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ABSTRACT. We present an extension of the Delsarte linear program-
ming method for spherical codes. For several dimensions it yields im-
proved upper bounds including some new bounds on kissing numbers.
Musin’s recent work on kissing numbers in dimensions three and four
can be formulated in our framework.

1. INTRODUCTION

A spherical (n,N, α)-code is a set {x1, . . . ,xN} of unit vectors in Rn such
that the pairwise angular distance betweeen the vectors is at least α. One
tries to find codes which maximize N or α if the other two values are fixed.
The kissing number problem asks for the maximum number k(n) of non-
overlapping unit balls touching a central unit ball in n-space. This corre-
sponds to the special case of spherical codes that maximize N , for α = π

3
.

In the early seventies Philippe Delsarte pioneered an approach that yields
upper bounds on the cardinalities of binary codes and association schemes
[3][4]. In 1977, Delsarte, Goethals and Seidel [5] adapted this approach
to the case of spherical codes. The “Delsarte linear programming method”
subsequently led to the exact resolution of the kissing number for dimen-
sions 8 and 24, but also to the best upper bounds available today on kissing
numbers, binary codes, and spherical codes (see Conway & Sloane [2]).

Here we suggest and study strengthenings of the Delsarte method, for
the setting of spherical codes and kissing numbers: We show that one can
sometimes improve the Delsarte bounds by extending the space of functions
to be used.

Let X = (x1, . . . ,xN) ∈ Rn×N be an (n,N, α)-code, and let

M = (xij) = (〈xi,xj〉) = X>X ∈ RN×N

be the Gram matrix of scalar products of the xi. Then
• xii = 1, while xij ≤ cosα for i 6= j,
• M is symmetric and positive semidefinite, and
• M has rank ≤ n.

The research was conducted while supported by the DFG Research Center MATHEON
“Mathematics for key technologies” in Berlin.
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Moreover, any matrix M ∈ RN×N with these properties corresponds to a
spherical (n,N, α)-code. The following is a variant of a theorem by Del-
sarte, Goethals and Seidel [5] with a one-line proof.

Theorem 1.1. Let M = (xij) = X>X for an (n,N, α)-code X ∈ Rn×N .
Let c > 0 and let f : [−1, 1]→ R be a function such that

(i)
N∑

i,j=1

f(xij) ≥ 0,

(ii) f(t) + c ≤ 0 for −1 ≤ t ≤ cosα, and
(iii) f(1) + c ≤ 1.

Then N ≤ 1/c.

Proof. Let g(t) = f(t) + c. Then

N2c ≤ N2c+
∑
i,j≤N

f(xij) =
∑
i,j≤N

g(xij) ≤
∑
i≤N

g(xii) = N g(1) ≤ N.

�

To prove a bound on N with the help of this theorem, we need to find a
“good” function f that works for every conceivable code.

We follow an approach presented by Conway and Sloane [2]. Start with
a finite set S of functions that satisfy (i) for every (n,N, α)-code for given
n and α. As (i) is preserved if we take linear combinations of functions
in S with non-negative coefficients, (i) holds for all functions in the cone
spanned by S. Condition (ii) is discretized, and we formulate the following
linear program. Let S = {f1, f2, . . . , fk}, and t1, t2, . . . , ts be a subdivision
of [−1, cosα].

max c :
k∑
i=1

cifi(1) ≤ 1− c,
k∑
i=1

cifi(tj) ≤ −c, for 1 ≤ j ≤ s,

ci ≥ 0, for 1 ≤ i ≤ k.

Minor inaccuracies stemming from the discretization have to be dealt with.
Theorem 1.1 then yields a bound on N .

In Section 2, we look at the set S which is classically used in this method.
All functions in this set have the stronger property that for a fixed n, the ma-
trix (f(xij)) is positive semidefinite for all (n,N, α)-codes independently
of α, which implies condition (i).

