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Abstract

The visibility graph V(X) of a discrete point set X ⊂ R
2 has vertex set X and an edge xy for

every two points x, y ∈ X whenever there is no other point in X on the line segment between x and
y. We show that for every graph G, there is a point set X ∈ R2, such that the subgraph of V(X∪Z2)
induced by X is isomorphic to G. As a consequence, we show that there are visibility graphs of
arbitrary high chromatic number with clique number six settling a question by Kára, Pór and Wood.

1 Introduction

The concept of a visibility graph is widely studied in discrete geometry. You start with a set of objects
in some metric space, and the visibility graph of this configuration contains the objects as vertices, and
two vertices are connected by an edge if the corresponding objects can “see” each other, i.e., there is a
straight line not intersecting any other part of the configuration from one object to the other. Often, there
are extra restrictions on the objects and on the direction of the lines of visibility.

Specific classes of visibility graphs which are well studied include bar visibility graphs (see [3]),
rectangle visibility graphs (see [6]) and visibility graphs of polygons (see [1]). In this paper we consider
visibility graphs of point sets.

Let X ⊂ R2 be a a discrete point set in the plane. The visibility graph of X is the graph V(X) with
vertex set X and edges xy for every two points x, y ∈ X whenever there is no other point in X on the
line segment between x and y, i.e. when the point x is visible from the point y and vice versa.

Kára, Pór and Wood discuss these graphs [4], and make some observations regarding the chromatic
number χ(V(X)) and the clique number ω(V(X)), the order of the largest clique. In particular, they
characterize all visibility graphs with χ(V(X)) = 2 and χ(V(X)) = 3, and in both cases, ω(V(X)) =
χ(V(X)). Similarly, they show the following proposition.

Proposition 1. Let Z2 be the integer lattice in the plane, then ω(V(Z2)) = χ(V(Z2)) = 4.

Note that V(Z2)) is not perfect as it contains induced 5-cycles. Further, it is not true in general
that ω(V(X)) = χ(V(X))—there are point sets with as few as nine points with ω(V(X)) = 4 and
χ(V(X)) = 5.

For general graphs, there are examples with χ(G) = k and ω(G) = 2 for any k, one famous example
is the sequence of graphs Mk−2 by Mycielski [5]. No similar construction is known for visibility graphs
with bounded clique number. As their main result, Kára et al. construct a family of point sets with
χ(V(X)) ≥ (c1 log ω(V(Xi)))c2 log ω(V(Xi)) for some constants c1 and c2 and with ω(V(Xi)) getting
arbitrarily large. Our main result is the following theorem.
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Theorem 2. For every graph G, there is a set of points X ⊂ R2 such that the subgraph of V(X ∪ Z2)
induced by X is isomorphic to G.

Let Gk be a graph with χ(Gk) = k and ω(Gk) = 2, and let Xk be the corresponding set given
by Theorem 2. Let Yk ⊂ Xk ∪ Z2 be the subset of points contained in the convex hull of Xk. Then
χ(V(Yk)) ≥ χ(Gk) = k and ω(V(Yk)) ≤ ω(Gk) + ω(V(Z2)) = 6, so we get the following corollary
settling the question from above raised by Kára et al.

Corollary 3. For every k, there is a finite point set Y ⊂ R2, such that χ(V(Y )) ≥ k and ω(V(Y )) = 6.

2 Proof of the Theorem

Let G be a graph with vertex set V (G) = {1, 2, . . . , n} and edge set E(G). We will show the following
lemma in the Section 3.

Lemma 4. For M large enough, there is a set of prime numbers {pij : 1 ≤ i < j ≤ n} with the
following properties:

1. 2M < pij < 2M+1.

2. For 1 ≤ k ≤ n, let Pk = 2nk
∏k−1

i=1 pik
∏n

j=k+1 pkj , and choose nk ∈ Z such that blog2 Pkc =
nM + 2k. Then pk` is the only number in {pij : 1 ≤ i < j ≤ n} which divides P` − Pk for
1 ≤ k < ` ≤ n.

Note that
∏k−1

i=1 pik
∏n

j=k+1 pkj < 2(n−1)(M+1) < 2nM , and thus nk > 0 and Pk ∈ Z for all k. From
this, we can construct the set of points X in Theorem 2:

X = {xi : 1 ≤ i ≤ n} ⊂ R2, with xi =

2−nMPi , i

∏
k<j

(Pj − Pk)∏
kj∈E(G)

pkj

 .

Before we prove the lemma, we will show that this point set has the properties stated in the theorem. For
1 ≤ i < ` ≤ n, let mi` be the slope of the line through xi and x`. Then

mi` =
`− i

P` − Pi
·
2nM

∏
k<j

(Pj − Pk)∏
kj∈E(G)

pkj
.

