermore, it holds

lim
α→−λ1

λ((αI + Λ)−1c) = λ1.

Uniqueness of α and of the minimum point w[α] follows from the monotonicity of (26) and the fact
that λ((αI + Λ)−1c) > λ(Λ−1c) for α > 0, which contradicts (αI + Λ)−1c being a minimum point.
2

Eq. (25) provides a single parameter representation of the minimum points for γ ∈ [0, 1).
A challenging problem is to derive a re-parametrization of w[α] as a function of γ ∈ [0, 1).
Such a representation w[γ] would allow a considerable simplification of our convergence analysis.
Unfortunately, the problem to determine α as a function of γ is not easy to tackle. In the Rn this
requires the solution of a polynomial of degree 2n−2 in α. A solution for n = 2 is given in Sec. 3.1.4
of [12].

3.2. Bifurcation of the minimum curve

If c1 = 0, then ρ(α) by (26) cannot represent all minimum points, since then

min
α∈(−λ1,0]

ρ(α) ≥ λ2,

but it may hold minλ(Eγ(c)) < λ2. A discussion of the limit c1 → 0 can provide insight into the
case c1 = 0. One finds that as long as

λ((Λ − λ1I)
+c) ≤ minλ(Eγ(c)),
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where + denotes the pseudo-inverse, the form of the minimum points is determined by Thm. 3.4.
Beyond the bound λ((Λ − λ1I)

+c) the minimum points have the form (aside from scaling)

±ϑe1 + (Λ − λ1I)
+c (27)

for suitable ϑ ≥ 0.
A numerical example in R3 (the smallest nontrivial dimension) is given in Fig. 2. We take

Λ = diag(2, 5, 13). The unit sphere is projected along the e2 axis, and isocurves of the Rayleigh
quotient are drawn for λ = λ1 + (λ3 − λ1)

i
30 with i = 1, . . . , 29. For c = (0, 1/

√
2, 1/

√
2)T the

intersection of C1(c) with the unit sphere is shown as the bold circle C1. The curve S of minimum
points for γ ∈ [0, 1] (bold T-shaped curve) starts at the center of the circle (γ = 0) and bifurcates
at γ ≈ 0.248 in w = (Λ − λ1I)

+c. The branches are of the form (27).
Fig. 3 illustrates the curve S of minimum and maximum points for γ ∈ [0, 1]. Once again

Λ = diag(2, 5, 13) but c = (3, 5, 5)T/
√

59. Now, α ∈ (−λ1,∞) and the smooth curve

S(α) =
(αI + Λ)−1c

‖(αI + Λ)−1c‖ (28)
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starts at the north pole (α → −λ1), runs through the axis λΛ−1c of the cone for α = 0 and finally
reaches in the initial vector c for α→ ∞. Therein, all α < 0 correspond to minimum points whereas
α > 0 gives the representation of maximum points. For this example the condition (19) is fulfilled
since 0.391 ≈ c1 > λ1/λ ≈ 0.387. Hence, the eigenvector e1 is contained in C1(c).

4. The outer optimization problem on L(λ)

In this section the outer minimization problem of (13)

min
c∈L(λ)

λ(w[c])

with w[c] := arg mind∈Eγ(c) λ(d) is treated. In Sec. 4.1 we derive certain extremal properties of
Cγ(c) on L(λ). In Sec. 4.2 convergence estimates in R

2 are presented which form the basis for the
main convergence theorem in Sec. 5.

4.1. Extrema of Cγ(c) on L(λ)

Lemma 4.1 is a generalization of Thm. 2.1 in [11]. Extrema of ‖∇λ(c)‖ are shown to be taken in
two-dimensional invariant subspaces.

Lemma 4.1. Let λ = λ(c) ∈ (λ1, λn). Then for the Euclidean norm of the gradient

∇λ(c) =
2

(c,Λ−1c)
(I − λΛ−1)c

it holds:

1. If λ = λi, then ‖∇λ(ei)‖ = 0 is an absolute minimum. If λi < λ < λi+1, then the minimum of
‖∇λ(c)‖ on L(λ) is taken in a vector of the form

ci,i+1 := (0, . . . , 0, ci, ci+1, 0, . . . , 0)T ∈ L(λ), (29)

having exactly the two non-zero components ci and ci+1.
2. The maximum of ‖∇λ(c)‖ on L(λ) is taken in a vector of the form

c1,n = (c1, 0, . . . , 0, cn)T ∈ L(λ). (30)

If c satisfies Assumption 2.2, then the components of (29) and (30) are uniquely determined, see
(41).

