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Abstract. Let Fk be the family of graphs G such that all suf-
ficiently large k-connected claw-free graphs which contain no in-
duced copies of G are subpancyclic. We show that for every k ≥ 3
the family Fk is infinite and make the first step towards the com-
plete characterization of the family F3.

1. Introduction

A graph is claw-free if it does not contain the complete bipartite
graph K1,3, the claw, as an induced subgraph. Claw-free graphs have
been widely studied because of their special structural properties. In
particular, the following type of problem has been considered by many
authors:

Given a property A characterize the set Fk(A) of all graphs F such
that each k-connected claw-free graph containing no induced copies of
F has A.

Note that Fk(A) can be equivalently defined as the set of graphs
which appear as induced subgraphs in all k-connected claw-free graphs
without propertyA. Thus, if there exists at least one k-connected claw-
free graph without property A, then the family Fk(A) is finite and is
determined by a finite set of ‘critical’ graphs without A. For instance,
if H is the property that a graph is hamiltonian, then F2(H) consists
of the path P6, two other graphs (which we denote below by F (1, 1, 1)
and F (0, 1, 2) respectively) and all their induced subgraphs (see [4] and
references therein). Furthermore, F2(H) is determined by three critical
graphs. At this moment we have only a partial characterization of the
family F3(H) ⊇ F2(H) (see for instance [6]). Finally, it is believed
each claw-free 4-connected graph is hamiltonian. If this is the case,
then F4(H) contains all graphs.
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Claw-free graphs used as ‘critical’ graphs are typically very small.
On the other hand, if there exists F such that there are only finitely
many claw-free k-connected graphs without property A which contain
no induced copy of F , then we might also say that prohibiting F ,
basically, forces A. This is the case with a graph we denote below as
F (0, 0, 3); although it does not belong to F2(H) each 2-connected claw-
free graph without an induced copy of F (0, 0, 3) is hamiltonian provided
it has at least ten vertices. Thus, instead of Fk(A) one may want to
look at the family Fk(A) which consists of all graphs F for which there
exists a constant NF such that each k-connected claw-free graph on at
least NF vertices without an induced copy of F has property A. Note
that, clearly, Fk(A) ⊇ Fk(A). Moreover, in principle, at least for some
properties F(A) might be an infinite proper subset of all finite graphs.
In this paper we give an example of a property A for which this is
indeed the case.

Let us observe first that Fk(H) is finite for k = 2, 3. Indeed, let us
take any graph J which is obtained by attaching at least one pendant
edge to each vertex of the Petersen graph. Let G be the line graph of J .
It is easy to check (see [6]) that G is claw-free, 3-connected, and non-
Hamiltonian. Furthermore, although G can be arbitrarily large, the
number of its induced subgraphs which do not contain K4 is bounded
by an absolute constant. Since it is easy to see that no graph from
F(H) contains K4 (see Theorem 1 below), F3(H) must be finite.

Thus, instead of Fk(H), we consider the family Fk = Fk(S), where
S is the property that a graph G is subpancyclic, i.e., for every `,
3 ≤ ` ≤ circ(G), G contains a cycle of length `, where circ(G) denotes
the length of the longest cycle in G.

Note first that since a graph is subpancyclic if each of its blocks is
subpancyclic, F1 = F2. The family F2 was studied by Faudree et al. [3]
(see also Faudree and Gould [4]); we briefly recall their argument. Note
that a cycle on n ≥ 4 vertices is 2-connected but not subpancyclic, so
the only possible candidates for members of F2 are paths. Now consider
the graph Gn which consists of the complete graph on the set V1 of 2n
vertices, a perfect matching on the set V2, where V1 ∩ V2 = ∅ and
|V2| = 2n, and an additional perfect matching between these two sets.
It is easy to see that Gn is hamiltonian, but it contains no cycles on
4n − 1 vertices. Moreover, Gn contains no induced path P7 on seven
vertices and so Pk /∈ F2 for k ≥ 7. Finally, Faudree et al. [3] proved that
each 2-connected claw-free graph on at least ten vertices which contains
no induced copy of P6 is subpancyclic. Hence, F2 = {P3, P4, P5, P6}.
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In order to study the family Fk for k ≥ 3 we introduce two types
of graphs (see also Figure 1). By  L(r, s) we denote the graph which
consists of two vertex-disjoint complete graphs on r vertices which are
connected by a path of length s (it is a generalization of a graph  L
introduced in [5]). By F (t1, . . . , tr), where 0 ≤ t1 ≤ · · · ≤ tr, we
mean the graph which consists of the complete graph Kr on r ver-
tices with paths of lengths t1, . . . , tr rooted at different vertices of Kr

(as mentioned above, graphs F (t1, t2, t3) emerge naturally in studying
hamiltonicity of claw-free graphs). We also remark that in other pa-
pers, the graphs  L(3, s) and F (t1, t2, t3) are sometimes called double
lasso and generalized net, respectively.

Figure 1.  L(4, 3) and F (1, 2, 2)

Our first result narrows the set of possible candidates for elements
of Fk.

Theorem 1. Let k ≥ 3 and let r = r(k) = dk/2 + 1e. Then there
exists m = m(k) such that every graph G ∈ Fk is a subgraph of either
 L(r, 2s+ 1) for some s ≥ 0, or F (t1, t2, . . . , tr) with 0 ≤ t1 ≤ · · · ≤ tr−2

and t1 ≤ m.
Furthermore, m(3) = 2, i.e., each graph from F3 is a subgraph of

either  L(r, 2s + 1) for some s ≥ 0, or F (t1, t2, t3) with 0 ≤ t1 ≤ 2.

We conjecture that, in fact, the above theorem gives an almost com-
plete characterization of Fk and the following two conjectures hold.

