Graph Minors and Linkages

G. CHEN¹ * R.J. GOULD², K. KAWARABAYASHI³, F. PFENDER², B. WEI⁴ [†]
¹ Dept. Of Math and Stat., Georgia State University, Atlanta, GA 30303
² Dept. of Math and CS., Emory University, Atlanta GA 30322
³ Dept. of Math, Keio University, Yakohama 223-8522, Japan
⁴ Inst. of Sys. Sci., Chinese Academy of Sciences, Beijing 100080, China

December 5, 2003

Abstract

Bollobás and Thomason showed that every 22k-connected graph is k-linked. Their result used a dense graph minor. In this paper we investigate the ties between small graph minors and linkages. In particular, we show that a 6-connected graph with a K_9^- minor is 3-linked. Further, we show that a 7-connected graph with a K_9^- minor is (2,5)-linked. Finally, we show that a graph of order n and size at least 7n - 29 contains a K_9^- minor.

1 Introduction

All graphs considered in this paper are simple graphs, that is, finite graphs without multiple edges or loops. For any graph G, we will use |G| and ||G|| to denote the number of vertices and the number of edges of G, respectively. Let H be a connected subgraph of a graph G, then let G/Hdenote the graph obtained by contracting all vertices of H to a vertex and let G[H] = G[V(H)]denote the subgraph induced by the vertex set of H in G. In this paper, K_n always stands for the complete graph with n vertices, K_n^- denotes a subgraph of K_n with exactly one edge deleted, and K_n^{-i} denotes a subgraph of K_n with exactly $i(\geq 2)$ edges deleted. When i = 2, we sometimes use K_n^{--} for K_n^{-2} .

Let s_1, s_2, \ldots, s_k be k positive integers. A graph G is said to be (s_1, s_2, \ldots, s_k) -linked if it has at least $\sum_{i=1}^k s_i$ vertices and for any k disjoint vertex sets S_1, S_2, \ldots, S_k with $|S_i| = s_i, G$ contains vertex-disjoint connected subgraphs F_1, F_2, \ldots, F_k such that $S_i \subseteq V(F_i)$. The case $s_1 = s_2 = \cdots = s_k = 2$ has been studied extensively. A $(2, 2, \ldots, 2)$ -linked graph is called k-linked, that is, for any 2k distinct vertices $x_1, y_1, x_2, y_2, \ldots, x_k$, and y_k there exist k vertex-disjoint paths P_1, P_2, \ldots, P_k such that P_i joins x_i and $y_i, 1 \leq i \leq k$.

A graph H is a *minor* of a graph G if H can be obtained from G by deleting edges and/or vertices and contracting edges. An H-minor of G is a minor isomorphic to H. A subdivision of a graph is obtained by replacing some of its edges by paths so that the paths are pairwise internally disjoint. Clearly, if G contains a subdivision of H then G has H as a minor, but the converse is not necessarily true.

^{*}Research partially supported under NSF Grant No. DMS-0070059

[†]Supported by NNSF of China Grant No. 10071093 and the Innovation Funds of Institute of Systems Science, AMSS, CAS

Linkages, subdivisions and minors have been related in a number of results. For example, Larman and Mani [12] and Jung [5] noticed that if $\kappa(G) \geq 2k$ and if G contains a subdivision of K_{3k} then G is k-linked. Mader [15] showed that a graph contains a subdivision of K_{3k} if its connectivity is sufficiently large. Robertson and Seymour [16] showed that the observation of Larman and Mani and of Jung remains true under the very much weaker condition that G has K_{3k} as a minor. Instead of considering K_{3k} minors, Bollobás and Thomason [1] considered graphs containing a dense graph as a minor. Using this idea they showed that every 22k-connected graph is k-linked, thus confirming the long standing belief that linear connectivity would suffice.

Jung [10] showed that every 4-connected non-planar graph is 2-linked. Thomassen [20] and Seymour [18] gave a characterization of graphs which are not 2-linked. Our main purpose is to develop more ties between small graph minors and graph linkages. To do so, we study graphs containing dense minors on 9 vertices. In particular, the following results are obtained.

Theorem 1.1 If a 6-connected graph G has K_9^- as a minor, then G is 3-linked.

Yu [22] completely characterized graphs G which do not contain two vertex-disjoint connected subgraphs F_1 and F_2 such that $S_1 \subseteq V(F_1)$ and $S_2 \subseteq V(F_2)$ for two disjoint vertex sets S_1 and S_2 with $|S_1| = 2$ and $|S_2| = 3$. Consequently, he proved that every 8-connected graph is (2,3)-linked. We will prove the following theorem.

Theorem 1.2 If a 7-connected graph G has K_9^- as a minor, then G is (2,5)-linked.

Note that in [2], we consider several additional questions of this type. Finally, we show the following.

Theorem 1.3 If G is a graph on $n \ge 9$ vertices with at least 7n - 29 edges, then G has K_9^{--} as a minor.

We do not feel Theorem 1.3 is best possible. Hence, we make the following conjecture.

Conjecture 1.4 If G is a graph on n vertices with at least 6n - 20 edges, then G has K_9^{--} as a minor.

In addition, we make these related conjectures.

Conjecture 1.5 If G is a graph on n vertices with at least $\frac{13n-47}{2}$ edges, then G has K_9^- as a minor.

Conjecture 1.6 If G is a graph on n vertices with at least 7n - 27 edges, then G has K_9 as a minor with finitely exceptions.

Conjecture 1.7 If G is a 6-connected graph with K_9^{--} as a minor, then G is 3-linked.

Very recently a proof of Conjecture 1.6 was announced by Thomas, et. al [19]. Finally, we note another long standing conjecture.

Conjecture 1.8 Every 8-connected graph graph is 3-linked.

We will give proofs of Theorems 1.1 and 1.2 in Section 2 and of Theorem 1.3 in Section 3.

We define G + H be the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$, where G and H are two vertex disjoint graphs. We define 2G = G + G' where G' is isomorphic to G and $V(G') \cap V(G) = \emptyset$. Let G be a graph and A be a subset of V(G). To avoid cumbersome notation, at times we simply use A to denote the subgraph induced by A, that is G[A], provided no confusion will arise.

2 Linkages

In this section we will prove Theorem 1.1 and Theorem 1.2. We will use inductive arguments showing slightly stronger statements of each result. We will need the following definitions.

Definition 2.1 Let $S, A, B \subseteq V(G)$ be sets of vertices in a graph G. Let $\ell = |A \cap B|$. If $S \subseteq A$, $V = A \cup B$, and there are no edges between $A \setminus B$ and $B \setminus A$, then we call (A, B) an S-cut of size ℓ .