Proof. The method of Lagrange multipliers for

L(c, µ, ν) = ‖(I − λΛ−1)c‖2 + µ(‖c‖2 − 1) + ν((c,Λ−1c) − λ−1) (31)

yields a necessary condition for a constrained local extremum of ‖∇λ(c)‖ on L(λ); see Thm. 2.1 in
[11] for the details. One finally obtains the Temple-type inequality

4λ2(
λ

λi
− 1)(1 − λ

λi+1
) ≤ ‖∇λ(c)‖2 ≤ 4λ2(

λ

λ1
− 1)(1 − λ

λn
). (32)

The lower bound is taken in ci,i+1 and the upper bound in c1,n. 2

We note that the left inequality in (32) has already been given, e.g., in Chap.9, §3 of [3]; the
right inequality can be derived similarly.
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These extrema of ‖∇λ(c)‖ are closely related with extremal properties of the geometry of Cγ(c).
We introduce the opening angle ϕγ(c) of the circular cone Cγ(c) by

ϕγ(c) := sup
z∈Cγ(c)

arccos(
λΛ−1c

‖λΛ−1c‖ ,
z

‖z‖). (33)

The complementary shrinking angle ϕγ(c) can be defined as

ψγ(c) := ϕ1(c) − ϕγ(c).

The shrinking angle turns out to be relevant as the action of (7) can be understood as a shrinking
of the initial cone C1(c) in the following sense. The iterate c is the maximum point of the Rayleigh
quotient on the surface of C1(c), whereas for γ < 1 the global extrema are taken on the surface
of the shrinked cone Cγ(c) (aside from e1 ∈ Cγ(c)). Lemma 4.2 reveals a close relation between
‖∇λ(c)‖ and ϕγ(c), ψγ(c); cf. Lemmata 2.2 and 2.3 in [11].

Lemma 4.2. Let λ ∈ (λ1, λn) and γ ∈ [0, 1].

1. The trivial minimum ϕγ(c) = 0 (ψγ(c) = 0) can only be taken if γ = 0 (γ = 1) or if λ = λi and
c = ei for i = 2, . . . , n− 1. If λi < λ < λi+1, then the angles ϕγ(c) and ψγ(c) take their minima
on L(λ) in ci,i+1.

2. The angles ϕγ(c) and ψγ(c) take their maxima on L(λ) in c1,n.

The proof of Lemma 4.2 immediately follows from extending the proofs of Lemmata 2.2 and 2.3 in
[11] to maxima.

Lemma 4.2 allows to analyze the dependence of the Rayleigh quotient on the opening angle ϕγ

within the plane
Pc,w := span{λΛ−1c, w}, (34)

through the minimum point w by (25) and λΛ−1c.
Now parametrize the unit circle in Pc,w by z(ϕ) so that ϕ = ](z(ϕ), λΛ−1c) and z(ϕ∗) = w/‖w‖

with ϕ∗ < π. To express the angle dependence of the Rayleigh quotient in Pc,w we define

λc,w(ϕ) := λ(z(ϕ)).

If c satisfies Assumption 2.2 and c1 > 0, then for the derivative of the Rayleigh quotient w.r.t. to
ϕ in w it holds that

|dλc,w

dϕ
(ϕ∗)| = ‖∇λ( w

‖w‖ )‖, (35)

whose proofs can literally be taken from Lemma 2.5 in [11].
Now define λ(c, ϕ) as the minimum of the Rayleigh quotient on Cγ(c) having the opening angle

ϕ = ϕγ , i.e.,
λ(c, ϕ) := inf λ(Cγ(ϕ)(c)),

for ϕ ∈ [0, arccos((c,Λ−1c)/(‖c‖‖Λ−1c‖)].
Lemma 4.3 discloses the identity of the derivatives (dλ(c, ϕ)/dϕ) and (dλc,w(ϕ)/dϕ) within

minimum points.

