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Abstract. Let T be the line graph of the unique tree F on 8
vertices with degree sequence (3, 3, 3, 1, 1, 1, 1, 1), i.e. T is a chain
of three triangles. We show that every 4-connected {T,K1,3}-free
graph has a hamiltonian cycle.

1. Introduction

For a family F of connected graphs, a graph is called F -free if it
contains no induced copies of any member of F .

A well-known conjecture of Matthews and Sumner [9] states that
all 4-connected claw-free (i.e. F = {K1,3}) graphs are hamiltonian.
Another conjecture by Thomassen [11] states that all 4-connected line
graphs are hamiltonian. As all line graphs are claw-free, the second
conjecture appears much weaker than the first, but Ryjáček [10] showed
that the two conjectures are actually equivalent.

The general conjecture is still wide open, but several special cases
have been solved. In particular, the following result was observed in-
dependently by several authors, see, e.g., [2]. The hourglass is the
graph on 5 vertices obtained by identifying one vertex of two disjoint
triangles.

Theorem 1. Let G be a 4-connected {claw,hourglass}-free graph. Then
G is hamiltonian.

Very recently, Kaiser et al. showed a similar result for a bigger
class of graphs. A graph is said to have the hourglass-property, if every
induced hourglass S contains two non-adjacent vertices with a common
neighbor outside S.

Theorem 2. [7] Every 4-connected claw-free graph with the hourglass-
property is hamiltonian.

Our main result is an extension of Theorem 1 to a slightly different
class of graphs. Let T be the line graph of the unique tree F on 8
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vertices with degree sequence (3, 3, 3, 1, 1, 1, 1, 1), i.e. T is a chain of
three triangles.

Theorem 3. Every 4-connected {K1,3, T}-free graph is hamiltonian.

One technical difficulty in the proof of this theorem is that the class
of T -free graphs is not stable under the closure operation (see Section 3
for a definition). We will actually show a slightly stronger theorem in
Theorem 19 to avoid this problem.

In this paper, all graphs are simple. A multigraph may contain
multiple edges but no loops. For all terms not defined here we refer the
reader to [1]. We denote the neighborhood of a vertex set X ⊆ V (G)
in a graph G by NG(X) or N(X), and the closed neighborhood of X
is NG[X] = N [X] = N(X) ∪ X. The degree of a vertex in v ∈ V (G)
is dG(v) = d(v) = |NG(v)|. For X ⊆ V (G), the subgraph induced by
G on X is denoted by G[X]. We write L(G) for the line graph of G.
A graph G is essentially k-edge-connected if the deletion of less than
k edges leaves at most one component with more than one vertex. In
this paper by circuit we mean a closed trail, possibly of length zero. A
circuit C is dominating if every edge in G is incident to at least one
vertex of C.

2. Line graphs

In this section, we present some theorems and easy facts about line
graphs which we will use in our proofs. An important theorem about
hamiltonicity of line graphs is the following classic result by Harary
and Nash-Williams.

Theorem 4. [6] If G is a graph and G = L(H) for some multigraph H,
then G is hamiltonian if and only if H contains a dominating circuit.

Further, the following well known facts will be useful.

Fact 5. If G is a line graph, then there is at most one triangle-free
graph H such that L(H) = G.

If it exists, we will denote this unique graph by H = L−1(G).

Fact 6. Let H and H ′ be triangle-free graphs. Then L(H) is L(H ′)-free
if and only if H has no subgraph isomorphic to H ′.

Fact 7. For G = L(H), G is k-connected if and only if H is essentially
k-edge-connected.
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3. Closure and stability

In a claw-free graph G, the vertices can be partitioned into classes,
depending on the structure of the graphs G[N(v)]: Let LC(G) denote
the class of all vertices for which G[N(v)] is connected, let LD1(G)
denote the class of all vertices for which G[N(v)] is disconnected with a
component of order one, and let LD2(G) denote the class of all vertices
for which G[N(v)] is disconnected with no component of order one.
Note that for a vertex v ∈ LD1(G) ∪ LD2(G), G[N(v)] consists of
exaxtly two complete graphs.