In Section 3 we explore functions one could add to this set satisfying
condition (i) independently of n and α. However, we found no substantial
improvements to known bounds through the help of the functions described
in that section.
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In Section 4 we present a family of functions fα. These functions have the
property that the matrix (fα(xij)) is diagonally dominant and thus positive
semidefinite for all (n,N, α)-codes for all n and N , implying condition (i).
This yields improvements to some best known bounds. In particular, we
obtain improved upper bounds for the kissing number in the dimensions
10, 16, 17, 25 and 26, and a number of new bounds for spherical codes in
dimensions 3, 4 and 5.

In the final section we show how Musin’s recent work [8, 9] on the kissing
numbers in three and four dimensions can be formulated in our framework.

2. THE CLASSICAL APPROACH

To guarantee condition (i) in Theorem 1.1, one looks for a function f
that will return a matrix (f(xij)) which is positive semidefinite for all finite
sets of unit vectors xi. One reason for this restriction is that one knows a
lot about these functions, by the following theorem of Schoenberg about
Gegenbauer polynomials. These polynomials (also known as the spherical
or the ultraspherical polynomials) may be defined in a variety of ways. One
compact description is that for any n ≥ 2 and k ≥ 0, Gn

k(t) is a polynomial
of degree k, normalized such that Gn

k(1) = 1, and such that Gn
0 (t) = 1,

Gn
1 (t) = t, Gn

2 (t) = nt2−1
n−1

, . . . are orthogonal with respect to the scalar
product 〈

g, h
〉

:=

∫∫
Sn−1

g(〈x,y〉)h(〈x,y〉) dω(x) dω(y)

on the vector space R[t] of polynomials, where dω(x) is the invariant mea-
sure on the surface of the sphere.

FIGURE 1. A plot of G4
7(t)

Theorem 2.1 (Schoenberg [10]). If (xij) ∈ RN×N is a positive semidef-
inite matrix of rank at most n with ones on the diagonal, then the matrix(
Gn
k(xij)

)
is positive semidefinite as well.

Schoenberg also proved a converse implication: If application of a con-
tinuous function f : [−1, 1] → R to any positive semidefinite matrix (xij)
of rank at most n with ones on the diagonal yields a positive semidefinite
matrix (f(xij)), then f is a non-negative combination of the Gegenbauer
polynomials Gn

k , for k ≥ 0.
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The Delsarte Method. To obtain bounds on N , given n and α, one takes
for S the Gegenbauer polynomials up to some degree k, and uses the linear
program described in the introduction. The minor inaccuracies arising from
the discretization can be dealt with by selecting a slightly smaller c. Then
Theorem 1.1 yields a bound.

To obtain bounds on α for given n and N , a similar technique is used.
One repeatedly uses the method from before with varying α in order to find
a small α for which Theorem 1.1 forbids an (n,N, α)-code.

In most dimensions, the Delsarte method gives the best known upper
bound for the kissing number; in dimensions 2, 8 and 24 this bound is opti-
mal. In dimension three and four, this method gives the bounds k(3) ≤ 13
and k(4) ≤ 25, and it was proven that no better bounds can be achieved this
way. The true values are 12 and 24, respectively, but the proofs are much
more complicated.

3. EXTENDING THE FUNCTION SPACE

Let us consider the space P(n, α) of candidates for f given by condition
(i) in Theorem 1.1, i.e. we look for functions with

∑
i,j≤N f(〈xi,xj〉) ≥ 0

for every (n,N, α)-code {x1, . . .xN}.
It is easy to see that P(n, α) contains all non-negative functions, the

Gegenbauer polynomials Gn
k (by Theorem 2.1), and all convex combina-

tions of these functions for all α. But the addition of non-negative func-
tions to the set S will not improve the bounds we get from applying Del-
sarte’s method. The interesting question is if there are any other functions
in P(n, α).