Lemma 4.3. On the assumptions of Thm. 3.4 let w be a minimum point which encloses the angle
ϕ∗ = ](λΛ−1c, w) with the axis λΛ−1c of Cγ(c). Then it holds

| dλ
dϕ

(c, ϕ∗)| = |dλc,w

dϕ
(ϕ∗)| = ‖∇λ( w

‖w‖ )‖. (36)
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Proof. Both λc,w(ϕ) and λ(c, ϕ) are continuously differentiable in ϕ. By definition, λc,w(ϕ)
dominates λ(c, ϕ) for ϕ ∈ [0, ϕ1] so that

λ(c, ϕ) ≤ λc,w(ϕ) and λc,w(ϕ∗) = λ(c, ϕ∗),

where the last identity results from the fact that both functions coincide in ϕ∗ belonging to
the minimum point w/‖w‖. Since λc,w(ϕ) − λ(c, ϕ) is a positive differentiable function taking
its minimum in ϕ∗, we conclude

dλc,w

dϕ
(ϕ∗) =

dλ

dϕ
(c, ϕ∗).

The proposition follows with (35). 2

4.2. Mini-dimensional analysis in C

In Sec. 4.1 it has been shown that several quantities which define the geometry of (7) take their
extremal values in 2D invariant subspaces. Hence, not surprisingly, extremal convergence emerges
in these 2D subspaces. In preparation of the main convergence theorem in Sec. 5, Thm. 4.4 gives
convergence estimates in 2D on the fastest and on the slowest convergence. This mini-dimensional
analysis is fairly different from that in [10]. It yields in the complex plane a more structured
representation of the convergence estimates.

Theorem 4.4. Let Λ = diag(λi, λj), λi < λj and c = (ci, cj)
T ∈ R2 with λ = λ(c).

Then the maximal Rayleigh quotient on Eγ(c) reads

λ(w1) = λ+(λi, λj , λ, γ) (37)

with w1 ∈ arg maxλ(Eγ(c)).
In the trivial case e1 ∈ Cγ(c) the minimum of λ(Eγ(c)) equals λ1. Otherwise,

λ(w2) = λ−(λi, λj , λ, γ) (38)

is the minimum of the Rayleigh quotient with w2 ∈ arg minλ(Eγ(c)). The functions λ± are given
by

λ±(λi, λj , λ, γ) =

{

1

λi

(

ci
√

1 − (ρ±)2 + cjρ
±

)2

+
1

λj

(

cj
√

1 − (ρ±)2 − ciρ
±

)2
}−1

(39)
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with
ρ± = ξ

(

√

1 − γ2ξ2 ∓ γ
√

1 − ξ2
)

(40)

and

ξ =

√

(λ− λi)(λj − λ)

λ(λi + λj − λ)
, ci =

√

λi(λj − λ)

λ(λj − λi)
, cj =

√

λj(λ− λi)

λ(λj − λi)
. (41)

Proof. According to Lemma 3.2 (case of minima) and Thm. 4.3 in [10] (case of maxima) it is clear
that (∂Cγ(c))∩Eγ(c) ⊂ R2 contains only two elements, i.e. the maximum point and the minimum
point of the Rayleigh quotient on Eγ(c). Our analysis to determine these extrema is based on an
alternative approach compared to the construction used in Thm. 5.1 in [10]. Here the plane R2 is
mapped to the complex plane according to

τ : R
2 → C :

(

y1
y2

)

7→ y2 + iy1.

The Rayleigh quotient (12) is a scaling-invariant function. Thus λ(τ−1(θτ(y))) = λ(y) for all θ 6= 0
which allows us to change the modulus of the complex number τ(y).

First let z := τ(c) = cj + ici and map the center λΛ−1c of the ball Eγ(c) to

z′ := τ(λΛ−1c) = λ(
cj
λ2

+ i
ci
λ1

).