Definition 2.2 Let H be a minor of a connected graph G. Let $C_1, C_2, \ldots, C_{|H|}$ be a partition of V(G), such that each $G[C_i]$ is connected, and contraction of the C_i yields H. Let $S \subseteq V(G)$. An S-cut (A, B) of G is called an S^H -cut if $C_i \subseteq B \setminus A$ for some $1 \leq i \leq |H|$.

2.1 Proof of Theorem 1.1

Now we are ready to give the first of our slightly stronger statements.

Theorem 2.1 Let G be a graph, and let $S = \{x_1, x_2, y_1, y_2, z_1, z_2\} \subset V(G)$ be a set of 6 vertices. Let G^* be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a partition C_1, C_2, \ldots, C_9 of V(G), such that each $G^*[C_i]$ is connected, and contraction of the C_i in G^* yields $H = K_9^-$. Further suppose that G^* has no S^H -cut of size smaller than 6. Then there are three vertex disjoint paths in G connecting $(x_1, x_2), (y_1, y_2), and (z_1, z_2)$, respectively.

Proof: Suppose the statement is false, and G is a counterexample with the minimum number of edges. Let S, C_1, C_2, \ldots, C_9 be as in the theorem, and suppose the desired linkage can not be found. As G is minimal, we know that G[S] contains no edges.

Claim 2.1.1 The subgraphs $G[C_i]$ contain no edges.

Suppose to the contrary that for some i, $G[C_i]$ contains an edge. Without loss of generality we may assume that $uv \in E(C_1)$, and since G[S] is empty, $v \notin S$. As G is minimal, there has to be an S^H -cut (A, B) of size 6 with $u, v \in A \cap B$, otherwise the contraction of uv would yield a smaller counterexample.

A simple count shows that at least four of the nine C_i sets contain no vertices of $A \cap B$. By symmetry we may assume that $C_i \cap A \cap B \neq \emptyset$ for $1 \leq i \leq k$, and $C_i \cap A \cap B = \emptyset$ for i > k, where k is an integer with $1 \leq k \leq 5$. As $S \subseteq A$, and $G^*[C_i]$ is connected, we know that $C_i \subseteq B \setminus A$ or $C_i \subseteq A \setminus B$ for each i > k. By the definition of S^H -cuts we know that $C_i \subseteq B \setminus A$ for at least one i > k, hence it is in fact true that $C_i \subseteq B \setminus A$ for all i > k, otherwise the C_i would not contract to a K_9^- in G^* .

Since there is no S^H -cut of size less than 6 in G^* , there does not exist a cut of size less than 6 in A separating S and $A \cap B$. By Menger's Theorem, there are 6 vertex disjoint paths from S to $A \cap B$ in G[A]. Label the vertices of $S' = A \cap B$ with $x'_1, x'_2, y'_1, y'_2, z'_1, z'_2$ according to the starting vertices in S of these paths. Let $C'_i = C_i \cap B$ for $1 \le i \le 9$. The graph G[B] satisfies all the conditions of the statement, and G[B] is smaller than G as there is at least one vertex in $S \setminus B$ (note that $v \notin S$).

By the minimality of G, we can find three vertex disjoint paths in G[B] connecting (x'_1, x'_2) , (y'_1, y'_2) , and (z'_1, z'_2) , respectively. This, together with the six paths in G[A], produces three vertex disjoint paths in G connecting (x_1, x_2) , (y_1, y_2) , and (z_1, z_2) , respectively, a contradiction. This shows that the $G[C_i]$ contain no edges.

Note that this implies that for each $1 \le i \le 9$, $C_i \subseteq S$ or $|C_i| = 1$. Therefore, $9 \le |V(G)| \le 14$. We will finish the proof by an analysis broken into cases according to |V(G)|. We may always assume that $|C_i| \ge |C_j|$ for $1 \le i < j \le 9$.

Case 2.1.1 Suppose |V(G)| = 9.

Note that in this case $|C_i| = 1$ for all $1 \le i \le 9$. Let $V(G) \setminus S = \{v_1, v_2, v_3\}$. Since

 $\{x_1v_1x_2, y_1v_2y_2, z_1v_3z_2\}$ and $\{x_1v_2x_2, y_1v_3y_2, z_1v_1z_2\}$

are edge disjoint, one of them is the desired set of vertex-disjoint paths, a contradiction.

Case 2.1.2 Suppose |V(G)| = 10.

In this case $|C_1| = 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4\}$.

First suppose that $C_1 = \{x_1, x_2\}$ (the cases $C_1 = \{y_1, y_2\}$ and $C_1 = \{z_1, z_2\}$ are analogous). There exists a matching from C_1 into $V(G) \setminus S$, otherwise there is an S^H -cut smaller than 6. We may assume that $\{x_1v_1, x_2v_2\}$ is such a matching. If $v_1v_2 \in E$, then one of $\{x_1v_1v_2x_2, y_1v_3y_2, z_1v_4z_2\}$ and $\{x_1v_1v_2x_2, y_1v_4y_2, z_1v_3z_2\}$ is the desired set of vertex-disjoint paths, a contradiction. Thus, we may assume that $v_1v_2 \notin E$. As G^* contracts to a K_9^- , v_3 has a neighbor in C_1 , hence we may assume that $x_1v_3 \in E(G)$. But now $\{x_1v_3v_2x_2, y_1v_1y_2, z_1v_4z_2\}$ is the desired set of vertex-disjoint paths, a contradiction.

Now suppose that $C_1 = \{x_1, y_1\}$, (again the other cases are handled by a similar argument). There exists a matching from C_1 into $V(G) \setminus S$. We may assume that $\{x_1v_1, y_1v_2\}$ is such a matching. At most one of the edges in $\{x_1v_1x_2, y_1v_2y_2, z_1v_3z_2\}$ is missing, but then this edge can be replaced by a path of length 2 through v_4 to produce the desired set of vertex disjoint paths, a contradiction completing this case.

Case 2.1.3 Suppose |V(G)| = 11.

Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4, v_5\}.$

First suppose that $|C_1| = 3$. We may assume that $x_1, y_1 \notin C_1$. Now $G^*[x_1, y_1, v_1, v_2, v_3, v_4, v_5]$ is a K_7 or a K_7^- , and therefore 3-linked. We can find a matching from $\{x_2, y_2, z_1, z_2\}$ into $\{v_2, v_3, v_4, v_5\}$, otherwise there is an S^H -cut smaller than 6. Without loss of generality suppose the matching is $x_2v_2, y_2v_3, z_1v_4, z_2v_5$. We can now connect the paths in the necessary manner inside of $G^*[x_1, y_1, v_1, v_2, v_3, v_4, v_5]$, since this graph is 3-linked. Note that the edge x_1y_1 is not used in this path system, so this is in fact a path system in G, a contradiction.