We will say that a function has the average property on Sn−1 if for every
code x1,x2, . . . ,xN ⊂ Sn−1 we have

1

N2

N∑
i,j=1

f(xij) ≥
1

ω2
n

∫∫
Sn−1

f(〈x,y〉) dω(x) dω(y),

where ωn is the (n−1)-dimensional area of Sn−1. Obviously, every function
with this property and

∫∫
Sn−1 f(〈x,y〉) dω(x) dω(y) ≥ 0 is in P(n, α) for

all α. Non-negative combinations of Gegenbauer polynomials have this
property, and the next result says that there are no other such functions.

Theorem 3.1. Let f : [−1, 1] → R be a continuous function with the av-
erage property, and with

∫∫
Sn−1 f(〈x,y〉) dω(x) dω(y) ≥ 0. Then f is a

non-negative combination of the Gegenbauer polynomials Gn
k .

For the proof we will need two other results. First, the classical addition
theorem for spherical harmonics (see [1, Chap. 9], which credits Müller [7],
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who in turn says that this goes back to Gustav Herglotz (1881–1925)).

Theorem 3.2 (Addition Theorem [1, Thm. 9.6.3]).
The Gegenbauer polynomial G(n)

k (t) can be written as

G
(n)
k (〈x,y〉) =

ωn
m

m∑
`=1

Sk,`(x)Sk,`(y),

where the functions Sk,1, Sk,2, . . . , Sk,m form an orthonormal basis for the
space of “spherical harmonics of degree k,” which has dimension m =
m(k, n) =

(
k+n−2

k

)
+
(
k+n−3
k−1

)
.

Further, we will use the following lemma.

Lemma 3.3. For a continuous function f : [−1, 1] → R, the following are
equivalent:

(i)
∑N

i,j=1 f(〈xi,xj〉) ≥ 0 for every code x1,x2, . . . ,xN ⊂ Sn−1.
(ii)

∫∫
Sn−1 f(〈x,y〉)h(x)h(y) dω(x) dω(y) ≥ 0 for every non-negative

continuous function h : Sn−1 → R≥0.

Proof. Statement (ii) is trivial for h = 0, so we may assume that in fact∫
Sn−1 h(x) dω(x) = 1. Treat h(x) as a probability density for picking

random vectors x1,x2, . . . ,xN ⊂ Sn−1. Then we get in expectation

E

[
1

N2

N∑
i,j=1

f(〈xi,xj〉)

]

=
1

N
f(1) + E

[
1

N2

N∑
i 6=j

f(〈xi,xj〉)

]

=
1

N
f(1) +

N − 1

N
E [f(〈x1,x2〉)]

=
1

N
f(1) +

N − 1

N

∫∫
Sn−1

f(〈x,y〉)h(x)h(y) dω(x) dω(y).

Choosing N sufficiently large we see that (i) implies (ii).
For xi ∈ Sn−1 and ε > 0, let

hεi(y) =

{
c(ε)(ε− |xi − y|), for |xi − y| < ε,

0, otherwise,

where c(ε) is chosen such that
∫
Sn−1 h

ε
i(y) dω(y) = 1. Given a code

x1,x2, . . . ,xN ⊂ Sn−1, let hε = 1
N

∑
hεi . For ε → 0, the integral in

(ii) approaches the sum in (i), and thus (ii) implies (i). �
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Proof of Theorem 3.1. We may write f as sum of Gegenbauer polynomials

f(t) = c0G
(n)
0 (t) + c1G

(n)
1 (t) + c2G

(n)
2 (t) + . . . ,

with ci ∈ R for i ≥ 0. Then∫∫
Sn−1

f(〈x,y〉) dω(x) dω(y) =

∫∫
Sn−1

c0 dω(x) dω(y),

and f has the average property if and only if f−c0 has the average property.
Thus we may assume that c0 = 0.