One obtains for the angles ϕ = ](c, λΛ−1c) and ϕ̄ = ](w1, λΛ
−1c), cf. Fig. 5,

sinϕ =
‖z − z′‖
‖z′‖ =: ξ, sin ϕ̄ =

γ‖z − z′‖
‖z′‖ = γξ. (42)

By rotating z counterclockwise by ϕ and clockwise by ϕ̄ one obtains

w̃1 = zei(ϕ−ϕ̄) (43)

with λ(τ−1(w̃1)) = λ(w1). Combining (42) and (43) results in

w̃1 = zei(arcsin ξ−arcsin(γξ)) = ze
i arcsin

“

ξ(
√

1−γ2ξ2−γ
√

1−ξ2)
”

= zei arcsin ρ+

with ρ+ = ξ
(

√

1 − γ2ξ2 − γ
√

1 − ξ2
)

. If ei /∈ Cγ(c), then we obtain similarly the minimum point

w̃2 = zei(ϕ+ϕ̄)

with λ(τ−1(w̃2)) = λ(w2) and

w̃2 = zei(arcsin ξ+arcsin(γξ)) = zei arcsinρ−

with ρ− = ξ
(

√

1 − γ2ξ2 + γ
√

1 − ξ2
)

.

Evaluating the Rayleigh quotients λ(τ−1(zei arcsinρ±

)) yields

[

λ(τ−1(zei arcsin ρ±

))
]−1

=
1

λi

(

ci
√

1 − (ρ±)2 + cjρ
±

)2

+
1

λi+1

(

cj
√

1 − (ρ±)2 − ciρ
±

)2

which results in (39).
Finally, we have to show (41). The normalization ‖c‖ = 1 together with λ(c) = λ results for the

components of the componentwise non-negative vector (ci, cj)
T in

c2i =
λi(λj − λ)

λ(λj − λi)
, c2j =

λj(λ − λi)

λ(λj − λi)
. (44)
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Using (44), elementary calculations show that

ξ2 =
‖c− λΛ−1c‖2

‖λΛ−1c‖2
=

(λ− λi)(λi+1 − λ)

λ(λi + λi+1 − λ)
.

2

The following theorem provides an interesting link between Thm. 4.4 and Thm. 1 in [8].

Theorem 4.5. On the assumptions of Thm. 4.4 and using λ± as abbreviation for (39) it holds
that

λ± − λi

λj − λ±
= q2±

λ− λi

λj − λ
(45)

with q+ (q−) being associated with λ+ by (37) (λ− by (38)). The convergence factors q± fulfill

q± =
λi

λj
± γ

(

1 − λi

λj

)

√

c2i + q2± c2j (46)

where negative q− is substituted by 0 and simultaneously λ− < λi is set to λi.

Proof. Let α = ](z, ei), α
′ = ](z′, ei) and αk = ](wk, ei), k = 1, 2, be the angles between each z,

z′, w1 and w2 and the imaginary axis. As ϕ = α− α′ and ϕ̄ = α1 − α′ one has by (42)

γ =
sin(α1 − α′)

sin(α− α′)
=

sinα1 − tanα′ cosα1

sinα1 − tanα′ cosα
. (47)

With sinα = cj and cosα = ci this results in

sinα1 − tanα′ cosα1 = γ(cj − ci tanα′).

By using tanα′ = (λi/λj) tanα to eliminate tanα′ in (47) one is led to

q+ :=
tanα1

tanα
=
λi

λj
+

γ

cosα1

(

cj
tanα

− ci
λi

λj

)

.

The latter equation can be reformulated into an equation for q+ by using tanα = cj/ci. This yields

q+ =
λi

λj
+ γ

(

1 − λi

λj

)

√

c2i + q2+ c2j .

Similarly one can derive for α2 (instead of α1) an equation in q− = tanα2/ tanα

q− =
λi

λj
− γ

(

1 − λi

λj

)

√

c2i + q2− c2j .

With cosα = ci, sinα = cj being determined by (44) and

cosα1 = (w1)i =

(

λi(λj − λ+)

λ+(λj − λi)

)1/2

, sinα1 = (w1)j =

(

λj(λ
+ − λi)

λ+(λj − λi)

)1/2

,

as well as the corresponding expressions for α2, one immediately derives

λ± − λi

λj − λ±
= q2±

λ− λi

λj − λ
.