There are no three colinear points in X , as

2nM+2i+1 ≤ Pi+1 − Pi < 2nM+2i+3,

thus mi(i+1) > m(i+1)(i+2), and therefore mi` > mik for i < ` < k. Thus, V(X) is complete, and
it remains to show that there is an integer point on the line segment between xi and x` if and only if
i` /∈ E(G). To establish this goal, we will look at the intersections of the line segment from xi to x`

(i < `) with the integer gridlines parallel to the y-axis.
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Let s ∈ Z, with 2−nMPi < s < 2−nMP` < 22n+1. As 22j ≤ 2−nMPj < 22j+1 for every j, such an
s exists. Let zs

i` = (s, ys
i`) be a point on the line segment from xi to x`. Then

ys
i` = i

∏
k<j

(Pj − Pk)∏
kj∈E(G)

pkj
+ (s− 2−nMPi)mi`

= i

∏
k<j

(Pj − Pk)∏
kj∈E(G)

pkj︸ ︷︷ ︸
(1)

+ s
`− i

P` − Pi
·
2nM

∏
k<j

(Pj − Pk)∏
kj∈E(G)

pkj︸ ︷︷ ︸
(2)

+Pi
`− i

P` − Pi
·

∏
k<j

(Pj − Pk)∏
kj∈E(G)

pkj︸ ︷︷ ︸
(3)

.

The expression (1) is an integer since pkj divides Pj −Pk. By the same argument , (3) is an integer—just
note further that pi` divides Pi. It remains the analysis of (2).

If i` /∈ E(G), then (2) is an integer. Therefore, zs
i` ∈ Z2, and xix` /∈ E(V(X ∪ Z2)). If i` ∈ E(G),

observe that pi` > 2M > max{` − i, s}, so pi` does not divide s or ` − i. Clearly, pi` does not divide
2nM , and by Lemma 4, it does not divide any of the Pj − Pk other than P` − Pi. Thus, (2) is not an
integer, zs

i` /∈ Z2 for all s considered, and xix` ∈ E(V(X ∪ Z2)), proving Theorem 2.

3 Proof of Lemma 4

By an inequality of Finsler [2], there are more than 2M/(3(M + 1) ln 2) > 2n3 prime numbers in the
interval from 2M to 2M+1.

We will pick the pij sequentially in the order p12, p13, . . . , p1n, p23, . . . , p(n−1)n, with the following
conditions given by the lemma:

(a) pij is a prime number with 2M < pij < 2M+1.

(b) pij is different from all primes picked before.

(c) pij does not divide Pk − P` for all 1 ≤ ` < k < i.

(d) If j = n, no pk` divides Pi − Pr for {k, `} 6= {i, r}.

Assume that we have picked numbers up to but not including pij according to (a)-(d), and we want to
pick pij . Consider first the case that j < n. There were less than

(
n
2

)
primes selected before, and each

Pk − P` has at most n prime divisors greater than 2M , thus at most
(
n
2

)
+ n

(
n
2

)
< n3 of the choices are

blocked, and we can find pij according to (a)-(c).
If j = n, pick pij according to (a)-(c), and assume that pk` divides Pi − Pr for some {k, `} 6= {i, r}

(i.e., condition (d) is violated). We have k 6= i as all pi` divide Pi, otherwise pi` also divides Pr and thus
r = `, a contradiction. Similarly, ` 6= i.

Pick another number p′ij according to (a)-(c). If pk` divides P ′
i − Pr, then pk` divides P ′

i − Pi =
(p′ij − pij)Pi/pij , and thus pk` divides p′ij − pij . But this is impossible since |p′ij − pij | < 2M < pk`.
Therefore, each pk` can block at most one choice for pij this way, so in total at most

(
n
2

)
further choices

are blocked by condition (d), and we can always find a number pij with (a)-(d). This concludes the proof
of the lemma.
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4 Further Questions

We have shown that there are visibility graphs with χ(V(X)) ≥ k and ω(V(X)) = 6 for every k. For
all visibility graphs with ω(V(X)) ≤ 3, we know that χ(V(X)) = ω(V(X)). The only cases left to
consider are ω(V(X)) = 4 and ω(V(X)) = 5. A similar technique of combining a visibility graph with
ω(V(X)) = 3 with a graph G with ω(G) = 2 and large chromatic number will not work, since the
visibility graphs with ω(V(X)) = 3 are too simple (all but at most two of their vertices are collinear
unless V(X) is a special graph on six vertices). It would be no surprise to us if the chromatic number of
visibility graphs with ω(V(X)) = 5 is bounded.

Finally, one could look for smaller point sets with χ(V(X)) ≥ k and ω(V(X)) = 6, as our sets tend
to be very large.
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