For a claw-free graph G, let EL(G) ⊆ LC(G) denote the class of
vertices with a connected but not complete neighborhood. These ver-
tices are called eligible vertices. For an eligible vertex x ∈ EL(G),
let Gx denote the graph obtained from G by addition of all missing
edges in G[N(x)]. Let the closure of G, cl(G), be the graph obtained
from G through repeated application of this local completion, such that
EL(cl(G)) = ∅. This construction was introduced by Ryjáček, and he
showed the following statement:

Theorem 8. [10] Let G be a claw-free graph. Then

(i) cl(G) is unique and well-defined,
(ii) cl(G) is the line graph of some unique triangle-free graph H =

L−1(cl(G)),
(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

A graph for which cl(G) = G is called closed.

Lemma 9. Let G be a claw-free graph, and let v ∈ EL(G). For i ∈
{1, 2}, LDi(G

v) ⊆ LDi(G).

Proof. Let x ∈ LDi(G
v). As v ∈ LC(Gv), x 6= v. If xv /∈ E(G), then

NG(x) = NGv(x), and, since E(G) ⊆ E(Gv), x ∈ LDi(G). So suppose
that xv ∈ E(G). Let N1 be the component of Gv[N(x)] containing v, let
N2 be the other component. As N(v)∩N2 = ∅, we have N2 ∩NG(x) =
N2. Further, as v ∈ EL(G), there is another vertex y ∈ NG(x)∩N(v) ⊂
N1. Thus, |N1 ∩ NG(x)| ≥ 2 and |N2 ∩ NG(x)| = |N2|, showing the
lemma. �

Corollary 10. For i ∈ {1, 2}, LDi(cl(G)) ⊆ LDi(G) for every claw-
free graph G.

Recently, Broersma and Ryjáček introduced an even stronger con-
cept, the so called cycle closure. Let G be a closed claw-free graph,
and let H = L−1(G) be the triangle-free line graph original, i.e. the
triangle free graph for which L(H) = G. Let C be a cycle of length
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k in H, where 4 ≤ k ≤ 6 and C contains at least k − 3 independent
vertices of degree 2. Call such a cycle, and its line graph L(C) ⊆ G, an
eligible cycle. Let the C-completion of G, GC , be the graph obtained
from G by addition of all missing edges in N [L(C)].

Definition 1. We say that a graph G′ is a cycle closure of G, denoted
G′ = clcyc(G) if there is a sequence of graphs G1, G2 . . . , Gt such that

(i) G1 = cl(G),
(ii) Gi+1 = cl((Gi)C) for some eligible cycle C in L−1(Gi), i =

1, . . . , t− 1,
(iii) G′ = Gt contains no eligible cycles.

The following holds for the cycle closure:

Theorem 11. [3] Let G be a claw-free graph. Then

(i) clcyc(G) is well defined,
(ii) G is hamiltonian if and only if clcyc(G) is hamiltonian.

We say a graph G is closed under clcyc if clcyc(G) = G. A similar
result as Lemma 9 holds for the cycle closure.

Lemma 12. Let G be a closed claw-free graph, and let C be an eligible
cycle in H = L−1(G). For i ∈ {1, 2}, LDi(GC) ⊆ LDi(G).

Proof. Let C ′ = L(C). Let x ∈ LDi(GC). As GC [N [C ′]] is complete,
x /∈ V (C ′). If x /∈ N(C ′), then NG(x) = NGC

(x), and, since E(G) ⊆
E(GC), x ∈ LDi(G). So suppose that x ∈ N(C ′). Let N1 be the com-
ponent of GC [N(x)] containing V (C ′), let N2 be the other component.
As N(C ′) ∩N2 = ∅, we have N2 ∩NG(x) = N2. Further, as G is claw-
free, there are at least two vertices y, z ∈ NG(x) ∩ V (C ′) ⊂ N1. Thus,
|N1 ∩NG(x)| ≥ 2 and |N2 ∩NG(x)| = |N2|, showing the lemma. �

Corollary 13. For i ∈ {1, 2}, LDi(clcyc(G)) ⊆ LDi(G) for every claw-
free graph G.