2
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The explicit solution of (46) for q± yields

q± =
λiλ± γ(1 − λi/λj)

√

λiλjλ(λi + λj − λ) + λiλjγ2(λj − λ)(λi − λ)

λjλ− γ2(λ− λi)(λj − λi)
(48)

wherein q− < 0 is set to 0. As q+[λ] for λ ∈ [λi, λj ] takes its maximum in λ = λi (see Theorem 1
in [8]) one obtains as a λ-independent convergence factor

q̂+ := q+[λ = λi] =
λi

λj
+ γ

(

1 − λi

λj

)

with
λ+ − λi

λj − λ+
≤ q̂+

λ− λi

λj − λ

for all λ ∈ (λ,λj). Similarly, one can derive for the maximum of q−[λ] which is taken in λ = λj

q̂− := q−[λ = λj ] =
λi

λj + γ(λj − λi)
. (49)

In general it holds that

q+ =
λi

λj
+ γ

(

1 − λi

λj

)

− ε+, q− =
λi

λj + γ(λj − λi)
− ε−

with 0 ≤ ε+ = O(λ− λi) and 0 ≤ ε− = O(λj − λ).

5. Convergence estimates

In this section sharp estimates are presented on the fastest possible convergence of (7) or,
equivalently, on the solution of the nested optimization problem (10). The following central proof
combines the results from Sec. 3 on the inner optimization problem (the choice of the preconditioner)
with those on the outer problem (the choice from the level set) which has been treated in Sec. 4.
Theorem 5.1 provides estimates for the different combinations of best/poorest preconditioning and
best/poorest choice from the level set. These combinations are:

1. Optimal preconditioning and optimal choice from the level set results in the smallest
attainable Rayleigh quotient

min
c∈L(λ)

min
d∈Eγ(c)

λ(d), (50)

which is the case of the fastest possible convergence. An explicit (sharp) expression for (50)
in terms of λ− by (39) is given in Thm. 5.1.

2. Poorest preconditioning but optimal choice from the level set results in

min
c∈L(λ)

max
d∈Eγ(c)

λ(d). (51)

3. Optimal preconditioning but poorest choice from the level set leads to

max
c∈L(λ)

min
d∈Eγ(c)

λ(d). (52)

Note that the remaining case maxc∈L(λ) maxd∈Eγ(c) λ(d) has already been treated in [10, 11].
Thm. 5.1 is formulated with respect to the c-basis introduced in Sec. 2.2, but all estimates hold
with respect to the initial basis in the same manner.
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Theorem 5.1. Let both γ ∈ [0, 1) and λ ∈ (λ1, λn) be given. Then the following convergence
estimates for (7) in terms of the reformulation (50)–(52) hold:

1. If e1 ∈ Cγ(c), then (7) for the best choice of a preconditioner can terminate in a single step
within an eigenvector corresponding to the smallest eigenvalue λ1, see Lemma 3.1.
If e1 /∈ Cγ(c) and λ ∈ (λ1, λ2), then the minimum (50) reads

λ−(λ1, λn, λ, γ) = min
c∈L(λ)

min
d∈Eγ(c)

λ(d) = min
d∈Eγ(c1,n)

λ(d), (53)

with λ−(λ1, λn, λ, γ) being defined by (39). In (53) c1,n is a vector of the form

c1,n := (c1, 0, . . . , 0, cn)T ∈ L(λ),

i.e., the minimum (53) is attained in a 2D subspace spanned by the eigenvectors corresponding
to λ1 and λn.
If λ ∈ [λi, λi+1), i > 1, then

min
c∈L(λ)

min
d∈Eγ(c)

λ(d) ≤ λ−(λ1, λn, λ, γ). (54)

2. Poorest preconditioning within the vector c1,n ∈ L(λ) of fastest convergence (of case 1.) leads
to

min
c∈L(λ)

max
d∈Eγ(c)

λ(d) ≤ λ+(λ1, λn, λ, γ) = max
d∈Eγ(c1,n)

λ(d) (55)

with λ+(λ1, λn, λ, γ) being defined by (39).
3. Let e1 /∈ Cγ(c). Then optimal preconditioning within the vector ci,i+1 ∈ L(λ) of slowest

convergence (see Thm. 1.1 in [11]) results in the Rayleigh quotient

min
d∈Eγ(ci,i+1)