For r ≥ 1, let
hr(x) := Sr,1(x) + dr,

with dr ≥ 0 such that hr(x) ≥ 0 for |x| ≤ 1. Then∫∫
Sn−1

Sk,`(x)Sk,`(y)hr(x)hr(y) dω(x) dω(y)

=

∫
Sk,`(x)Sr,1(x) dω(x)

∫
Sk,`(y)Sr,1(y) dω(y)

+ dr

∫
Sk,`(x)Sr,1(x) dω(x)

∫
Sk,`(y) dω(y)

+ dr

∫
Sk,`(x) dω(x)

∫
Sk,`(y)Sr,1(y) dω(y)

+ d2
r

∫
Sk,`(x) dω(x)

∫
Sk,`(y) dω(y)

=

{
0, if (k, `) 6= (r, 1),

1, if (k, `) = (r, 1).

Therefore by Theorem 3.2,∫∫
Sn−1

G
(n)
k (〈x,y〉)hr(x)hr(y) dω(x) dω(y) =

{
0, if k 6= r,
ωn
m
, if k = r,

and thus ∫∫
Sn−1

f(〈x,y〉)hr(x)hr(y) dω(x) dω(y) = cr
ωn
m
.

This implies by Lemma 3.3 that cr ≥ 0, proving the theorem. �

By Theorem 3.1, if we want to find new functions which are in P(n, α)
for all α, we may restrict ourselves to functions which do not have the av-
erage property, and thus

∫∫
Sn−1 f(〈x,y〉) dω(x) dω(y) > 0. The following

family shows that such functions exist. This family is very general in the
sense that it is in P(n, α) for all n and α.
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Lemma 3.4. Let β < π/2, and let

gβ(t) =

 −1, if −1 ≤ t < − cos β
2
,

0, if − cos β
2
≤ t ≤ cos β,

1, if cos β < t ≤ 1.

Then gβ ∈ P(n, α) for all n and α.

FIGURE 2. A plot of gπ
3
(t) from Lemma 3.4

Proof. Suppose that β < π
2
, g := gβ 6∈ P(n, α), and x1, . . . ,xN ∈ Sn−1

is a minimal set with
∑

i,j≤N g(〈xi,xj〉) < 0. Then
∑

j≤N g(〈xi,xj〉) < 0
for some i; without loss of generality we may assume that i = 1. Let

I+
i := {j ≤ N : 〈xi,xj〉 > cos β}, I−i := {j ≤ N : 〈xi,xj〉 < − cos β

2
}.

Then
∑

i≤N g(〈xi,x1〉) = |I+
1 |−|I−1 | < 0. Let j ∈ I−1 , we may assume that

j = 2. Then I−2 ⊆ I+
1 and I−1 ⊆ I+

2 , as a consequence of the spherical trian-
gle inequality: If for unit vectors xi,xj,xk the angular distance between xi
and −xj is at most β

2
, and similarly between −xj and xk, then the distance

between xi and xk is at most β. Therefore,∑
i≤N

g(〈xi,x2〉) = |I+
2 | − |I−2 | ≥ |I−1 | − |I+

1 |.

By inclusion/exclusion we get∑
3≤i,j≤N

g(〈xi,xj〉) =

∑
i,j≤N

g(〈xi,xj〉)− 2
∑
i≤N

g(〈xi,x1〉)− 2
∑
i≤N

g(〈xi,x2〉) + 0

≤
∑
i,j≤N

g(〈xi,xj〉) < 0,

a contradiction to the minimality of the set. �

The following fact shows that these functions are truly an extension to
the known elements of P(n, α). If one is only interested in continuous
functions, one can easily add a non-negative function p̃ with small support,
such that gβ + p̃ ∈ P(n, α) is continuous, and the next fact will also apply
to gβ + p̃.

Fact 3.5. The function gβ is not a convex combination of Gegenbauer poly-
nomials and non-negative functions.
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Proof. Let

h(t) = c−1p(t) +
∞∑
k=0

ckG
n
k(t)

with p(t) ≥ 0, ck ≥ 0 and
∑∞

k=−1 ck = 1. By the linearity of the integral,

− cos β
2∫

−1

h(t) dt ≥ min
k≥1

− cos β
2∫

−1

Gn
k(t) dt >

− cos β
2∫

−1

−1 dt =

− cos β
2∫

−1

gβ(t) dt,

and thus gβ(t) 6= h(t). �

4. THE MAIN RESULT

As noted above, the family gβ is very general in the sense that gβ ∈
P(n, α) for all n and α. Therefore, it may not come as a big surprise that we
do not get significant improvements on the known Delsarte bounds through
the use of gβ .