Conjecture A. For every k ≥ 3 there exists m̄(k) such that for each
0 ≤ t1 ≤ t2 ≤ · · · ≤ tr, with tr−2 ≤ m̄(k), there exists N̄ such that each
k-connected claw-free graph on at least N̄ vertices without an induced
copy of F (t1, . . . , tr) is subpancyclic.

Conjecture B. For every k ≥ 3 and s ≥ 0 there exists N̂ such that
each k-connected claw-free graph on at least N̂ vertices without an in-
duced copy of  L(dk/2 + 1e, 2s + 1) is subpancyclic.

In this paper we study more closely the family F3. It has been
proved by the authors of this article (see [5]) that if a claw-free graph
G on at least eleven vertices is not pancyclic, then it contains induced
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copies of each of the graphs P7,  L(3, 1), F (0, 0, 4), F (0, 1, 3), F (1, 1, 2).
Consequently, the above five graphs (and all their induced subgraphs)
belong to F3. Here we show that Conjecture A holds with m̄(3) = 2,
i.e., all graphs F (t1, t2, t3) with t1 ≤ 2 belong to F3.

Theorem 2. The family F3 contains all graphs F (t1, t2, t3) with t1 ≤ 2.
In particular, for k ≥ 3 the family Fk ⊇ F3 is infinite.

2. Notation

In this paper the term graph always stands for a simple graph.
Graphs with multiple edges are called multigraphs. For all notation
not defined here we refer the reader to [2]. We denote the vertex set
and the edge set of a graph G by V (G) and E(G) (or sometimes just
E), respectively. For a set of vertices X ⊆ V (G), N(X) stands for the
neighborhood of X, i.e., the set of all vertices outside X adjacent to
some vertices in X; sometimes we also use the closed neighborhood of
X defined as N [X] = N(X) ∪X. By 〈X〉 we mean the subgraph of G
induced by the set X. A vertex inside brackets denotes a vertex that
may or may not be used in an induced subgraph.

For a directed path or cycle H and two vertices x, y ∈ V (H), we
write xHy for the x − y path on H following the direction of H. By
x−−, x− and x+, x++ we denote the predecessors and successors of x
on H, respectively.

The distance between two vertices x, y ∈ V (G) is the length of a
shortest x − y path, denoted by dG(x, y). If for any two vertices in a
subgraph H of G, dH(x, y) = dG(x, y), then we say H is distance pre-
serving. The diameter of a connected graph, diam(G), is the maximum
distance of two vertices in the graph. The girth of a graph is the length
of a shortest cycle.

In Section 3 we give the proof to Theorem 1. In the following sections
we first give a sketch of a fairly tedious proof of Theorem 2 (Section 4),
and then proceed to prove it, first for graphs with small diameter (Sec-
tion 5), and then for graphs with large diameter (Section 6).

3. Proof of Theorem 1

In this section we give a series of examples of k-connected claw-free
graphs which are not subpancyclic. Clearly, each H from Fk must
appear as an induced subgraph in all but a finite number of graphs of
the above kind, so in such a way we shall gradually narrow the family
of possible candidates for graphs in Fk.

For a multigraph G we denote by L(G) the line graph of G; the
vertex set of L(G) is the edge set of G, and two vertices in L(G) are
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adjacent if the corresponding edges in G share at least one vertex in G.
The set of all multigraphs F with L(F ) = G is L−1(G). The following
fact list some useful properties of line graphs.

Fact 3. Let G be a multigraph, let L(G) be its line graph, and let F be
a graph. Then

(i) L(G) is k-connected if and only if G is essentially k-edge-
connected, i.e., the removal of fewer than k edges in G leads
to a multigraph with exactly one non-trivial component,

(ii) L(G) is claw-free,
(iii) F is an induced subgraph of L(G) if and only if G contains one

of the multigraphs in L−1(F ) as a (not necessarily induced)
submultigraph.

For a graph G, let sub(G) be the graph obtained from G by a sub-
division of each edge of G into two edges.

We denote by J(r, s) any r-regular essentially (2r−2)-edge-connected
graph with girth at least s. It is well known that for any numbers
r, s ≥ 3 such a graph J(r, s) exists. In fact, a positive fraction of
all r-regular graphs (r ≥ 3) have these properties, see for instance [1,
Theorems II.19 and VII.32]. Observe that sub(J(r, s)) is essentially
r-edge-connected for r ≥ 2.

Now, let k ≥ 3 and r = dk/2e + 1 ≥ 3. Then L(J(r, r + 2)) is a
k-connected claw-free graph which is not subpancyclic (it contains no
cycle of length r + 1), so no graph from Fk contains a complete graph
on more than r vertices. Furthermore, for every s ≥ (k + 2)/2, the
graph L(sub(J(k, s))) is a k-connected claw-free graph which contains
cycles of length at least 2s ≥ k +2 but no cycles of length k +1, and so
it is not subpancyclic. Consequently, each graph in Fk is an induced
subgraph of L(T ) for some T , where T is a tree of maximum degree at
most r = dk/2e + 1 in which each two vertices of degree larger than
two are connected by a path of even length.

To narrow down the list of candidates further, consider the tree Tt,
consisting of a path v1v2 . . . vt+5 on t + 5 vertices, and two vertices
u and w with uv3, vt+4w ∈ E(T ). Then L(Tt) is the graph obtained
from  L(3, t) by adding a pendant edge to one of the two triangles.
Moreover, L−1(L(Tt)) = {Tt, T

′
t}, where T ′t is the multigraph obtained

from Tt through identification of vt+5 and w (see Figure 2). Our aim
is to show that no graph containing L(Tt) as an induced subgraph for
some t ≥ 1 can be member of Fk.