λ(d) ≤ λ−(λi, λi+1, λ, γ). (56)

Proof. To show (53), the idea is to compare the decrease of the Rayleigh quotient along the
curves of extremum points as derived in Thm. 3.4. For a given y ∈ L(λ) such a curve, by (28), has
the form

S(y) :=
(αI + Λ)−1y

‖(αI + Λ)−1y‖ , α ∈ (αmin(y),∞)

for certain αmin(y) ≥ −λ1. On the one hand, we take the curve S(c1,n), c1,n ∈ L(λ), which starts
on the level set L(λ) for α → ∞ and runs along all extremum points of Cγ(c1,n) for all γ ∈ [0, 1].
We follow this curve until the (normalized) minimum point on Cγ(c1,n) is reached. On the other
hand, we take a second curve S(c) for arbitrary c ∈ L(λ), c 6= c1,n. Once again, S(c) starts on
the level set L(λ). Our aim is to derive (53) by proving that the Rayleigh quotient along S(c1,n)
decreases faster than on S(c).

First note that by Lemma 4.2 the opening angle ϕγ of Cγ takes its maximum on L(λ) in c1,n,
i.e.

ϕγ(c1,n) ≥ ϕγ(c), ∀γ ∈ [0, 1], ∀c ∈ L(λ). (57)

We parametrize each S(c) and S(c1,n) in an angle variable ϕ in the following manner: The curve
S(c) starts at c for ϕ = 0 reaches the axis λΛ−1c of Cγ(c) for ϕ1(c) and ends in the minimum point
of Cγ(c) for ϕγ(c) + ϕ1(c). In the same way the curve S(c1,n) is parametrized in ϕ. Thus S(c1,n)
starts at c1,n for ϕ = 0 and ends in the minimum point of Cγ(c1,n) for ϕγ(c1,n) +ϕ1(c1,n). For the
angles in the minimum points (57) yields

ϕγ(c1,n) + ϕ1(c1,n) ≥ ϕγ(c) + ϕ1(c). (58)
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The corresponding Rayleigh quotients on these curves parametrized in ϕ are denoted by λ(c, ϕ)
and λ(c1,n, ϕ). Then for any pair of angles ϕ̃ and ϕ̃1,n with

λ(c, ϕ̃) = λ(c1,n, ϕ̃1,n)

by Lemma 2.6 in [11] and Lemma 4.3 together with Lemma 4.1 it holds that
∣

∣

∣

∣

dλ(c, ϕ)

dϕ

∣

∣

ϕ=ϕ̃

∣

∣

∣

∣

≤
∣

∣

∣

∣

dλ(c1,n, ϕ)

dϕ

∣

∣

ϕ=ϕ̃1,n

∣

∣

∣

∣

. (59)

Inequality (59) proves a locally faster decrease of the Rayleigh quotient along the curve S(c1,n).

Hence f(ϕ) := λ(c1,n, ϕ) and g(ϕ) := λ(c, ϕ) are monotone decreasing, differentiable positive
functions. Eq. (59) simply says that in all arguments α, β with f(α) = g(β), the (negative)
derivatives fulfill

f ′(α) ≤ g′(β).

Hence, because of f(0) = g(0) it holds that

f(ξ) ≤ g(ξ),

with ξ being the smaller angle ξ = ϕγ(c) + ϕ1(c) in (58). Monotonicity of f shows that for the
larger angle ϕγ(c1,n) + ϕ1(c1,n) it holds that

λ(c1,n, ϕγ(c1,n) + ϕ1(c1,n)) ≤ λ(c, ϕγ(c) + ϕ1(c)),

which proves faster decrease of the Rayleigh quotient along S(c1,n) compared to S(c). The value of
λ(c1,n, ϕγ(c1,n)+ϕ1(c1,n)) can be derived in the 2D invariant subspace spanned by e1 and en since
S(c1,n) ⊆ span{e1, en}. The mini-dimensional analysis in Thm. 4.4 for i = 1 and j = n proves that
the minimum is given by (38), i.e., λ′ = λ−(λ1, λn, λ, γ).