The Gegenbauer polynomials are specialized on the dimension at hand,
Gn
k ∈ P(n, α) for fixed n and arbitrary α. Next we will look at functions

which are specialized on the minimum angular distance of the code instead,
i.e., functions in P(n, α) for fixed α and arbitrary n. Note that in this set-
ting, there is not much sense in considering the average property since a
sequence of (n, α,N)-codes with fixed α can not converge towards the con-
tinuous case of the whole sphere. We will restrict ourselves to functions in
the following smaller space.

Definition 4.1. For 0 ≤ α ≤ π, let R(n, α) ⊆ P(n, α) be the space of
functions f : [−1, 1]→ R, such that

N∑
i=0

f(〈x0,xi〉) ≥ 0

for every set x0,x1,x2, . . . ,xN ∈ Sn−1 with 〈xi,xj〉 ≤ cosα for all 0 ≤
i < j ≤ N .

With the following lemma, we can reduce the vector combinations which
have to be tested when we are searching for a function f ∈ R(n, α).

Lemma 4.2. Let z = cosα, let θ0 < −
√
z, and let f : [−1, θ0] → R be

some function. Let n > N and let x0,x1, . . . ,xN ∈ Sn−1 be a set of N + 1
points such that

(i) 〈xi,xj〉 ≤ z for 1 ≤ i < j ≤ N ,
(ii) 〈xi,x0〉 ≤ θ0 for 1 ≤ i ≤ N ,

(iii)
∑
f(〈x0,xi〉) is minimal with respect to (i)-(ii),
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(iv) 〈xi,xj〉 is pointwise maximal with respect to (i)-(iii).
Then the xi (i ≥ 1) form a regular simplex with 〈xi,xj〉 = z for i 6= j.

Proof. For N ≤ 1, the statement is trivial, so assume that N ≥ 2. We may
further assume that 〈xN−1,xN〉 is minimal among all the 〈xi,xj〉 (1 ≤ i <
j ≤ N ). Let xi = (x1

i , x
2
i , . . . , x

n
i )
>.

By the symmetries of the sphere we may assume that

x0 = e1,

xji = 0 for j > i+ 1,

xi+1
i ≥ 0 for 1 ≤ i ≤ N.

By (ii), x1
i < −

√
z, and thus, x1

i · x1
j > z for 1 ≤ i ≤ j ≤ N . By (i),

〈xi,xj〉 − x1
i · x1

j < 0, and therefore x2
1 > 0 and x2

i < 0 for i ≥ 2. This
implies that x1

i · x1
j + x2

i · x2
j > z for i, j ≥ 2, and thus x3

2 > 0 and x3
i < 0

for i ≥ 3. Repeating this argument row by row we conclude that in fact

xii−1 > 0 and xij < 0 for 1 ≤ i ≤ j ≤ N,

and {x0,x1, . . . ,xN−1} is linearly independent. The code looks as follows.

(x0,x1, . . . ,xN) =


1 ≤ θ0 . . . . . . . . . ≤ θ0

0 > 0 < 0 . . . < 0
... . . . . . . . . . ...
... . . . > 0 < 0
0 . . . . . . . . . . 0 ≥ 0


If 〈xN−1,xN〉 < z, adding a small ε > 0 to xNN and adjusting xN+1

N accord-
ingly (preserving 〈xN−1,xN〉 ≤ z and |xN | = 1) will increase 〈xN−1,xN〉
without changing any of the other 〈xi,xN〉 (preserving (i)-(iii)), a contra-
diction to (iv). Thus, 〈xN−1,xN〉 = z. By the minimality of 〈xN−1,xN〉,
and (i), this proves the lemma. �

The following theorem will enable us to improve numerous bounds. Note
that the definition of fα for z < t < 1 is not important as 〈xi, xj〉 is never
in this interval for an (n,N, α)-code.