To this end, start with the graph J(k, k2), and replace every edge by
a path with 2t + 2 edges with all but the middle two edges of this path
being multiplied by k − 1 (see Figure 3 for an example), and call the
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Figure 2. T2, T ′2 and L(T2)

resulting multigraph Jt(k, k2). Then, L(Jt(k, k2)) is k-connected, and it
contains no induced subgraph isomorphic to L(Tt), since Jt(k, k2) does
not contain Tt or T ′t as a sub(multi)graph. All cycles in L(Jt(k, k2))
which correspond to cycles in the original J(k, k2) have length at least
k2(2t + 2) > 2k2t. All other cycles in L(Jt(k, k2)) have length at most
k(t(k − 1) + 1) ≤ k2t, so L(Jt(k, k2)) is not subpancyclic.

Figure 3. Parts of J3(3, s) and L(J3(3, s))

Thus, setting r = dk/2e+ 1, all graphs from the family Fk are either
subgraphs of F (t1, t2, . . . , tr) or subgraphs of  L(r, t) for some odd t.

Finally, we bound ti for i = 0, . . . , r − 2. In order to do that,
take n copies G1, . . . , Gn of J(k, k + 1) and identify one vertex of Gi

with one vertex of Gi+1 for i = 1, . . . , n − 1 in such a way that the
graph Hn

k obtained in this way has maximum degree 2k. Then the
graph L(sub(Hn

k )) is claw-free and k-connected, but not subpancyclic
(it contains no cycles of length 2k + 1). If J(k, k + 1) has m vertices,
then L(sub(Hn

k )) contains no copies of F (t1, t2, t3) with t1 ≥ 2m. This
completes the proof of the main part of Theorem 1.

We conclude the proof with a slight refinement of the graph Hn
3 for

the case k = 3 to show that m(3) = 2. Start with a cycle C2n on
2n vertices and double every other edge to get the multigraph C ′2n.
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Let Hn
3 = L(C ′2n). Then the graph L(sub(Hn

3 )) (see Figure 4) is a
hamiltonian claw-free 3-connected graph, which contains no cycles of
length five. Furthermore, L(sub(Hn

3 )) contains no induced copy of
F (3, 3, 3). Hence, the only possible candidates for the members of
family F3 are paths, the graphs  L(3, 2s + 1), where s ≥ 0, and the
graphs F (t1, t2, t3), where t1 ≤ 2. �

Figure 4. A part of L(sub(Hn
3 ))

4. Proof sketch for Theorem 2

As the proof of Theorem 2 is rather tedious in parts, we want to give
the reader a guideline with the main ideas and motivations before we
get into the technical details.

We start with showing that all claw-free graphs with diameter much
smaller than their order and minimum degree at least three are sub-
pancyclic. The proof goes in two steps. In the first step, we use the
fact that larger cycles must have shortcuts due to the small diameter,
and thus we can find a slightly smaller cycle which we can then extend
again to the desired length using the remaining vertices close to it. The
second step is noting that such graphs have high maximum degree and
therefore we can find cycles of small and moderate length in the closed
neighborhood of a vertex.

In fact, we show a slightly stronger result in the first step. We show
that for a given `-cycle C, we can find an (`− 1)-cycle through a given
edge of C (Lemma 4). This stronger statement is used in Section 6
when we deal with graphs with large diameter.

If a graph G has large diameter, then it contains a long distance
preserving path P . Suppose that G does not contain F = F (r, k, k)
as an induced subgraph for some fixed r � k � diam(G). Let v be
a vertex in V (G) \ N [P ], and suppose there is an induced path R of
length at least r from v to N [P ] with N [P ] ∩ V (R) = {w}, the final
vertex of R. Then, w is adjacent to one of the first or last k vertices of
P , as otherwise claw-freeness leads to a copy of F .

Therefore, G falls in one of two classes. Either, every vertex in
V (G) \ N [P ] has paths to at most one end section of N [P ], in which
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case we say that G is linear, or there exists a vertex with paths into
both end sections, in which case we call G circular.

In the linear case, G consists of a long mid section with all vertices
within distance r of P and two end sections with diameter at most 2k.
In the circular case, the structure is even simpler, as all vertices of G
are within distance r of some long distance preserving cycle.

For the special case treated in Theorem 2, we have r = 2. This gives
us a lot of control over the mid section in the linear case, and over all of
G in the circular case. We take two disjoint long induced paths along
a diameter path or a long distance preserving cycle, respectively, and
show that there are so many edges between the two that we can find
cycles of all lengths up to close to the order of the two paths.

If G is circular, we then present a way to lengthen the distance
preserving cycle one-by-one all the way up to |V (G)|, so in this case,
G is actually pancyclic. The argument in the linear case is somewhat
more involved.

We first show that we can find cycles of all lengths up to the order
of the mid section. But this still leaves the possibility of a (maximal)
missing cycle length ` for a larger ` < circ(G). If an (` + 1)-cycle C
contains more than two thirds of the vertices in the mid section, then we
can use our control there to find an `-cycle. Otherwise, C must contain
many vertices in one of the end sections. This is where Lemma 4 comes
in again. After modifying C a bit on the cut set separating the mid
section from the end section, we can think of part of C as one large
cycle within the end section, one of its edges lying in the cut set. Now
Lemma 4 lets us shorten this part of C by one without affecting the
connection to the remainder of C, finishing the proof.

5. Large claw-free graphs with small diameter

In this section we show that all claw-free graphs with small diameter
and minimum degree at least three are subpancyclic, provided they are
large enough. The main tool for this is the following lemma which will
be used again in Section 6.

Lemma 4. Let G be a connected claw-free graph with minimum degree
at least three and diameter d. Suppose there exists an (` + 1)-cycle C
in G through an edge xy ∈ E(C) for some ` ≥ (24d + 22)d. Then G
also contains a cycle of length ` through xy.