Now suppose that $|C_1| = |C_2| = 2$. If $x_1, y_1 \notin C_1 \cup C_2$, the same argument as above applies. By symmetry we may assume that $C_1 \cup C_2 = \{y_1, y_2, z_1, z_2\}$. If $x_j v_k \notin E$ for some $1 \leq j \leq 2$ and some $1 \leq k \leq 5$, say $x_1 v_1 \notin E$, then $G[x_2, v_1, v_2, v_3, v_4, v_5]$ is a K_6 and thus 3-linked, and a very similar argument can be used to find the paths. Thus, we may assume that $x_j v_k \in E$ for $1 \leq j \leq 2$ and $1 \leq k \leq 5$. There is a matching from $\{y_1, y_2, z_1, z_2\}$ into $\{v_1, v_2, v_3, v_4, v_5\}$, say $y_1 v_1, y_2 v_2, z_1 v_3, z_2 v_4 \in E$. If $v_1 v_2, v_3 v_4 \in E$, then $\{x_1 v_5 x_2, y_1 v_1 v_2 y_2, z_1 v_3 v_4 z_2\}$ is the desired set of vertex disjoint paths, a contradiction. Hence, we may assume that $v_1 v_2 \notin E$. As G^* contracts to a K_9^- , v_5 is adjacent to both C_1 and C_2 . If $v_5 y_1 \in E$ (and similarly if $v_5 y_2 \in E$), then $\{x_1 v_1 x_2, y_1 v_5 v_2 y_2, z_1 v_3 v_4 z_2\}$ is the desired set of vertex disjoint paths. Hence, $v_5 z_1, v_5 z_2 \in E$. But then $\{x_1 v_4 x_2, y_1 v_1 v_3 v_2 y_2, z_1 v_5 z_2\}$ are the desired paths and this contradiction completes this case.

Case 2.1.4 Suppose |V(G)| = 12.

Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4, v_5, v_6\}$. Suppose that $C_3 \subset S$. If $|C_1| \ge 3$, then $|C_3| = 1$ and $G[C_3 \cup \{v_1, v_2, v_3, v_4, v_5, v_6\}]$ is a K_7 or a K_7^- and the same argument as in Case 2.1.3 applies. Hence, we may assume that $|C_1| = |C_2| = |C_3| = 2$.

There is a matching from S into $V(G) \setminus S$, say $\{x_1v_1, x_2v_2, y_1v_3, y_2v_4, z_1v_5, z_2v_6\}$ is such a matching. One of the edges v_1v_2, v_3v_4, v_5v_6 is missing, otherwise the three paths are easy to find. This implies that every v_i has at least three neighbors in S, one in each of C_1 , C_2 and C_3 . Further, each vertex in S has at least two neighbors in $V(G) \setminus S$, otherwise G is not minimal.

Suppose that $x_2v_1 \in E$. Then, similar to our earlier arguments, either $\{x_1v_1x_2, y_1v_3v_4y_2, z_1v_5v_2v_6z_2\}$ or $\{x_1v_1x_2, y_1v_3v_2v_4y_2, z_1v_5v_6z_2\}$ is the desired path system, a contradiction. By similar arguments we may conclude that $x_1v_2, y_1v_4, y_2v_3, z_1v_6, z_2v_5 \notin E$.

Suppose that $x_1v_3, x_2v_3 \in E$. If $y_1v_1 \in E$ or $y_1v_2 \in E$, a path system can easily be found. Thus, $y_1v_5 \in E$ or $y_1v_6 \in E$, by symmetry we may assume $y_1v_5 \in E$. If $z_1v_1 \in E$, then $\{x_1v_3x_2, y_1v_5v_4y_2, z_1v_1v_6z_2\}$ is a path system, a contradiction. Similarly, $z_1v_2 \notin E$. As v_1 and v_2 have at least three neighbors in S, we have $y_2v_1, y_2v_2, z_2v_1, z_2v_2 \in E$. If $z_1v_4 \in E$, then $\{x_1v_3x_2, y_1v_5v_1y_2, z_1v_4v_6z_2\}$ is a path system, a contradiction. Thus, $z_1v_4 \notin E$, and $z_1v_3 \in E$ as z_1 has at least two neighbors in $V(G) \setminus S$. If $x_1v_4 \in E$, then $\{x_1v_4v_2x_2, y_1v_5v_1y_2, z_1v_3v_6z_2\}$ is a path system, a contradiction. Thus, $z_1v_4 \notin E$. But now the only possible neighbors of v_4 in S are y_2 and z_2 , a contradiction establishing that x_1v_3 and x_2v_3 can not both be edges.

By symmetrical arguments, we can establish that $N(x_1) \cap N(x_2) = N(y_1) \cap N(y_2) = N(z_1) \cap N(z_2) = \emptyset$. Therefore, every v_i has exactly three neighbors in S.

By symmetry, we may assume that $v_1v_2 \notin E$ and $N(v_1) = \{x_1, y_1, z_1\}$. If $x_1v_3 \in E$, then $\{x_1v_3v_2x_2, y_1v_1v_4y_2, z_1v_5v_6z_2\}$ is a path system, a contradiction. Thus, $x_1v_3 \notin E$ and hence $x_2v_3 \in E$.

If $y_1v_2 \in E$, then $\{x_1v_1v_3x_2, y_1v_2v_4y_2, z_1v_5v_6z_2\}$ is a path system, a contradiction. Thus, $y_1v_2 \notin E$ and hence $y_2v_2 \in E$.

If $x_2v_4 \in E$, then $\{x_1v_1v_4x_2, y_1v_3v_2y_2, z_1v_5v_6z_2\}$ is a path system, a contradiction. Thus, $x_2v_4 \notin E$ and hence $x_1v_4 \in E$.

If $y_2v_5 \in E$, then $\{x_1v_4v_2x_2, y_1v_3v_5y_2, z_1v_1v_6z_2\}$ is a path system, a contradiction. Thus, $y_2v_5 \notin E$ and hence $y_1v_5 \in E$. But now, $\{x_1v_4v_3x_2, y_1v_5v_2y_2, z_1v_1v_6z_2\}$ is a path system, the final contradiction finishing the case |V(G)| = 12.

Case 2.1.5 Suppose |V(G)| > 12.

Let $V(G) \setminus S \supseteq \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. Then $G[v_1, v_2, v_3, v_4, v_5, v_6, v_7]$ is a K_7 or a K_7^- , and therefore 3-linked. The path system can easily be found, establishing this last case and completing the proof of the theorem. \Box

2.2 Proof of Theorem 1.2

Again, we will prove a slightly stronger statement.