Theorem 4.3. Let 0 ≤ z = cosα < 1 and

fα(t) :=


z−t2
1−z , if t < −

√
z,

0, if −
√
z ≤ t ≤ z,

t−z
1−z , if t > z.

Then fα ∈ R(n, α) for all n.
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FIGURE 3. A plot of fπ
3
(t)

Proof. For fixed n > N0, let X = (x1,x2, . . .xN ,x0) ∈ Rn×(N+1) such that
{x1,x2, . . .xN} is a spherical (n,N, α)-code and so that S =

∑N
i=1 fα(〈x0,xi〉)

is minimal for all codes with N ≤ N0. If we choose N minimal amongst
such codes, we have 〈x0,xi〉 < −

√
z for 1 ≤ i ≤ N .

By Lemma 4.2, we may assume that the xi (i ≥ 1) form a regular simplex
with 〈xi,xj〉 = z for i 6= j. By symmetry we may assume that

xi =
√
z eN+1 +

√
1− z ei ∈ Sn−1 for 1 ≤ i ≤ N.

Let x0 = (x1
0, x

2
0, . . . , x

n
0 )>. Note that the choice of the xi implies that

xi0 ≤ 0 for i ≤ N + 1; if xi0 > 0, then using −xi0 instead would decrease S.
Further, xi0 = 0 for i > N + 1; otherwise we could decrease S by setting
xi0 = 0 and decreasing xN+1

0 .
Next we will show that we can choose x0 such that xi0 = xj0 for all

i, j ≤ N . Let x̃0 ∈ Sn−1 be defined as

x̃0 = −

√∑N
i=1(x

i
0)

2

N

N∑
i=1

ei + xN+1
0 eN+1.

Then

N∑
i=1

fα (〈x̃0,xi〉)−
N∑
i=1

fα (〈x0,xi〉) =

N fα

xN+1
0

√
z −

√∑N
i=1(x

i
0)

2

N

√
1− z


−

N∑
i=1

fα
(
xN+1

0

√
z + xi0

√
1− z

)
=

2N xN+1
0

√
z√

1− z

√∑N
i=1(x

i
0)

2

N
+

∑N
i=1 x

i
0

N

 ≤ 0,

where the last inequality is true since xN+1
0 ≤ 0, and all other factors are

non-negative. Thus, x̃0 minimizes S and we may assume that x0 = x̃0.
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This implies that

〈x0,xi〉 = xi0
√

1− z + xN+1
0

√
z

= −

√
(1− z)1− (xN+1

0 )2

N
+ xN+1

0

√
z,

which is minimized for xN+1
0 = −

√
zN

1−z+zN . Thus,

〈x0,xi〉 ≥ −
√
z +

1− z
N

for 1 ≤ i ≤ N , and therefore

S =
N∑
i=0

f(〈x0,xi〉) ≥ 1 +N f

(
−
√
z +

1− z
N

)
= 0,

proving the theorem. �

Note that in fact, the matrix (fα(xij)) is positive semidefinite for every
(n,N, α)-code X. This is an easy consequence of Gers̆gorin’s circle theo-
rem (see [6]), combined with the fact that (fα(xij)) is symmetric and diag-
onally dominant (i.e., 2fα(xii) ≥

∑N
j=1 |fα(xij)| for 1 ≤ i ≤ N ).