Let Y be the graph consisting of a central triangle, with an extra
triangle attached to each of its three vertices.

We say a class G of claw-free graphs is stable under the closure (cycle
closure) if for every graph G ∈ G, we have cl(G) ∈ G (clcyc(G) ∈ G).
The power of Theorems 8 and 11 lies in the following consequence. If
a class G of claw-free graphs is stable under the closure (cycle closure),
and we want to show that all graphs in G are hamiltonian, then it
suffices to consider only the closed graphs in G.

Brousek, Ryjáček and Schiermeyer have characterized all graphs A,
such that the class of all {K1,3, A}-free graphs is stable [4]. Unfortu-
nately, T and Y are not among these graphs. To avoid this difficulty,
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Figure 1. F , T and Y

we consider a slightly larger class of graphs which is shown to be stable
under both closures.

We say that a graph G has the T -property (Y -property) if it does
not contain an induced copy of T (Y ) where the central triangle of T
(Y ) is the only maximal clique in G containing any of the three edges
belonging to the central triangle.

We say that G has the permanent T -property (Y -property) if G
does not contain a set X ⊆ V (G) such that G[X] = cl(G)[X] ∼= T
(G[X] = cl(G)[X] ∼= Y ) with the central triangle in cl(G)[X] being a
maximal clique.

Theorem 14. The class of claw-free graphs with the T -property is
stable under the closure and under the cycle closure.

Theorem 15. The class of claw-free graphs with the Y -property is
stable under the closure and under the cycle closure.

Proof of Theorem 14. For the first part of the theorem it suffices to
show that cl(G) has the T -property for every claw-free graph G with
the permanent T -property.

Let G be a claw-free graph with the permanent T -property, and let
H = cl(G) be its closure. Suppose, for the sake of contradiction, that
H does not have the T -property. Let (G =)G0, G1, . . . , Gk(= H) be a
sequence of graphs such that Gi+1 = Gvi

i for some vertex vi ∈ EL(Gi)
for 0 ≤ i ≤ k − 1. Let j be maximal such that Gj has the permanent
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T -property. Without loss of generality we may assume that j = 0, and
let v = v0.

There is a vertex set X = {x1, x2, x3, y1, z1, y2, z2} ⊆ V (G) such
that G1[X] is a permanent copy of T labeled as in Figure 1 with the
triangle x1x2x3 being the only maximal clique containing any of the
edges x1x2, x1x3, x2x3. Since G has the permanent T -property and
E(G) ⊆ E(G1), G[X] � T .

Further, x1, x2 ∈ LD2(G1), thus x1, x2 ∈ LD2(G) by Lemma 9,
and therefore x1x2, x1x3, x2x3 ∈ E(G). By symmetry we may assume
that one of the edges x1y1, x1z1, y1z1 is missing in G. If x1y1, x1z1 ∈
E(G) then G[x1, x2, y1, z1] is a claw, which is not possible. Thus, we
may assume by symmetry that x1y1 /∈ E(G). Since G1[X] ∼= T , we
know that x1, y1 ∈ N(v), in fact there is a shortest x1 − y1 path
P = x1u1 . . . u`y1 in N(v). Since G has the permanent T -property,
H[x1, x2, x3, u1, v, y2, z2] � T , so there must be an edge in E(H) con-
necting v or u1 to w ∈ {x2, x3, y2, z2}. As x1u2 /∈ E(G) and x1, u2 ∈
NG(v) ∩NG(u1), we have v, u1 ∈ LC(G), and thus v, ui ∈ LC(H). As
y1 ∈ NH(v) ∩ NH(u1) and H is closed, this implies that y1w ∈ E(H),
a contradiction to the fact that G1[X] is permanent. This shows the
first part of the theorem.

For the second part of the theorem, suppose for the sake of contra-
diction, that there is a closed claw-free graph G with an eligible cycle
C ⊆ G such that G has the T -property but GC does not have the T -
property. Hence, there is a vertex set X = {x1, x2, x3, y1, z1, y2, z2} ⊆
V (G) such that GC [X] is a copy of T labeled as in Figure 1 with the
triangle x1x2x3 being the only maximal clique containing any of the
edges x1x2, x1x3, x2x3.