Proof. Fix a direction on C such that y = x+. If, for any v ∈
V (C)\{x, y}, v− and v+ are adjacent, then the assertion follows. Hence,
we may assume for the remainder of the proof that no such short chord
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exists. This assumption implies that there is an edge v−w or v+w for
every w ∈ N(v) \ {v−, v+} as otherwise 〈v, v−, v+, w〉 would be a claw.

The strategy of the proof goes as follows. First we find a cycle C ′

which is a little shorter than C but which shares a long segments with
C, and then use the above observation to lengthen C ′ to an `-cycle one
vertex at a time. Let

W := {v ∈ V (y+Cx−) : v is not endvertex of a chord in C}.
Since G has minimum degree at least three, all vertices in W have
neighbors outside of V (C). We consider two cases.

Case 1. Suppose W = ∅.

Let y1 ∈ N(y)∩V (C)\{y+} such that y has no neighbors in y++Cy−1
(possibly y1 = x). Let uv be a chord of C such that

• uCv ⊆ yCy1,
• there are no other chords with both endvertices on uCv,
• |V (yCu)| is minimal.

If x−y ∈ E and N(x) ∩ V (u+Cv−) \ {y+} 6= ∅, let x1 ∈ N(x) ∩
V (u+Cv−)\{y+} such that |yCx1| is minimal, and let C ′ = yxx1Cx−y.
Otherwise, observe that 〈{x−}∪(N(x)∩V (u+Cv−)\{y+})〉 is complete
to avoid a claw around x. Let x1 = v and C ′ = x1Cux1 in this case.
In either case, |V (C ′)| ≤ `, and N(y) ∩ (V (C) \ V (C ′)) ⊆ {y+}.

We shall insert all but one vertex of V (C) \ V (C ′) back into C ′ to
create the desired `-cycle. Let w ∈ V (C)\(V (C ′)∪{y+}). If w ∈ N(x),
we know by the observation above that wx− ∈ E, and w can be inserted
between x− and x. So assume that w /∈ N(x). Since w 6∈ W , there is
a vertex z ∈ V (x+

1 Cx−), with wz ∈ E. As above we may assume that
z−z+ 6∈ E. This implies that wz− ∈ E or wz+ ∈ E, otherwise there is
a claw at z. This enables us to insert w between z− and z, or z and
z+, respectively.

Inserting vertices of V (C) \ (V (C ′) ∪ {y+}) one by one yields the
`-cycle. We will always use the first place zz+ ∈ E(x1Cx) where
the insertion is possible, (thus wz− /∈ E). The only problem we
can encounter is a situation where we want to insert two different
vertices w, w′ ∈ V (C) \ (V (C ′) ∪ {y+}) between the same vertices
z, z+ ∈ V (x1Cx). But then ww′ ∈ E as otherwise 〈z, z−, w, w′〉 is
a claw. Thus, w and w′ are neighbors on C due to the choice of u and
v. In this case, we can extend C ′ through zww′z+.

Case 2. Suppose W 6= ∅.

Since W 6= ∅, we have V (C) 6= V (G). Thus, let v ∈ V (G) \ V (C),
and let T ′ be a spanning tree of G such that dT ′(v, w) = dG(v, w)
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for all w ∈ V , i.e., a breadth first search tree rooted at v. Let T be
the minimal subtree of T ′ with V (T ) ⊇ V (C) ∪ {v}. Direct T away
from v, and write z− for the predecessor of a vertex z ∈ V (T ). By
the diameter condition we know that T has a vertex z with at least
12d + 12 outneighbors in T . Let v1, v2, . . . , v12d+11 ∈ V (C) \ V (vTz)
be 12d + 11 vertices with (V (C) ∪ V (vTz)) ∩ V (zTvi) ⊆ {z, vi}. Out
of these vertices we pick seven vertices y1, y2, . . . , y7 in this order on
y++Cx−−, such that |V (yiCyi+1)| ≥ 2d + 2 for 1 ≤ i ≤ 6. By the

pigeon hole principle it is true that |V (y+
i Cy−i+1) ∩W | ≤ |W |

6
for some

1 ≤ i ≤ 6. As it does not affect the remainder of the proof, we may
assume that i = 1.

If possible, choose u, w ∈ V (y1Cy2), such that uw is a chord of C,
and no other chords are inside uCw, and let C ′ = wCuw. If there is
no such chord, let u = y1, w = y2 and C ′ = wCuTw. The only way
that C ′ is not a cycle is that y1Ty2 uses z and z ∈ V (C) (and thus
z 6= v). In this case, let z1, z2 be the neighbors of z on y1Ty2. None of
the edges z−z1, z−z2 can exist by the distance property of T . Hence,
z1z2 ∈ E to avoid a claw at z. Now choose C ′ = wCuTz1z2Tw. In any
case, |V (C ′)| ≤ `.

Let X = {z ∈ V (u+Cw−) \W : N(z) ∩ V (w+Cu−) ⊆ {x, y}}, let
X1 = X ∩N(x), X2 = X ∩N(y). These are vertices which can create
some problems later, and we show here that there are very few of
them. Note that 〈X1〉 is complete, otherwise there is a claw centered
around x, using x− and two independent vertices in X1. Similarly,
〈X2〉 is complete. This implies that |X1|, |X2| ≤ 2 as there are no
chords inside u+Cw−. If |X| > 2, there are vertices x1 ∈ X1 and
x2 ∈ X2 with x1x2 6∈ E. To avoid claws around x and y, we must have
x−y, xy+ ∈ E and thus x−y+ ∈ E. In this case we choose a cycle C ′′ =
y+Cx2yxx1Cx−y+ or C ′′ = y+Cx1xyx2Cx−y+, such that |V (C ′′)| ≤ `.
Otherwise, let C ′′ = C ′. In either case, |X ∩ (V (C) \ V (C ′′))| ≤ 2.