To prove (54) we use the same construction as above. Once again we compare S(c1,n) with S(c).
Inequality (54) is not necessarily sharp, as a possible bifurcation (for c ∈ L(λ) with c1 = 0, see
Sec. 3.2) is not taken into account.

To show (55), we proceed as in the first part of the proof. Now we compare the curves of maximum
points for c and c1,n ∈ L(λ). These curves are the initial parts of the curves S(c) and S(c1,n)
considered above. We follow these curves along their parametrization in ϕ until the maximum
points are reached. These maximum points are reached within ϕ equal to certain shrinking angles
ψγ (see Lemma 2.3 in [11]). It holds

ψγ(c1,n) ≥ ψγ(c).

Along these curves (59) holds for any ϕ and ϕ1,n with λ(c, ϕ) = λ(c1,n, ϕ1,n); the latter Rayleigh
quotients are now associated with maximum points. Once again, (59) proves that the Rayleigh
quotient decreases locally faster along S(c1,n). In analogy to the derivation above we obtain

λ(c, ψγ(c)) ≥ λ(c1,n, ψγ(c1,n)),

which proves a globally faster decrease of the Rayleigh quotient on S(c1,n). The Rayleigh quotient
λ+(λ1, λn, λ, γ) results from applying the mini-dimensional analysis to the 2D space span{e1, en},
see Sec. 4.2.

Finally, to show (56), we proceed similarly to the first case but compare the Rayleigh
quotients along the extremum curves associated with c, ci,i+1 ∈ L(λ). The Rayleigh quotient
λ−(λi, λi+1, λ, γ) is only an upper bound in (56), since by construction all minima are constrained
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to span{ei, ei+1}. Therefore a possible bifurcation of the minimum curve is disregarded and λ− is
larger than the minimal Rayleigh quotient on Eγ . 2

The convergence estimates of Thm. 5.1 are difficult to grasp due to the complex nature of
λ±(λi, λj , λ, γ). By Thm. 4.5 the next corollary follows immediately. Estimate (60) can be applied
recursively as q̂− does not depend on λ(x).

Corollary 5.2. Assume an optimal choice of x ∈ L(λ) with λ < λ2 and optimal preconditioning
in the sense of Sec. 3. Then the fastest possible decrease of λ(x′) with x′ by (7) toward the smallest
eigenvalue λ1 is bounded from above by

λ(x′) − λ1

λn − λ(x′)
≤ q̂2−

λ(x) − λ1

λn − λ(x)
(60)

with the convergence factor

q̂− =
λ1

λn + γ(λn − λ1)
.

Proof. By Thm. 5.1 fastest convergence with respect to the level set L(λ) is taken in the 2D
subspace spanned by the eigenvectors to λ1 and λn. Thus (60) follows from (49) for i = 1 and
j = n; see also Thm. 4.6 in [12]. 2

In the following the convergence estimates of Thm. 5.1 are illustrated for a low-dimensional model
problem with the eigenvalues (λ1, . . . , λ6) = (2, 5, 8, 10, 13, 17), i.e., the first eigenvalues of Laplace
operator on [0, π]2. This is the same example which has already been used in Fig. 1 in [11].

In Fig. 6 the quotients

Φ±
i,j(λ, γ) :=

λ±(λi, λj , λ, γ) − λi

λ− λi
≤ 1, (61)

which measure the relative decrease of λ±(λi, λj , λ, γ) toward the next smaller eigenvalue λi, are
drawn for λ ∈ [2, 17]. The different curves are each plotted for γ = 0, 0.1, . . . , 1.0.

The convergence factors (61) measure the relative decrease of the error of the eigenvalue
approximations; they guarantee the convergence of the iterates to an eigenpair as the ratios are
bounded from above by 1. In the interval [λi, λi+1] the convergence factor Φ±

i,i+1 is a function of λ
and γ.