We can add fπ
3

to the Gegenbauer polynomials in dimension n to get
new bounds on the kissing numbers k(n) through linear programming as in
Section 1. This yields the new bounds in Table 1, where the known bounds
are taken from [2] (with the exception of the bound k(9) ≤ 379 from [13]).
For other n ≤ 30, the best currently known bounds were not improved.

n lower bound Delsarte bound new upper bound
9 306 380∗ 379

10 500 595 594
16 4320 8313 8312
17 5346 12218∗ 12210
25 196656 278363 278083
26 196848 396974 396447

∗ : 379 and 12215 with some extra inequalities

TABLE 1. New upper bounds for the kissing number

Similarly, new bounds for the minimal angular separation in spherical
codes can be achieved. Some of them are shown in Table 2 (here, the lower
bounds are from [12]). We express our bounds in degrees as this is the usual
notation in the literature.
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n N lower bound Delsarte bound new upper bound
3 13 57.13 60.42 60.34
3 14 55.67 58.09 58.00
3 15 53.65 56.13 56.10
3 24 43.69 44.45 44.43
4 9 80.67 85.60 83.65
4 10 80.40 82.19 80.73
4 11 76.67 79.46 78.73
4 22 60.13 63.41 63.38
4 23 60.00 62.36 62.30
4 24 60.00 60.50 60.38
5 11 82.36 87.30 85.39
5 12 81.14 84.94 83.14
5 13 79.20 82.92 81.54
5 14 78.46 81.20 80.30
5 15 78.46 79.73 79.30

TABLE 2. New upper bounds for α in (n,N, α)-codes

As an example for the proofs of the values in Tables 1 and 2, we prove
the following theorem. The proofs for all other values are similar, and the
exact functions used are stated in the appendix.

Theorem 4.4. The kissing number in dimension 10 is at most 594.

Proof. Let

f(x) = 0.013483 G
(10)
1 (x) + 0.0519007 G

(10)
2 (x) + 0.1256323 G

(10)
3 (x)

+ 0.2121789 G
(10)
4 (x) + 0.2486231 G

(10)
5 (x) + 0.2032308 G

(10)
6 (x)

+ 0.09343 G
(10)
7 (x) + 0.04367 G

(10)
11 (x) + 0.006165 fπ

3
(x).

On both [−1,− 1√
2
] and [− 1√

2
, 0.5], this is a polynomial of degree 11. It is

readily checked that for −1 ≤ x ≤ 1
2
,

f(x) +
1

594.9
< 0 and f(1) +

1

594.9
< 1,

so k(10) < 594.9 by Theorem 1.1. �

5. MUSIN REVISITED: k(3) = 12 AND k(4) = 24

For dimensions three and four, using fπ
3

gives marginal improvements
to the bounds on the kissing numbers achieved with the Delsarte method,
but not enough to show that k(3) = 12 and k(4) = 24. Several proofs for
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k(3) = 12 are known, the first one by Schütte and van der Waerden [11].
For dimension four, only recently a proof for k(4) = 24 was found by
Musin [8]. The same techniques also yield the arguably simplest proof for
dimension three [9].

Our techniques give a new framework for Musin’s proofs. As mentioned
above, Gegenbauer polynomials G(n)

k are in P(n, α) for a specific n and
arbitrary α. Similarly, the functions fα are in P(n, α) for a specific α and
arbitrary n. To get the strongest bounds one should look for functions which
are specialized for the n and α at hand, though.

As a consequence of Lemma 3 in [9] and Section 5 in [8], we get the
following two lemmas stated in our framework.

Lemma 5.1. Let

g3(t) = 1 + 1.6 G
(3)
1 (t) + 3.48 G

(3)
2 (t) + 1.65 G

(3)
3 (t)

+ 1.96 G
(3)
4 (t) + 0.1 G

(3)
5 (t) + 0.32 G

(3)
9 (t),

and let

ĝ3(t) =

{
min

{
− 1

2.89
g3(t), 0

}
, for t ≤ 1

2
,

2t− 1, for t > 1
2
.

Then ĝ3 ∈ R
(
3, π

3

)
.

Lemma 5.2. Let

g4(t) = 1 + 2 G
(4)
1 (t) + 6.12 G

(4)
2 (t) + 3.484 G

(4)
3 (t)

+ 5.12 G
(4)
4 (t) + 1.05 G

(4)
9 (t),

and let

ĝ4(t) =

{
min

{
− 1

6.226
g4(t), 0

}
, for t ≤ 1

2
,

2t− 1, for t > 1
2
.