Just as in Case 1, we can now insert vertices from V (C) \ (V (C ′′) ∪
X ∪W ) into C ′′ to get a longest possible cycle C ′′′ with

m− 2−
⌊ |W |

6

⌋
≤ |V (C ′′′)| ≤ m− 1.

Note that all these insertions happen at sections of C where C ′′ and
C are identical. No vertex is inserted next to x or y as vertices of X
are not inserted, and no vertex is inserted next to a vertex of W , since
these vertices are not endvertices of chords. Note also that, since the
minimum degree of G is at least three, each vertex in W ∩ V (C ′′′) has
at least one neighbor outside V (C ′′′). Furthermore, each such neighbor
can be adjacent to at most four vertices from W without creating a



SUBPANCYCLICITY OF k-CONNECTED CLAW-FREE GRAPHS 11

claw. Therefore,

|N(W ) ∩ V (C ′′′)| ≥
⌈1

4
× 5

6
|W |

⌉
≥

⌊ |W |
6

⌋
+ 1 .

Since G is claw-free, all these vertices can be inserted into C ′′′ one by
one (if they are not already part of C ′′′ as vertices of uTw), and so G
contains an `-cycle, contrary to our assumption. �

As a consequence of Lemma 4, we get the following theorem.

Theorem 5. For every d there exists an n = n(d) such that each
connected claw-free graph G with at least n vertices, diameter at most d,
and minimum degree at least three is subpancyclic.

Proof. Let G be a connected claw-free graph with n vertices, diam-
eter at most d, and minimum degree at least three. Lemma 4 implies
that G contains a cycle of length `, for each ` such that circ(G) ≥ ` ≥
`0 = (24d + 22)d. Note also that from the fact that G has diameter at
most d it follows that it contains a vertex v of degree D ≥ (n− 1)1/d.

Since G is claw-free, 〈N(v)〉 has independence number at most two,
and it is an easy observation that 〈N(v)〉 contains a path of length
dD/2e. Then 〈N [v]〉 contains a cycle of length ` for each `, 3 ≤ ` ≤
D/2+1, so it is enough to choose n large enough to have (n−1)1/d/2 ≥
`0 − 2. �

6. Graphs with large diameter

For the proof of Theorem 2 it suffices to show that F3 contains
F (2, k, k) for all k ≥ 10. So let k ≥ 10 and F = F (2, k, k).

We start with the following simple lemma.

Lemma 6. For u, v ∈ V (G), let P be an induced u− v path in a claw-
free graph G, and let X ⊆ N(u+Pv−). Then G contains a u − v path
R with V (R) = V (P ) ∪X on which all vertices of V (P ) appear in the
same order as on P .

Proof. Without loss of generality we may assume that V (G) = X ∪
V (P ). For w ∈ V (P ) \ {u, v}, let Xw = X ∩ (N(w) \N(w−)). Since G
is claw-free, every 〈Xw ∪ {w+}〉 is complete.

Suppose first that 〈N(u)〉 is 2-connected. Since G is claw-free, 〈N(u)〉
contains no independent sets of size three and thus it is hamilton-
ian. Consequently, we can construct a path Q from u to u++ through
all vertices of N [u]. If 〈N(u)〉 is not 2-connected, then 〈N(u)〉 con-
sists of two complete graphs sharing at most one vertex, where one
of them contains u, the other u++. Then, again, we can construct
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a path Q from u to u++ through all vertices of N [u]. Now let R =
uQu++Xu++u3+ . . . v−Xv−v. �

The next lemma tells us a lot about the structure of G.

Lemma 7. Let G be {K1,3, F}-free, and let P = v0v1 . . . v4k+3 be an
induced path in G. Let x ∈ N(v2k+1)∩N(v2k+2), u ∈ N(x)\N [P ], and
let w ∈ N [u] \N [P ]. Then N [w] = N [u].

Proof. First note that wx ∈ E since otherwise V (P )∪{x, u, w} contains
F . Suppose that N(u) 6= N(w). Because of symmetry, we may assume
that there exists z ∈ N(u)\N(w). If z ∈ N(vk+1Pv3k+2), then 〈V (P )∪
{z, u, w}〉 contains F , a contradiction. Hence z /∈ N(vk+1Pv3k+2) and
xz /∈ E to avoid a claw 〈x; v2k+1, w, z〉. But now 〈V (vk+1Pv3k+2) ∪
{x, u, z}〉 is a copy of F . This contradiction completes the proof of the
lemma. �

We call G circular if it contains a distance preserving cycle of length
greater than 10k as a subgraph, and linear otherwise. We get the
following two corollaries from Lemma 7.

Corollary 8. If G is {K1,3, F}-free and contains an induced cycle C
with |V (C)| ≥ 4k + 5, then V (G) = N [N [C]]. Furthermore, the diam-

eter of G is at most |V (C)|
2

+ 3.

Corollary 9. If G is {K1,3, F}-free and linear with diameter N >
10k, and P = v0v1 . . . vN is a diameter path of G, then every vertex
v ∈ V (G) \ N [N [P ]] has distance at most 2k + 1 from one of v2k and
vN−2k.

We are ready to prove the existence of short and medium length
cycles in the linear case now.

Lemma 10. Suppose that G is 3-connected, {K1,3, F}-free and linear,
N > 10k, and that P = v0v1 . . . vN is a distance preserving path in G.
Then G contains cycles of all lengths ` for 3 ≤ ` ≤ 2N − 16k.