Theorem 2.2 Let G be a graph, and let $S = \{x_1, x_2, y_1, y_2, y_3, y_4, y_5\} \subset V(G)$ be a set of 7 vertices. Let G^* be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a partition C_1, C_2, \ldots, C_9 of V(G), such that each $G^*[C_i]$ is connected, and contraction of the C_i in G^* yields $H = K_9^-$. Further suppose that G^* has no S^H -cut of size smaller than 7. Then there are two vertex disjoint connected subgraphs in G containing $\{x_1, x_2\}$ and $\{y_1, y_2, y_3, y_4, y_5\}$, respectively. **Proof:** Suppose the statement is false and G is a counterexample with the minimum number of edges. Let $S, C_1, C_2, \ldots C_9$ be as in the theorem, and suppose the desired subgraphs can not be found. As G is minimal, we know that G[S] contains no edges.

Claim 2.2.1 The subgraphs $G[C_i]$ contain no edges.

Suppose the result fails to hold. Without loss of generality we may assume that $uv \in E(C_1)$, and $v \notin S$. As G is minimal, there has to be an S^H -cut (A, B) of size 7 with $u, v \in A \cap B$, otherwise the contraction of uv would yield a smaller counterexample.

A simple count shows that at least three of the nine C_i sets contain no vertices of $A \cap B$. By symmetry we may assume that $C_i \cap A \cap B \neq \emptyset$ for $1 \leq i \leq k$, and $C_i \cap A \cap B = \emptyset$ for i > k, where k is an integer with $1 \leq k \leq 6$. As $S \subseteq A$, and $G^*[C_i]$ is connected, we know that $C_i \subseteq B \setminus A$ or $C_i \subseteq A \setminus B$ for each i > k. Since $C_i \subseteq B \setminus A$ for at least one i > k, it is in fact true that $C_i \subseteq B \setminus A$ for all i > k, otherwise the C_i would not contract to a K_9^- in G^* .

Since there is no S^H -cut of size less than 7 in G^* , there are 7 vertex disjoint paths from S to $A \cap B$ in G[A]. Label the vertices of $S' = A \cap B$ with $x'_1, x'_2, y'_1, y'_2, y'_3, y'_4, y'_5$ according to the starting vertices of these paths. Let $C'_i = C_i \cap B$ for $1 \leq i \leq 9$. The graph G[B] satisfies all the conditions of the statement, and G[B] is smaller than G as there is at least one vertex in $S \setminus B$ (note that $v \notin S$).

By the minimality of G, we can find two vertex disjoint connected subgraphs in G[B] containing $\{x'_1, x'_2\}$ and $\{y'_1, y'_2, y'_3, y'_4, y'_5\}$, respectively. This, together with the seven paths in G[A], produces the desired subgraphs in G, a contradiction, completing the claim.

Note that this implies that for each $1 \le i \le 9$, $C_i \subseteq S$ or $|C_i| = 1$. Therefore, $9 \le |V(G)| \le 15$ and we can assume that $|V(C_i)| \ge |V(C_j)|$ for $1 \le i < j \le 9$. We will finish the proof by an analysis broken up into cases according to |V(G)|.

Case 2.2.1 Suppose |V(G)| = 9.

Note that in this case $|C_i| = 1$ for all $1 \le i \le 9$. Let $V(G) \setminus S = \{v_1, v_2\}$. Then one of $G[x_1, x_2, v_1], G[y_1, y_2, y_3, y_4, y_5, v_2]$ and $G[x_1, x_2, v_2], G[y_1, y_2, y_3, y_4, y_5, v_1]$ is the desired set of connected subgraphs, a contradiction.

For all other cases note that every vertex in S has at least two neighbors in $V(G) \setminus S$. Suppose the contrary, say y_1 has at most one neighbor in $V(G) \setminus S$. If y_1 has no neighbors in $V(G) \setminus S$, then $(A = S, B = V(G) \setminus \{y_1\})$ is an S^H -cut of size 6. On the other hand, if y_1 has exactly one neighbor in $V(G) \setminus S$, say $y_1v_1 \in E$, then $C_i \setminus \{y_1\} \neq \emptyset$ for all $1 \leq i \leq 9$ since $|V(G) \setminus S| \geq 3$, and $G - y_1$ with $y'_1 = v_1$ would be a smaller example, contradicting the minimality of E(G).

Case 2.2.2 Suppose |V(G)| = 10.

Now $|C_1| = 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3\}$. We know that $N(x_1) \cap N(x_2) \cap V(G) \setminus S \neq \emptyset$, since $|N(x_1) \cap V(G) \setminus S| \ge 2$ and $|N(x_2) \cap V(G) \setminus S| \ge 2$. We may assume that $x_1v_1, x_2v_1 \in E$. Every y_i is connected to at least one of v_2 and v_3 . All we need to show in order to find a contradiction is that $G[y_1, y_2, y_3, y_4, y_5, v_2, v_3]$ is connected. If $v_2v_3 \in E$, this is clear. Otherwise, observe that $|C_i| = 1$ for $2 \le i \le 9$, and thus there is a y_j with $y_jv_2, y_jv_3 \in E$.

Case 2.2.3 Suppose |V(G)| = 11.

Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4\}$. If $N(x_1) \cap N(x_2) \cap V(G) \setminus S \neq \emptyset$, say $x_1v_1, x_2v_1 \in E$, then $G[x_1, x_2, v_1]$ and $G[y_1, y_2, y_3, y_4, y_5, v_2, v_3, v_4]$ are connected subgraphs. Thus, suppose that $N(x_1) \cap N(x_2) \cap V(G) \setminus S = \emptyset$, say $N(x_1) = \{v_1, v_2\}$ and $N(x_2) = \{v_3, v_4\}$. Note that this implies that neither x_1 nor x_2 is in a C_i by itself, so at least three of the y_i have at least three neighbors in $V(G) \setminus S$, at least two of the y_i are connected to all four vertices in $V(G) \setminus S$.

By symmetry we may assume that $v_1v_3, v_1v_4, v_2v_3 \in E$ (potentially $v_2v_4 \notin E$). As there are at most two vertices in $\{y_1, y_2, y_3, y_4, y_5\}$ with less than three neighbors in $V(G) \setminus S$, we can pick $1 \leq j < k \leq 4$ such that $G[x_1, x_2, v_j, v_k]$ is connected, and such that every y_i has a neighbor in $\{v_1, v_2, v_3, v_4\} \setminus \{v_j, v_k\}$. But now $G[V(G) \setminus \{x_1, x_2, v_j, v_k\}]$ is connected, a contradiction.

Case 2.2.4 Suppose $n = |V(G)| \ge 12$.