Then ĝ4 ∈ R
(
4, π

3

)
.

With the help of these two functions, we can show that k(3) = 12 and
k(4) = 24 using the same method as before.

Acknowledgement. We thank Oleg Musin and Günter M. Ziegler for many
productive discussions on this topic.
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APPENDIX A. FUNCTIONS USED TO PROVE THE VALUES IN TABLES 1
AND 2 IN SECTION 4

Kissing numbers. For n ∈ {9, 16, 17, 25, 26}, let

f(x) = cffπ
3
(x) +

15∑
i=1

ciG
(n)
i .

An argument similar to the proof of Theorem 4.4 using the following exact
constants yields the bounds in Table 1.

n 9 16 17 25 26
c1 0.019301 0.00150625 0.0010991163 0.000068346426 0.000050764918
c2 0.068796 0.00883013 0.0068289424 0.000597204273 0.000462456224
c3 0.151621 0.03241271 0.0264586211 0.003278765311 0.002637553785
c4 0.233218 0.08357928 0.0719084276 0.012746086882 0.010630533922
c5 0.242578 0.15818006 0.143361526 0.03727450386 0.032234603849
c6 0.173153 0.22396571 0.2142502303 0.084612203762 0.07583669717
c7 0.057219 0.22963948 0.2322459799 0.149967112742 0.139668776208
c8 0 0.16129212 0.17372837 0.207792862667 0.20110760134
c9 0 0.05703299 0.0656867748 0.213189306323 0.216300884031
c10 0.020652 0 0 0.15506047251 0.164792888823
c11 0.022367 0 0 0.052419478729 0.062508329517
c12 0 0.02211528 0.0310430395 0 0
c13 0 0.01792231 0.0309025515 0 0
c14 0 0 0 0.038614866776 0.042401423571
c15 0 0 0 0.039062690839 0.04958247785
cf 0.008455 0.00340331 0.0024045205 0.005312502853 0.00178248638

Bounds on spherical codes. Let

f(x) = cffα(x) +
15∑
i=1

ciG
(n)
i .

An argument similar to the proof of Theorem 4.4 using the following exact
constants yields the bounds in Table 2.
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n = 3

α 60.34 58.00 56.10 44.43
N 13 14 15 24
c1 0.144628 0.17042 0.18047 0.11784
c2 0.264112 0.25438 0.24164 0.17644
c3 0.144806 0.19558 0.22834 0.1984
c4 0.145356 0.15492 0.15143 0.18525
c5 0 0.04105 0.06718 0.13696
c6 0 0 0 0.07768
c7 0 0 0 0.02916
c8 0.007163 0 0 0
c9 0.029096 0.02116 0.02355 0
c10 0 0.01089 0.01119 0
c11 0 0 0.00963 0.01056
c12 0 0 0 0.00582
c13 0 0 0 0.00593
c14 0.006433 0 0 0
c15 0 0.00451 0 0
cf 0.181467 0.07561 0.01986 0.01424

n = 4

α 83.65 80.73 78.73 63.38 62.30 60.38
N 9 10 11 22 23 24
c1 0.145068 0.15964 0.168 0.14776 0.13771 0.132654
c2 0.388785 0.39941 0.4074 0.25814 0.25131 0.241421
c3 0.036242 0.04195 0.0482 0.25129 0.24036 0.249607
c4 0 0 0 0.18154 0.18906 0.197614
c5 0 0 0 0.04859 0.05079 0.07055
c8 0 0 0 0.01237 0.00738 0
c9 0 0 0 0.01749 0.02374 0.024936
cf 0.318784 0.29896 0.2853 0.03731 0.05613 0.043207

n = 5

α 85.39 83.14 81.54 80.30 79.30
N 11 12 13 14 15
c1 0.12887 0.144012 0.15234 0.1586 0.16383
c2 0.40902 0.416363 0.42226 0.4268 0.43007
c3 0.03922 0.044718 0.04976 0.056 0.06339
cf 0.33195 0.311568 0.29868 0.2871 0.276
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