Proof. Let C be a minimal cycle through v0 and vN . Then v0CvN and
vNCv0 are induced paths, and we can apply Lemma 7 to them. Note
also that all chords of C have ends in both v+

0 Cv−N and v+
NCv−0 . Let

x1y1 and x2y2 be chords of C such that

• |V (v0Cx1)|, |V (y1Cv0)|, |V (x2CvN)|, |V (vNCy2)| > 2k, and
• |V (y1Cx1)| and |V (x2Cy2)| are minimal under this condition.

Such chords exist due to Corollary 8 and the fact that v0 and vN have
distance N . Furthermore, by the same reasons we have |V (x1Cx2y2Cx2x1)| ≥
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2N − 16k. Let

W = (V (x1Cx2) \N(vNCv0)) ∪ (V (y2Cx2) \N(v0CvN)).

Then W is an independent set by Lemma 7 applied to v0CvN and
vNCv0, since any two consecutive vertices on each of the two paths
have different closed neighborhoods.

Claim 1. If x3y3 and x4y4 are chords in C, where v0, x3, x4, vN , y3, y4

appear on C in this order, then 〈x3, x4, y3, y4〉 is a complete graph.

First, x4 = x+
3 and y4 = y+

3 as otherwise we could find a shorter
cycle through v0 and vN . And then, x3y4, x4y3 ∈ E to avoid claws. 3

Claim 2. If xy is a chord in C, and x−y, xy+ /∈ E, then 〈x, x+, y, y−〉
is a complete graph.

We have xy−, x+y ∈ E to avoid claws, the existence of the remaining
edge follows from Claim 1. 3

Suppose that 〈V (x1Cx2y2Cy1x1)〉 contains an (` + 1)-cycle C =
x3Cx4y4Cy3x3 using exactly two chords of C, but no `-cycle with this
property for some ` with 3 ≤ ` ≤ 2N − 15. Then 〈x−3 , x3, y3, y

+
3 〉

and 〈x4, x
+
4 , y−4 , y4〉 are complete by Claim 2. If any of the edges

x+
3 y−3 , x+

3 y−−3 , x++
3 y−3 , x−4 y+

4 , x−4 y++
4 , x−−4 y+

4 are present, we can find an
`-cycle using only two chords of C. If this cycle contains vertices in
{x−3 , y+

3 , x+
4 , y−4 }, we can subsequently skip these vertices one-by-one to

create shorter cycles, ending up with an (`−1)-cycle or an (`−2)-cycle
using only two chords of C with all vertices inside V (x1Cx2y2Cy1x1).

If none of these edges exist, x+
3 , y−3 , x−4 , y+

4 ∈ W and x++
3 y−−3 , x−−4 y++

4 ∈
E by Claim 1. Now x−3 Cx−−4 y++

4 Cy+
3 x−3 is an (` − 1)-cycle using only

two chords of C (which can again be reduced to find a cycle with all
vertices inside V (x1Cx2y2Cy1x1)). If ` > 5, we can extend this cycle
through a neighbor of x+

3 to construct an `-cycle.
Finally, if ` = 5, we have x+

3 = x−4 and y−3 = y+
4 . Let x ∈ (N(x+

3 ) ∩
N(vNCv0)) \ {x3, x4}. This vertex exists by Lemma 7 since G is 3-
connected. If x ∈ N(y4Cy3), then we can find a 5-cycle through x.
Otherwise we can reduce |V (C)|, a contradiction. �

Now we show Theorem 2 in the case of circular G.

Lemma 11. Suppose that G is 3-connected, {K1,3, F}-free and G con-
tains a distance preserving cycle of length N > 20k. Then G is pan-
cyclic.

Proof. For cycle lengths ` with 3 ≤ ` < N , we use a strategy very
similar to the proof of Lemma 10. Let C = v0v1 . . . vN−1v0 be a distance
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preserving cycle of length N in G. Treat all indices in the following
modulo N .

Let u ∈ V (G) \ V (C). Since C is distance preserving, we have
N(N(u)) ∩ V (C) ⊆ V (viCvi+4) for some 0 ≤ i ≤ N − 1. This,
together with Lemma 7, guarantees that N [N [viCvi+3]] is a cut set of
N [N [vi−kCvi+k]] separating vi−k and vi+k for all i.

Consider Gi = G \ N [N [viCvi+3]]. If Gi contains a cycle through
vi−k and vi+k, we can use a shortest such cycle in place of C in the
proof of Lemma 10, and show that Gi contains cycles of all lengths `
for 3 ≤ ` ≤ 2(N − 2k)− 16k.

Otherwise, there is a j with |i − j| > k such that vj is a cut vertex
of Gi separating vi−k and vi+k. Repeat the argument to show that Gj

contains cycles of all lengths ` for 3 ≤ ` ≤ 2(N−2k)−16k unless there
is a j′ with |j′ − j| > k such that vj′ is a cut vertex of Gj separating
vj−k and vj+k. But then {vj, vj′} is a cut set of G, contradicting that
G is 3-connected.

For ` ≥ N , we start with C and extend it one vertex at a time. By
Lemma 6, we can include any set X ⊆ N(C) into the cycle.

For vertices u ∈ N(N [C]), let Zu = {w ∈ N(N [C]) : N [u] = N [w]}.
If |N(u) ∩ N(vi) ∩ N(vi+1)| ≥ 2 for any i, we can extend the cycle
through these two vertices in N(C) and any number of vertices in Zu.
Otherwise, u has neighbors in both N(vi)∩N(vi+1) and N(vi)∩N(vi−1)
for some i since G is 3-connected. Again, we can extend the cycle
through these two neighbors in N(C) and any number of vertices in
Zu. If there are two (or more) vertices u1, u2 with N [u1] 6= N [u2] and
|N(u1)∩N(vi)∩N(vi+1)| = |N(u2)∩N(vi)∩N(vi+1)| = |N(u1)∩N(ui)∩
N(vi−1)| = |N(u2) ∩ N(vi) ∩ N(vi−1)| = 1, we can go back and forth
through any number of vertices in Zu1 and Zu2 . Note that Lemma 7 and
claw-freeness of G guarantee that u1 and u2 have no common neighbors,
so we can perform all these insertions independently. �

Because of Lemmas 10 and 11 for the proof of Theorem 2 it remains
to show the following lemma.