Let $V(G) \setminus S = \{v_1, v_2, v_3, \dots, v_{n-7}\}$. If $N(x_1) \cap N(x_2) \neq \emptyset$, say $x_1v_1, x_2v_1 \in E$, then $G[x_1, x_2, v_1]$ and $G[y_1, y_2, y_3, y_4, y_5, v_2, v_3, \dots, v_{n-7}]$ are connected subgraphs. Thus, suppose that $N(x_1) \cap N(x_2) = \emptyset$.

Suppose that $|N(x_1)| = |N(x_2)| = 2$, say $N(x_1) = \{v_1, v_2\}$ and $N(x_2) = \{v_3, v_4\}$. By symmetry we may assume that $v_1v_3, v_1v_4, v_2v_3 \in E$ (potentially $v_2v_4 \notin E$). If every y_i has a neighbor in $\{v_1, v_2, v_3, \ldots, v_{n-7}\} \setminus \{v_1, v_3\}$, then $G[x_1, x_2, v_1, v_3]$ and $G[y_1, y_2, y_3, y_4, y_5, v_2, v_4, v_5, \ldots, v_{n-7}]$ are connected subgraphs. Therefore, there is an y_i with $N(y_i) = \{v_1, v_3\}$, say i = 1. Similarly, we may assume that $N(y_2) = \{v_1, v_4\}$ and $N(y_3) = \{v_2, v_3\}$. But now $(A = S \cup \{v_1, v_2, v_3, v_4\}, B = \{y_4, y_5, v_1, v_2, \ldots, v_{n-7}\})$ is an S^H -cut of size 6, a contradiction.

Now suppose that $|N(x_1) \cup N(x_2)| \ge 5$, say $N(x_1) \supseteq \{v_1, v_2\}$ and $N(x_2) \supseteq \{v_3, v_4, v_5\}$. By symmetry we may assume that $v_1v_3, v_1v_4, v_1v_5, v_2v_3, v_2v_4 \in E$ (potentially $v_2v_5 \notin E$). By similar arguments as above, $N(y_1) = \{v_1, v_3\}, N(y_2) = \{v_1, v_4\}, N(y_3) = \{v_1, v_5\}, N(y_4) = \{v_2, v_3\}$, and $N(y_5) = \{v_2, v_4\}$. Further, we actually have $N(x_1) = \{v_1, v_2\}$ and $N(x_2) = \{v_3, v_4, v_5\}$.

If k = 12, then four of the C_i consist of vertices in S, and hence $|N(u)| \ge 4$ for some $u \in S$, a contradiction. If k > 12, then $(A = S \cup \{v_1, v_2, v_3, v_4, v_5\}, B = \{v_1, v_2, \dots, v_{n-7}\})$ is an S^H -cut of size 5, a contradiction, completing the proof. \Box

3 Graph Size and Minors

The center piece of studying graph minors is the following conjecture due to Hadwiger [4].

Conjecture 3.1 For all $k \ge 1$, every k-chromatic graph has a K_k minor.

For k = 1, 2, 3, it is easy to prove, and for k = 4, Hadwiger [4] and Dirac [3] proved it independently. In 1937, Wagner [21] proved that the case k = 5 is equivalent to the Four Color Theorem. Robertson, Seymour, and Thomas [17] proved that a minimal counterexample to the case k = 6 is a graph G which has a vertex v such that G - v is planar. Hence, the case k = 6 of Hadwiger's conjecture holds. For k = 7, Kawarabayashi and Toft [11] proved that any 7-chromatic graph has either K_7 or $K_{4,4}$ as a minor. Jakobsen [6] proved that every 7-chromatic graph has a K_7^{--} as a minor.

To study extremal graphs, for any positive integer k, let g(k) be the least value such that every graph on n vertices and g(k)n edges contains K_k as a minor. Mader [15] showed that g(k) existed and was at most 2^{k-3} . In fact, Mader [14] proved that $g(k) \leq 8klog_2(k)$ and that g(k) = k - 2 for $k \leq 7$. Jørgensen [9] proved that every graph G with $||G|| \geq 6|G| - 20$ has K_8 as a minor or G is a special graph. We will prove Theorem 1.3 in this section. We first state the following related results. **Theorem 3.2** [14] For any $k \leq 7$, every graph with $|G| \geq k$ vertices and $||G|| \geq (k-2)n - (k-1)(k-2)/2 + 1$ contains K_k as a minor.

Theorem 3.3 [6] Every graph G with $|G| \ge 7$ and $||G|| \ge 4|G| - 8$ contains K_7^{-2} as a minor.

Theorem 3.4 [8] Every graph G with $|G| \ge 7$ and $||G|| \ge (9|G| - 23)/2$ contains K_7^- as a minor or a special graph with 8 vertices.

Theorem 3.5 [7] Every graph G with $|G| \ge 8$ and $||G|| \ge 5|G| - 14$ has K_8^{-2} as a minor.

Theorem 3.6 [9] Every graph G with $|G| \ge 8$ and $||G|| \ge 6|G| - 20$ has K_8 as a minor, unless G belongs to a special class of graphs with ||G|| = 6|G| - 20 and |G| = 5m for some integer $m \ge 2$.

Let t be a positive integer and H be a graph. For any $A \subseteq V(H)$, let DE(A) denote the set of edges dominated by A. Define

$$\gamma_t(H) = \max_{A \subseteq V(H)} \{ |DE(A)| : |A| = t \}.$$

Clearly, $\gamma_1(H)$ is the maximum degree of H. Let \overline{H} denote the complement of H and define that $\gamma'_t(H) = \gamma_t(\overline{H})$. Let v be a vertex and N(v) the neighborhood of v. A vertex set $S \subseteq N(v)$ is called a *v*-saturated cut if $S \cup \{v\}$ is a cut of G. A *v*-saturated cut S is minimal if there is no v-saturated cut which is a proper subset of S.

3.1 Proof of Theorem 1.3

We will proceed by induction on the order of G. For the base case of |G| = 9, we have that $||G|| \ge 7 \times 9 - 29 = 34$, which implies that G is a K_9^{--} .

Suppose that |G| = n > 9 and Theorem 1.3 is true for any graph of order less than n (but ≥ 9). Let δ denote the minimum degree of G, v be a vertex of G such that $d(v) = \delta$, H = G[N(v)], h = |H| = d(v), and $\delta(H)$ be the minimum degree of H. Since G does not have K_9^{--} as a minor, no subgraph of G has K_9^{--} as a minor. In particular, G - v does not have K_9^{--} as a minor. Thus, ||G - v|| < 7|G - v| - 29, which implies that $\delta \geq 8$. On the other hand, if $\delta \geq 14$, then it is readily seen that $||G - v|| \geq 7|G - v| - 14$, thus G - v has K_9^{--} as a minor and hence, so does G, a contradiction. Thus, we have that

$$8 \le d(v) \le 13.$$

Claim 3.1.1 $\delta(H) \geq 7$ and hence, $\delta(G) \geq 9$.