First, in the upper part of Fig. 6 the curves Φ+
i,i+1(λ, γ) are shown; see also [11] for an explanation

of the fan-like structure of these bounds. The discontinuity from Φ+
i,i+1 to Φ+

i−1,i in λ = λi reflects
that poorest decrease of the Rayleigh quotient corresponds to an early breakdown of the iteration in
an eigenvector corresponding to λi. The quotients Φ−

1,n(λ, γ) correspond to the fastest convergence,
i.e., the fastest decrease of the Rayleigh quotient. The assumption e1 /∈ Cγ(c) in Thm. 5.1 is
only made to avoid tiresome case distinctions. Whenever for a certain λ∗ ∈ [λ1, λn] it holds that
λ−1,n(λ∗, γ∗) = λ1, then e1 ∈ Cγ(c) for all γ ≥ γ∗. Hence, what is actually drawn in Fig. 6 is

Φ̃−
1,n(λ, γ) := min

γ̃≤γ
Φ−

1,n(λ, γ̃). (62)

Finally, in the lower part of Fig. 6 the remaining curves are illustrated. They correspond to the
best choice in L(λ) together with poorest preconditioning (case Φ+

1,n, see dotted lines) and poorest

choice from L(λ) together with best preconditioning in span{ei, ei+1}, i.e., the case Φ−
i,i+1 as drawn

by the dashed lines.
Fig. 6 exhibits a wide range between fastest and slowest convergence. The one extreme is

stationarity (Φ → 1) and the other extreme is one-step convergence (Φ → 0). Note that the
estimates on slowest convergence in [λi, λi+1] do not depend on the largest eigenvalue λn (aside
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Figure 6. Bounds on the fastest and slowest convergence for the model problem
Λ = diag(2, 5, 8, 10, 13, 17) with γ = 0, 0.1, . . . , 1.

Upper figure: Bounds Φ+

i,i+1 (slowest convergence) and Φ̃−

1,n (fastest convergence) by (61) and (62).

Lower figure: Additionally drawn are Φ−

i,i+1 (dashed) and Φ+

1,n (dotted).
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from i + 1 = n), but that the quotient Φ±
1,n does so. Hence, whenever λn increases, the corridor

between slowest and fastest convergence widens, making even faster convergence possible. Let us
now determine the particular λ∗ in span{e1, en}, below which one-step convergence to λ1 is possible.
Condition (18) in span{e1, en} leads to

λ∗ = λn

(

1 +
λ1

γ2(λn − λ1)

)−1

. (63)

so that
λ∗ = O(h−2)

for the discrete Laplacian ∆h. There is also a critical bound γ∗ so that for γ < γ∗ the eigenvector
e1 is never contained in Cγ(c). Setting λ∗ = λ1 in (63) and solving for γ results in

γ∗ =
λ1

λn − λ1
= O(h2)

for ∆h. Hence, one-step convergence is impossible if B approximates A very accurately.
The bold curves in Fig. 6 are associated with γ = 0 or inverse iteration. Not surprisingly, (7)

may converge faster than inverse iteration since min λ(Eγ(c)) < λ(λΛ−1c). The upper bold curves
correspond to ci,i+1, i = 1, . . . , 4, whereas the lower bold curve corresponds to c1,n.

6. Conclusion

Sharp convergence estimates on the fastest convergence have been derived for a basic preconditioned
eigensolver. This analysis is based on a geometrical approach which has proved very useful for
understanding the extremal convergence behavior. The key point of this geometrical approach is
that the set of possible iterates, which is generated by all admissible preconditioners, is a ball with
respect to the A-geometry. In the light of the present analysis several practical questions (which
are not treated here) appear very clearly. Among others the following questions are provoked: How
to practically find/construct a preconditioner which leads to fast convergence? How to generate an
appropriate initial iteration vector?

Within the framework of a geometrical interpretation it is immediately clear that exact
preconditioning, i.e., B = A, is not the optimal choice for solving an eigenvalue problem. Instead,
optimal preconditioning, under the condition of Lemma 3.1, allows even one-step convergence to
an eigenpair.

The convergence estimates which have been derived here are not only of theoretical value. They
can explain that sometimes (especially in the first steps of an iteration), the scheme (7) may converge
much more rapidly than suggested by the worst case estimates presented in [10, 11]. Implicitly, it
is shown that a lot of space is left for accelerating the basic preconditioning eigensolver (7); a
development in this sense is the practically important locally optimal preconditioned conjugate
gradient iteration [7].
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