Lemma 12. Suppose that G is 3-connected, {K1,3, F}-free and linear
with diameter N > 10k. For every ` ≥ 2N − 16k, if G contains an
`-cycle, then G contains an (`− 1)-cycle.

Proof. In the following two claims, we show that a lot of the sets N [vi]∩
N [vi+1] are cut sets of G.

Claim 3. Suppose there exists an u ∈ N(N [P ]) such that N(N(u)) ∩
V (P ) ⊆ V (viPvj), vi, vj ∈ N(N(u)) and 2k + 1 ≤ i ≤ j ≤ N − 2k− 1.
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Then N [vi] ∩N [vi+1] and N [vj−1] ∩N [vj] are cut sets of G separating
v0 and vN .

By symmetry, it is enough to prove the statement for the first set.
For the sake of contradiction, assume that for X = N [vi] ∩ N [vi+1]
there is a path from v0 to vN in G−X.

Let R be such a path which contains the minimal number of vertices
outside of P . It is easy to see that R contains exactly two vertices y1

and y2 (in this order) in N(P ), and at most one vertex w outside of
N [P ].

Let x ∈ N(vi) ∩ N(u). The following edges can not exist (see also
Figure 5): uy1 (since vi−1 /∈ N(N(u))), uw (by Lemma 7 with uy1 /∈ E),
uy2 (claw centered at y2), viy2 (y2 /∈ X), wx (claw centered at x), x1y2

(claw centered at y2), and xy1 (claw centered at y1). Furthermore, one
of viy1 and vi−2y1 is not an edge, otherwise there is a claw centered at
y1.

i−1 i i+1 i+2

x

v

u

y21y

v v v

(w)
w

i−1 i i+1 i+2 i+3

x

v

u

1y

v v v

y2

v

w

i−2 i−1 i i+1 i+2v

1y

v v v

y2

v

u

x

Figure 5. The three possible configurations in the proof
of Claim 3

But now it is easy to extend R to a copy of F through vi, x and one
of vi−1 and u, a contradiction. 3

Claim 4. For 2k + 5 ≤ i ≤ N − 2k − 8, at least one of the sets
N [vi] ∩N [vi+1], N [vi+1] ∩N [vi+2] and N [vi+2] ∩N [vi+3] is a cut set of
G separating v0 and vN .

Suppose that none of the three sets cuts G. By Claim 3, no vertex
in N(N [P ]) has distance 2 to viPvi+3. Thus, there exist three edges
xi−1xi+1, xixi+2 and x′i+1xi+3 with xj, x

′
j ∈ N(vj)∩N(vj+1) for i− 1 ≤

j, j′ ≤ i + 3 (see Figure 6). The edges xi−1xi and xi+2xi+3 would
lead to claws at xi−1 and xi+3, respectively, and similarly, any edge
of xixi+1, xix

′
i+1, xi+1xi+2 and x′i+1xi+2 would lead to a claw at xi+1

or x′i+1, respectively, so none of the above edges exists. Furthermore,
xi+1 6= x′i+1 to avoid a claw at xi+1.

But this implies that

〈vi+2xi+2xi; x
′
i+1xi+3vi+4Pvi+k+2; xi+1xi−1vi−1Pvi−k+1〉
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i−1 i i+1 i+2 i+3 i+4

i−1 i+3

v v v v vv

x x

Figure 6. The configuration in the proof of Claim 4

is a copy of F , a contradiction. 3

The last two claims guarantee that there are s, t with 2k + 5 ≤ s ≤
2k+7 and N−2k−7 ≤ t ≤ N−2k−5 such that XL = N [vs]∩N [vs+1]
and XR = N [vt−1] ∩ N [vt] are cut sets of G. Let L be the component
of G−XL containing v0, let R be the component of G−XR containing
vN , and let M = G− (L ∪R).

Observe that 〈XL〉 is almost complete. The only edges which may be
missing are pairs xy with x ∈ N(vs−1)\{vs} and y ∈ N(vs+2)\{vs+1} as
all other missing edges would lead to claws. The symmetric statement
is true for 〈XR〉.

Claim 5. The graph M is pancyclic.

Let Q and S be two disjoint paths in M from XL to XR such that
|V (Q∪S)| is minimal, let qL, sL, qR, sR be the end vertices of the paths.
If V (Q ∪ S) ∩ V (P ) = ∅, we replace Q by vs+1Pvt−1, not changing
|V (Q ∪ S)|. Otherwise, let q ∈ V (Q ∪ S) ∩ V (P ) such that V (Q ∪
S) ∩ V (vs+1Pq−) = ∅. By symmetry we may assume that q ∈ V (Q).
Then |V (vsqLQq)| ≥ |V (vsPq)|, and we may replace qLQq by vs+1Pq.
Therefore, we may assume that qL = vs+1 and that vt−1 ∈ {qR, sR}.

Since vs has no neighbors in V (M) \ XL and vt has no neighbors
in V (M) \ XR the paths Q′ = v0Pvs+1QqR(vt)vt+1PvN and S ′ =
v0Pvs−1(vs)sLSsR(vt)vt+1PvN are induced. Furthermore, vsqLQqRvt

is distance preserving in M − S, and vssLSsRvt is distance preserving
in M −Q.