Proof: Suppose to the contrary, there is a vertex $u \in N(v)$ such that $d_H(u) = |N(u) \cap N(v)| \le 6$. Then, G/uv, the graph obtained from G by contracting the edge uv, has |G| - 1 vertices and

$$||G/uv|| \ge ||G|| - 7 \ge 7|G| - 29 - 7 = 7|G/xy| - 29.$$

By our induction hypothesis, G/uv has K_9^{--} as a minor, a contradiction. Since H is not K_8 , the fact that $\delta(G) \geq 9$ is clear.

Claim 3.1.2 $||H|| \le 5h - 15.$

Proof: Suppose the claim failed, then by Theorem 3.5, H has K_8^{--} as a minor. Thus, G has K_9^{--} as a minor since v is adjacent to every vertex of H.

Claim 3.1.3 We have that $h \ge 10$. Further, equality holds only if G - N[v] is disconnected and any neighbor of x and any neighbor of y are not in the same component for any two nonadjacent vertices $x, y \in N(v)$.

Proof: By Claim 3.1.1, $||H|| \ge 7h/2$. Combining it with Claim 3.1.2, we have that

$$7h/2 \le 5h - 15,$$

and thus, $h \ge 10$. If there are two nonadjacent vertices x and $y \in N(v)$ such that both are adjacent to the same component of G - N[v], contracting this component with vertex x, we see that the resulting graph in H still cannot have K_8^{--} as a minor, or G would have K_9^{--} as a minor. Hence, we have that

$$7h/2 + 1 \le 5h - 15$$
,

which implies that $h \ge 11$.

Claim 3.1.4 Let B be a minimal v-saturated cut. Then,

$$||B|| \le 6b - 24 - 2\gamma_1'(B),$$

where b = |B|.

Proof: Since $B \cup \{v\}$ is a cut of G, let G_1 and G_2 be two induced subgraphs of G such that $V(G_1) \cup V(G_2) = V(G)$ and $V(G_1) \cap V(G_2) = B \cup \{v\}$. By the minimality of B, we have that all vertices of B are adjacent to every component in $G - (B \cup \{v\})$. Note that v may not have this property. Let x_1 be a vertex of B such that $d_{\overline{G[B]}}(x_1) = \gamma'_1(G[B])$. Contracting a component of G_2 to x_1 , we obtained a graph G_1^* . Clearly,

$$|G_1^*| = |G_1|$$
 and $||G_1^*|| = ||G_1|| + \gamma_1'(B).$

Since G does not have a K_9^{--} as a minor, G_1^* does not have a K_9^{--} as a minor. Thus,

$$||G_1^*|| \le 7|G_1^*| - 30.$$

Thus, we have that

$$||G_1|| \le 7|G_1| - 30 - \gamma_1'(B).$$

Similarly, we can show that

$$||G_2|| \le 7|G_2| - 30 - \gamma_1'(B).$$

Thus,

$$\begin{aligned} 7|G|-29 &\leq ||G|| &= ||G_1|| + ||G_2|| - ||B \cup \{v\}|| \\ &\leq 7|G_1| - 30 - \gamma_1'(B) + 7|G_2| - 30 - \gamma_1(B) - ||B|| - b \\ &= 7(|G| + b + 1) - 60 - 2\gamma_1'(B) - ||B|| - b \\ &= 7|G| + 6b - 53 - 2\gamma_1'(B) - ||B||. \end{aligned}$$

Thus, Claim 3.1.4 follows.

Claim 3.1.5 Let B be a minimal v-saturated cut. Then, $b = |B| \ge 5$ and $\gamma'_2(B) \ge 5$, with the exception that b = 7 or 8 and \overline{B} is a 2-regular graph. In any case, we have that $\gamma'_2(B) \ge 4$ and $\gamma'_3(B) \ge 5$.

Proof: The inequality $b \ge 5$ directly follows from Claim 3.1.4 since

$$0 \le ||B|| \le 6b - 24 - 2\gamma_1'(B).$$

Note that $\gamma'_2(B) \ge 5$ if $\gamma'_1(B) \ge 4$ and $||\overline{B}|| \ge 5$. By the fact that $||B|| + ||\overline{B}|| = b(b-1)/2$ and Claim 3.1.4, we have that $||\overline{B}|| \ge 5$ if $\gamma'_1(B) \ge 4$. Thus, we assume that $\gamma'_1(B) \le 3$.

Suppose that $\gamma'_1(B) = 3$ and $\gamma'_2(B) < 5$. Let x be the vertex such that $d_{\overline{B}}(x) = 3$. Then, the maximum degree of $\overline{B} - x$ is at most 1. Thus,

$$||\overline{B}|| \le 3 + (b-1)/2 \le (b+5)/2.$$

Applying that $\gamma'_1(B) = 3$ to Claim 3.1.4, we have that

$$||\overline{B}|| = b(b-1)/2 - ||B|| \ge b(b-1)/2 - (6b-24-6) \ge \frac{1}{2}(b^2 - 13b + 60).$$

However, the equation

$$(b+5)/2 \ge \frac{1}{2}(b^2 - 13b + 60)$$

does not have a solution. Thus, $\gamma'_1(B) \leq 2$.

Suppose that b = 5. In this case we have that $||B|| + ||\overline{B}|| = 10$ and $||B|| \le 6 - 2\gamma'_1(B) \le 6$. Thus, $||\overline{B}|| \ge 4$, so $\gamma'_1(B) \ge 2$, which in turn implies that $||B|| \le 2$. But then, $\gamma'_2(B) \ge 5$, proving the claim in this case.

Suppose now that b = 6. Then we have that $||B|| + ||\overline{B}|| = 15$ and $||B|| \le 12 - 2\gamma'_1(B)$. Thus, $||\overline{B}|| \ge 3$ and so $\gamma'_1(B) \ge 2$. This in turn implies that $||B|| \le 8$. Now $||\overline{B}|| \ge 7$, which implies that $\gamma'_1 \ge 3$, a contradiction.

Since G does not have K_9^{--} as a minor, B does not contain K_7 as a subgraph. Thus, $\gamma'_1(B) \ge 1$ for $b \ge 7$.

Now suppose that b = 7. Then we have that $||B|| + ||\overline{B}|| = 21$ and $||B|| \le 18 - 2\gamma'_1(B) \le 16$. Thus, $||\overline{B}|| \ge 5$, so $\gamma'_1(B) \ge 2$, which in turn implies that $||B|| \le 14$. Thus, $||\overline{B}|| \ge 7$. Since $\gamma'_1 \le 2$ and b = 7, \overline{B} is a 2-regular graph.