Lemma 12 implies that x1x2, x1x3, x2x3 ∈ E(G), and we may as-
sume by symmetry (and G being claw-free) that x1y1 /∈ E(G), fol-
lowing the same argument as in the first part of the proof. Thus,
y1 ∈ NG[C] and x1 ∈ NG(C). Since G is claw-free and C is an in-
duced cycle, there are two consecutive vertices y, z ∈ V (C) ∩ NG(x1).
By the construction of GC , NGC

[y] = NGC
[z] ⊆ NGC

[y1], and there-
fore, G[x1, x2, x3, y, z, y2, z2] ∼= T , contradicting the fact that G has the
T -property. �

Proof of Theorem 15. The proof is almost identical to the proof of
Theorem 14, the details are left to the reader. �
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4. Collapsible graphs

Catlin [5] introduced the concept of collapsible graphs. A multigraph
G is collapsible if for any even subset X ⊂ V (G), there is a submulti-
graph R such that G − E(R) is connected and X is precisely the set
of odd degree vertices of R. If H is a connected submultigraph of G,
then the multigraph G/H is obtained from G by contracting H to a
single vertex, discarding all loops. These are a few very useful results
using the concept.

Theorem 16. [5] Let H be a collapsible submultigraph of G. Then G
has a spanning closed trail if and only if G/H does.

Theorem 17. [5] Any 4-edge-connected multigraph is collapsible.

Lai proved the following result.

Theorem 18. [8] Let G be a 2-connected multigraph with minimum
degree δ(G) ≥ 3. If every edge of G is contained in a cycle of length at
most 4, then G is collapsible.

5. Hamiltonicity

In this section we show the following theorem which implies Theo-
rem 3.

Theorem 19. Every 4-connected claw-free graph with the T -property
is hamiltonian.

Consider the following operation on a claw-free graph G closed under
clcyc. Let H be the triangle-free graph such that G = L(H). Let He be
the graph obtained from H by subdividing an edge e whose endvertices
both have degree greater than 3. Let Ge = L(He).

Proposition 20. Let G be a claw-free graph closed under clcyc, let
H = L−1(G) and e ∈ E(H) be an edge with endvertices of degree
greater than 3. Then:

(i) Ge is closed under clcyc.
(ii) If G is 4-connected, then Ge is 4-connected.
(iii) If Ge is hamiltonian, then G is hamiltonian.

Proof. As a line graph of a triangle free graph, Ge is closed. Further,
since H is triangle-free without eligible cycles, He contains no eligible
cycles, so Ge is closed under clcyc.

Let G be 4-connected. This is equivalent to the statement that H is
essentially 4-edge-connected. Every essential edge-cut in He induces an
edge-cut of at most the same size in H. This induced cut is essential,
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unless it contains e. But there is no edge cut in H of size smaller than
4 containing the edge e since its endvertices both have degree greater
than three. Thus, He is essentially 4-edge-connected. This implies that
Ge is 4-connected, showing (ii).

Now let Ge be hamiltonian with a hamiltonian cycle C. The preim-
age L−1(C) is a dominating circuit in He. Clearly, reversing the sub-
division of e in He yields a dominating circuit in H, and thus a hamil-
tonian cycle in G, showing (iii). �

Let G be a claw-free graph closed under clcyc with the T -property.
Repeat the above operation until the resulting graph G′ = s(G) has
the following properties:

(i) G′ has the T -property,
(ii) For every edge e ∈ L−1(G′) with both endvertices having de-

gree greater than 3, G′
e does not have the T -property.

The graph s(G) may not be unique, but this does not affect the validity
of the argument.

To show Theorem 19 it suffices to show it for such a graph s(clcyc(G))
by Theorem 11 and Proposition 20. To simplify notation we may as-
sume that G = s(clcyc(G)). Let H = L−1(G), and we want to show
that H contains a dominating circuit. Let A = {v ∈ V (H) | d(v) = 1},
B = {v ∈ V (H) | d(v) = 2}.