Let C be the cycle vsqLQqRvtsRSsLvs. Cycles of all lengths ` for
3 ≤ ` ≤ |V (C)| can be found again in the same fashion as in the proof
of Lemma 10. Observe also that all vertices in N(C) ∩ V (M) can be
added to C one-by-one by Lemma 6. Note that this includes all vertices
in XL ⊂ N [vs+1] and XR ⊂ N [vt−1], which can be inserted between xs

and xs+1 and between xt−1 and xt, respectively.
All vertices in V (M) \ N [C] must be in N(N [Q′]) ∩ N(N [S ′]) by

Lemma 7 applied to Q′ and S ′, and therefore any such vertex has at
least three neighbors in N(Q′) ∩ N(S ′). None of these neighbors is in
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V (L ∪ R), so in the same fashion as in Lemma 11, we can add these
vertices one-by-one to C. 3

Now let C be an `-cycle with ` > |V (M)|. For the sake of con-
tradiction assume that G contains no (` − 1)-cycle. Consider C ∩ L.
If C contains a vertex outside L, this is a (possibly empty) collection
of paths P0, P1, . . .. Let pi, si ∈ V (C) ∩ XL be the predecessors and
successors of the Pi on C.

Claim 6. There is a path PL beginning and ending in XL with V (PL) ⊆
V (C) ∩N [L] which contains all Pi in any given order and direction.

Let Pi, Pj ⊂ C as above. Let yi be the final vertex of Pi and xj the
first vertex of Pj. If si = pj, then Pi and Pj are consecutive on C and
we can either skip si in C to get an (`− 1)-cycle, or 〈si, vs+1, xj, yi〉 is
a claw, which is a contradiction.

If sipj /∈ E, then si ∈ N(vs−1) and pj ∈ N(vs+2) (or the other way
around, but we may assume the former). To avoid a claw centered at
pj, we have vsxj ∈ E, as well as vs−1xj ∈ E to avoid a claw at vs. Now
vs−2xj /∈ E to avoid a claw at xj, concluding that sixj ∈ E to avoid a
claw at vs−1. Thus, we can connect Pi and Pj through si. 3

Similarly as PL, we can construct a (possibly empty) path PR in
N [R]. Next, we want to use paths similar to Q and S from above and
join them with PL and PR into one big cycle C ′. We want to be able
to add all remaining vertices in M to C ′, so we have to take some care
how we choose PL, PR, Q and S.

If vs = pi (or vs = si) for some Pi ⊂ PL, let xL = si (or xL = pi,
respectively). Otherwise, let xL = v0. Similarly define xR in relation to
vt. Let Q and S be two disjoint paths in M−{xL, xR} from XL−{xL}
to XR − {xR} such that |V (Q ∪ S)| is minimal, vs+1 ∈ V (Q) and
vt−1 ∈ V (Q∪ S). Such paths exist since G has no cut set consisting of
xL, xR and a third vertex.

Let qL, qR, sL, sR be defined as above. By our choice of xL, we can
order the Pi on PL such that PL does not contain sL or vs as internal
vertices. Similarly construct PR. Now connect PL with Q and S as
follows. If sL is an end vertex of PL, then PL and S are already con-
nected. If sL is adjacent to an end vertex of PL which is not vs, connect
these two vertices. Otherwise, connect sL with PL through vs. Finally,
connect qL = vs+1 to the other end vertex of PL (through vs if vs is not
already used). Similarly connect PR with Q and S to create the cycle
C ′ with V (C ′) = V (PL ∪PR ∪Q∪ S)∪ {vs, vt}. If one of PL and PR is
empty, use the vertex vs or vt instead of the path.

Case 1. Suppose that |V (C ′)| < `.
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We can add most vertices in V (M) \ V (C ′) one-by-one in the same
fashion as in Claim 5. The only vertices which may pose problems are
the ones which were inserted somewhere between qL and sL or between
qR and sR.

For these vertices, note that every vertex in XL \ V (C ′) can be in-
serted between vs and vs+1 after inserting vs between vs+1 and PL if
possible. This is impossible only in the case that vs and sL are adjacent
on C ′. In this case, every vertex in XL \V (C ′) can be inserted between
vs and sL or between vs+1 and PL as every vertex in XL is adjacent to
at least one of any two non-adjacent vertices in XL.

Finally, for vertices u ∈ N(XL) ∩ N(N [Q′]) ∩ N(N [S ′]) ∩ V (M),
note that every neighbor x ∈ N(u) ∩XL is connected to all vertices in
XL and has no neighbors in L (otherwise there would be a claw). So
these vertices can be inserted in the same fashion as in Claim 5 with-
out interfering with PL, and similarly vertices in N(XR)∩N(N [Q′])∩
N(N [S ′]) ∩ V (M).

This way, we can extend C ′ to an (`− 1)-cycle, which is a contradic-
tion.

Case 2. Suppose that |V (C ′)| ≥ `.

Observe that |V (M) \ V (C ′)| ≥ N − 4k − 16 as G is 3-connected
and |V (Q ∪ S)| is minimal. Thus, either |V (C ′) ∩N [L]| > N

2
− 2k − 8

or |V (C ′) ∩ N [R]| > N
2
− 2k − 8. By symmetry we may assume that

|V (C ′) ∩ N [L]| > N
2
− 2k − 8. Note that 〈N [L] ∪ {vs}〉 has minimum

degree at least three and diameter at most 4k, so we can shorten the
path 〈V (C ′) ∩ (N [L] ∪ {vs})〉C′ one vertex at a time keeping the same
end vertices by Lemma 4.

After going through this procedure possibly for several times, we
eventually arrive at a cycle of length `−1, which is a contradiction. �
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