Suppose next that b = 8. Then $||B|| + ||\overline{B}|| = 28$ and $||B|| \le 24 - 2\gamma'_1(B) \le 22$, so that $||\overline{B}|| \ge 6$. Thus, $\gamma'_1 \ge 2$, which in turn implies that $||B|| \le 20$. But since $\gamma'_1(B) \le 2$ and b = 8, \overline{B} is a 2-regular graph.

Now let D_1 and D_2 be two components of $G - (B \cup \{v\})$ such that $D_2 \cap N(v) \neq \emptyset$.

If B has K_6 as a minor, contracting D_1 and D_2 along with using v yields a K_9^{--} . Thus, we may assume that B does not have K_6 as a minor. Using Theorem 3.2 for the case k = 6, we have that

$$||B|| \le 4b - 10.$$

Suppose that b = 9. In this case we have that

$$||B|| \le 4 \cdot 9 - 10 = 26,$$

and so , $||\overline{B}|| \ge 10$. This however implies that $\gamma'_1(B) \ge 3$, a contradiction.

Suppose that b = 10. Then

$$||B|| \le 4 \cdot 10 - 10 = 30.$$

Thus, $||\overline{B}|| \geq 15,$ which implies that $\gamma_1' \geq 3,$ a contradiction.

By similar arguments we can produce contradictions for $11 \le b \le 13$, completing the proof of this claim.

Since H does not contain K_8^{--} as a minor, $||H|| \le 5n - 15$. We define the discharge $\theta = 5h - 14 - ||H||$.

Claim 3.1.6

$$\theta \le \begin{cases} 4 & if \ h = 10, 11, 12 \ and \\ 5 & if \ h = 13 \end{cases}$$

Further, the second equality holds only when all except one vertex in H have degree 7 and the exception has degree 8.

Proof: Since the minimum degree of H is at least 7, we have that $5h - 14 - \theta \ge ||H|| \ge \lceil 7h/2 \rceil$. It is readily seen that Claim 3.1.6 holds by solving the inequality.

Let $N[v] = N(v) \cup \{v\}$ and C_1, C_2, \ldots, C_m be the components of G - N[v] and $B_i = N(C_i) \cap N(v)$ for each $i = 1, 2, \ldots, m$. Note that $B_i = B_j$ may happen for different i and j.

Let $u \in N(v)$ such that $d_H(u) = 7$. Let $H^* = G[V(H) \cup \{v\}] - u$. Then, $|H^*| = h$ and

$$||H^*|| \ge 7h/2 - 7 + h = 9h/2 - 7$$

Using the fact $h \leq 13$, we see that $||H^*|| \geq 5h - 14$, which implies that H^* contains K_8^{--} as a minor. Note, every vertex of H^* is either adjacent to u or to one of the C_i since d(v) is minimum degree of G. Now, since G does not have K_9^{--} as a minor, the following claim holds.

Claim 3.1.7 $m \ge 2$.

Claim 3.1.8 There exists an $i, 1 \le i \le m$ such that $\gamma'_2(B_i) < \theta$.

Proof: Suppose, to the contrary, that $\gamma'_2(B_i) \ge \theta$ for all *i*. We now show that there exists a vertex $x \in B_1$ and a vertex $y \in B_2$ such that $|N_{\overline{B_1}}(x) \cup N_{\overline{B_2}}(y)| \ge \theta$. Let x_i and y_i be two vertices in B_i such that $\{x_i, y_i\}$ dominates at leat θ edges in $\overline{B_i}$ for i = 1, 2. Then

 $|N_{\overline{B_i}}(x_i) \cup N_{\overline{B_i}}(y_i)| \ge \theta,$

and without loss of generality assume $d_{\overline{B_i}}(x_i) \ge d_{\overline{B_i}}(y_i)$. We may further assume that $d_{\overline{B_1}}(x_1) \ge d_{\overline{B_2}}(x_2)$. If $d_{\overline{B_1}}(x_1) > \theta/2$ or $x_1x_2 \notin E(\overline{B_1})$ or $x_1x_2 \notin E(\overline{B_2})$, then $x = x_1$ and $y = x_2$ are a pair of desired vertices. Thus,

$$d_{\overline{B_1}}(x_1) = d_{\overline{B_2}}(x_2) = \theta/2,$$

which give that

$$d_{\overline{B_1}}(y_1) = d_{\overline{B_2}}(y_2) = \theta/2$$

In particular, we have that either $\theta = 2$ or $\theta = 4$ since $\theta \leq 5$. Further, we have $x_1x_2 \in E(\overline{B_1} \cap \overline{B_2})$. Similarly, we have that x_1y_2, y_1x_2 , and $y_1y_2 \in E(\overline{B_1} \cap \overline{B_2})$. Thus, $\theta = 4$ and

$$N_{\overline{B_2}}(y_1) = N_{\overline{B_1}}(y_1).$$

Hence, $x = x_1$ and $y = y_1$ are a pair of desired vertices.

Now contracting C_i to x_i for each i = 1, 2, we get a new subgraph H_1 such that $|H_1| = |N(v)|$ and $||H_1|| \ge 5|H_1| - 14$ since $||H|| \ge 5h - 14 - \theta$. Thus, H_1 has K_8^{--} as a minor. This minor along with v shows that G has K_9^{--} as a minor, a contradiction. \Box

Combining Claims 3.1.6 and 3.1.8, we have the following: $4 \leq \gamma'_2(B_i) < \theta$ for some *i*. Thus, $\theta = 5$ and then by Claim 3.1.6 we obtain the following.

Claim 3.1.9 h = d(v) = 13 and ||H|| = (5h - 14) - 5. In particular, all vertices of H have degree 7 except one which has degree 8.

Using Claim 3.1.5, we see that $\gamma'_3(B_i) \ge 5$. If $m \ge 3$, using an argument similar to before it is straightforward to show that there are vertices $x_i \in B_i$ such that

$$|N_{\overline{B_1}}(x_1) \cup N_{\overline{B_2}}(x_2) \cup N_{\overline{B_3}}(x_3)| \ge 5.$$

Contracting C_i to x_i for i = 1, 2, 3 again produces a K_8^{--} minor in H, a contradiction. Thus we obtain the following.

Claim 3.1.10 m = 2.

Since every vertex of N(v) has a neighbor outside N[v], we have that $B_1 \cup B_2 = N(v)$. Let B_i^* be a minimal v-saturated cut with $B_i^* \subseteq B_i$ for each i = 1, 2. Without loss of generality assume that $\gamma'_2(B_1) = 4 < \theta = 5$. By Claim 3.1.5, we have that $7 \leq |B_i^*| \leq 8$ and $\overline{B_i^*}$ is a 2-regular graph.