Let K be a component of H − (A ∪ B). We want to show that K
is collapsible. If K contains only one vertex, there is nothing to show,
so we may assume that K contains at least two vertices. Let R be a
block of K. The proof is structured as a series of claims.

Claim 1. δ(R) ≥ 2, i.e. R � K2.

Let x ∈ V (R), and suppose that dR(x) = 1. If dH(x) = 3, let
N(x) = {x1, x2, x3}, with x1 ∈ V (R). Since H is essentially 4-edge-
connected, dH(xi) ≥ 3. Let yi, zi ∈ N(xi) for i ∈ {1, 2}. As H is
triangle-free and contains no eligible cycles, H[x, x1, y1, z1, x2, y2, z2, x3]
contains a copy of F with x as central vertex, a contradiction. Thus,
dH(x) ≥ 4.

Let x1 ∈ N(x) ∩ V (R). By the same argument, dH(x1) ≥ 4. Let s
be the new vertex in Hxx1 . Then there is a vertex v of degree 3, and
vertices w, y, z, y1 ∈ V (H) such that Hxx1 [v, x1, y1, s, y, x, z, w] contains
F with center vertex v. But then H[x, x1] is not a block of H−(A∪B),
the contradiction establishing the claim. �

Claim 2. Let x, v ∈ V (R) with dR(x) = 2 and dH(v) = 3. Then
xv /∈ E(H).
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If dH(x) = 3, let x1 ∈ N(x) \ V (R). By Claim 1, x1 /∈ V (H) \ (A ∪
B), thus dH(x1) ≤ 2, a contradiction to H being essentially 4-edge-
connected . Therefore, dH(x) ≥ 4.

Let x1, x2 ∈ N(x) \ V (R), let y, z ∈ N(v) \ {x}, and let y1, y2 ∈
N(y) \ {v}. If xv ∈ E(H), then H[v, x, x1, x2, y, y1, y2, z] contains F
with center vertex v, a contradiction establishing the claim. �

Let X = {x ∈ V (R) | dR(x) = 2}.

Claim 3. For any x ∈ X, dH(x) ≥ 4.

Suppose for the sake of contradiction that dH(x) = 3, and let y ∈
N(x) \ V (R). If y ∈ A ∪ B, then an essential edge cut of size at most
three exists in H, so this is not the case. Thus, y ∈ V (K) \ V (R). But
this implies that xy is a block of K contrary to Claim 1. �

Claim 4. For any pair x1, x2 ∈ X, N [x1] ∩N(x2) ∩ V (R) = ∅.

Suppose first that x1x2 ∈ E(H). Then, as Gx1x2 does not have the
T -property, there is a path of length 3 in R from x1 to x2 with one of
the two internal vertices having degree 3 in H. But this is impossible
by Claim 2.

Now suppose that there is a vertex y ∈ N(x1) ∩ N(x2) ∩ V (R). As
Gx1y does not have the T -property, there is a path x1y1vy in R with
dH(v) = 3 and, by Claim 2, dH(y), dH(y1) ≥ 4. Let y2 ∈ N(v)\{y1, y},
and x3 ∈ N(y) \ {v, x1, x2}. Then N(y1) = {v, x1, x2, x3}, since oth-
erwise a copy of F with v as center can be found. Similarly, N(y2) ⊆
{v, x1, x2, x3}. By Claim 2, dR(y2) ≥ 3, and so y2 ∈ N(x1) ∪ N(x2),
which in turn guarantees that dH(y2) ≥ 4 and therefore N(y2) =
{v, x1, x2, x3}. But this implies that dR(x1), dR(x2) ≥ 3, a contradic-
tion. �

Claim 5. δ(R−X) = 3.

Since K is not trivial and |N(v)∩X| ≤ 1 for every v ∈ V (R) \X by
Claim 4, δ(R−X) ≥ 2. If δ(R−X) ≥ 4, then Ge has the T -property
for every e ∈ E(R−X), a contradiction, so 2 ≤ δ(R−X) ≥ 3.