Claim 3.1.11 $\gamma'_2(B_2) = 4.$

Proof: Suppose to the contrary that $\gamma'_2(B_2) \ge 5$. Then there exists $x_2 \in B_2$ such that $d_{\overline{B_2}}(x_2) \ge 3$. Since $\overline{B_1^*}$ is 2-regular, there exists $x_1 \in B_1$ such that $x_1x_2 \notin E(\overline{B_1})$. Now contracting C_1 to x_1 and C_2 to x_2 we again gain at least 5 edges. Then, as before, K_8^{--} would be a minor of H, a contradiction completing the proof of the claim. \Box

Claim 3.1.12 $|B_1^* \cap B_2^*| = 1$, $|B_1^*| = |B_2^*| = 7$, $B_1^* = B_1$ and $B_2^* = B_2$.

Proof: Since $|B_1^*| \ge 7$ and $|B_2^*| \ge 7$ and $|B_1^* \cup B_2^*| \le 13$, we have that $|B_1^* \cap B_2^*| \ge 1$. Suppose $|B_1^* \cap B_2^*| \ge 2$. Since all vertices in H have degree 7 except one which has degree 8, there is a vertex $x \in B_1^* \cap B_2^*$ such that $d_H(x) = 7$. Then $d_{\overline{H}}(x) = 5$ as h = 13. Without loss of generality assume $d_{\overline{B_1}}(x) \ge 3$. Since $\overline{B_2^*}$ is 2-regular and $|\overline{B_2^*}| \ge 7$, let $y \in \overline{B_2^*}$ such that y is not adjacent to x in $\overline{B_2}$. As before, contracting C_1 to x and C_2 to y leads to a contradiction.

The statement of $|B_1^*| = |B_2^*| = 7$ directly follows from the fact that $|B_1^* \cap B_2^*| = 1$. Further, $B_1^* \cup B_2^* = N(v)$. Let w be the vertex in $B_1^* \cap B_2^*$. Since $\overline{B_2^*}$ is 2-regular, B_2^* is 4-regular of order 7, hence hamiltonian. Therefore, $B_2^* - w$ is connected. Thus, $N(C_1) \cap (B_2^* - w) = \emptyset$, for otherwise $G - (B_1^* \cup v)$ is connected, a contradiction to the fact B_1^* is a v-saturated set. Thus, $B_1^* = B_1$. Similarly, $B_2^* = B_2$.

Let $x_1 \in B_1 - B_2$. Since x_1 is adjacent to 4 vertices in B_1 , then $|N(x_1) \cap (B_2 - \{w\})| = 3$. Let $y_1 \in B_2 - \{w\}$ such that $x_1y_1 \in E$. Then, since $d_H(x_1) = 7$, we have that

$$|N(x_1) \cap (B_2 - \{y_1, w\})| \le 2.$$

Similarly, $|N(y_1) \cap (B_1 - \{x_1, w\})| \leq 2$. Thus, $|N_H(x_1) \cap N_H(y_1) - \{w\}| \leq 4$, and so $|N(x_1) \cap N(y_1) \cap N[v]| \leq 6$. Since m = 2, $N(x_1) \cap N(y_1) \cap (G - N[v]) = \emptyset$. Thus, $|N(x_1) \cap N(y_1)| \leq 6$. Now, as in the proof of Claim 3.1.1, $G \setminus x_1y_1$ would contain a K_9^{--} minor, a contradiction, completing the proof.

Finally, we note the a similar proof technique can be used to show that a graph of order $n \ge 9$ with size at least 9n - 45 contains a K_9 minor. Despite the fact this is not near the conjectured value, when combined with Theorem 1.1 it implies that 18-connected graphs are 3-linked.

References

- [1] Bollobás, B. and Thomason, A., Highly linked graphs, Combinatorica 16 (1996), 313-320.
- [2] Chen, G., Gould, R.J., Kawarabayashi, K., Pfender, F., and Wei, B., Graph Minors and Linkages II, preprint.
- [3] Dirac, G.A., Trennende Knotenpunktmengen und Reduzibilität abstrakter Graphen mit Anwendung auf das Vierfarbenproblem, J. Reine Angew. Math 204 (1960), 116-131.
- [4] Hadwiger, H., Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschr Naturforsch, Ges. Zürich 88 (1943), 133-142
- [5] Huck, A., A sufficient condition for graphs to be weakly k-linked, Graphs and Combinatorics 7 (1991), 323-351
- [6] Jakobsen, I.T., A homomorphism theorem with an application to the conjecture of Hadwiger, Studia Sci. Math. Hung. 6 (1971), 151-160.
- [7] Jakobsen, I.T., On certain homomorphism properties of graphs I. Math. Scand. 31(1972), 379-404.
- [8] Jakobsen, I.T., On certain homomorphism properties of graphs II. Math Scand. 52(1983), no. 2, 229-261.
- [9] Jørgensen, L.K., Contractions to K_8 . J. Graph Theory 18(1994), no. 5, 431-448.
- [10] Jung, H.A., Eine Verallgemeinerung des n-fachen zusammenhangs f
 ür Graphen, Math. Ann. 187(1970), 95-103.
- [11] Kawarabayashi, K. and Toft, B., Any 7-chromatic graph has K_7 or $K_{4,4}$ as a minor, Preprint.
- [12] Larman, D.G. and Mani, P., On the existence of certain configurations within graphs and the 1-skeleons of polytopes. Proc. Londo Math. Soc. 20 (1974) 144-160.
- [13] Mader, W. Hinreichende Bedingungen für die Existenz von Teilgraphen, die zu einem vollstämdogem Graphen homöomorph sind, Math. Nachr. 53 (1972), 145-150.
- [14] Mader, W., Homomorphiesätze für Graphen, Math Ann. 178 (1968) 154-168.
- [15] Mader, W. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Math Annalen 174 (1967), 265-268.
- [16] Robertson, N. and Seymour, P., Graph minors XIII, the disjoint paths problem. J. Combin. Theory Ser B 63 (1995), no. 1, 65-110
- [17] Robertson, N., Seymour, P. and Thomas, R., Hadwiger's conjecture for K₆-free graphs, Combinatorica 12 (1993), 279-361.
- [18] Seymour, P., Disjoint paths in graphs, Discrete Math. 29 (1980), 293-309.
- [19] Thomas, R., private communication.
- [20] Thomassen, C., 2-linked graphs, Europ. J. Combinatorics, 1 (1980), 371-378.

- [21] Wagner, K., Über eine Eigenschaft der ebenen Komplexe, Math. Ann. 114 (1937), 570-590.
- [22] Yu, X., private comminucation.