Suppose for the sake of contradiction that δ(R −X) = 2. Let y1 ∈
V (R) \ X with dR−X(y1) = 2, and let x ∈ X be its only neighbor in
X. Let y2 ∈ V (R) \ X be the other neighbor of x in R. Since Gxy1

does not have the T -property, there is a vertex v ∈ N(y1)∩N(y2) with
dH(v) = 3. By Claim 2, there are vertices z1, z2 ∈ N(y1) \ {x, v}. Now,
N(y1) = N(y2) = {x, v, z1, z2}, otherwise a copy of F with center v
exists. Further, z1, z2 /∈ B as there are no eligible cycles in H. Finally,
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z1, z2 /∈ X by Claim 4. Thus dR−X(y1) = dR−X(y2) = 3, a contradiction
establishing the claim. �

Claim 6. Every edge e ∈ E(R−X) lies on a C4 ⊂ R−X.

Let e = xy. If dH(x), dH(y) ≥ 4, there exists a path xvwy through
R with dH(v) = 3 or dH(w) = 3 since Gxy does not have the T -
property. Then, v, w /∈ X by Claim 2, so xvwyx is the desired C4.
Thus, suppose that dH(x) = 3. Let N(x) = {u, v, y} ⊆ V (R) \ X.
Then |(N(v)∪N(y))\{x}| ≤ 3, otherwise a copy of F with x as center
can be found. Together with Claim 5, this implies the existence of the
C4. �

Claim 7. R−X is 2-connected.

Suppose the claim is false. Since R is 2-connected and X is an
independent set by Claim 4, there is a vertex x ∈ X with neighbors
y1 and y2 which are not in the same block of R − X. But the same
argument as in the proof of Claim 5 shows that N(y1) = N(y2), a
contradiction. �

Claim 8. R−X is collapsible.

This follows directly from Theorem 18 with Claims 5, 6 and 7. �
To show Theorem 19, start with H−(A∪B) and, for every vertex in

B, add an edge between its two neighbors. Call the resulting graph H ′.
Contract R−X in H ′ for each block R of each component of H− (A∪
B). The resulting multigraph H ′′ is essentially 4-edge-connected with
minimum degree at least 4, and thus 4-edge-connected. By Theorem 17,
H ′′ is collapsible, and thus H ′ has a spanning circuit by Theorem 16.
All vertices in A ∪ B are independent, and so H has a dominating
circuit, and therefore G = L(H) is hamiltonian. �

6. Closing remarks

The techniques used in the proof of Theorem 19 are not quite suffi-
cent to prove a similar result about hamiltonicity of 4-connected claw-
free graphs with the weaker Y -property. Take for example the graph
H in Figure 6, and let G = L(H). Clearly, G is 4-connected, claw-free,
cycle closed and has the Y -property. But if we define A, B and X as
above, H − (A ∪B ∪X) consists of two non-collapsible C4s.

Similarly, one can define the weak hourglass-property as follows. A
graph G is said to have the weak hourglass-property, if for every set
S ⊆ V (G) with G inducing an hourglass on S, one of the following is
true:
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Figure 2. A line graph original of a graph with the Y -property

(i) There is a common neighbor outside of S for two of the non-
adjacent vertices in S, or

(ii) both edges in G[S] not incident to the center vertex in S lie in
cliques which are not subsets of S.

This property implies the T -property and the hourglass-property. It
is easy to see that the class of graphs with the weak hourglass-property
is stable under both the closure and the cycle closure, but again, the
proof techniques used in the proof of Theorem 19 are not quite sufficent
to prove a similar result about hamiltonicity of 4-connected claw-free
graphs with this property. The graph pictured in Figure 3 could be a
block R of H − (A ∪B), but R−X contains vertices of degree 1, and
is thus not collapsible.

Figure 3. A non-collapsible block
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10. Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory, Ser. B
70 (1997), 217–224.

11. C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986), 309–
324.

Technische Universität Berlin, Fachbereich Mathematk, MA 6-2,
Strasse des 17. Juni 136, 10623 Berlin, Germany

E-mail address: <fpfender@math.tu-berlin.de>


