A Note on Cycle Spectra of Line Graphs

FLORIAN PFENDER Universität Rostock Institut für Mathematik D-18051 Rostock, Germany Florian.Pfender@uni-rostock.de

Abstract

We show that line graphs G = L(H) with $\sigma_2(G) \ge 7$ contain cycles of all lengths k, $2 \operatorname{rad}(H) + 1 \le k \le c(G)$. This implies that every line graph of such a graph with $2 \operatorname{rad}(H) \ge \Delta(H)$ is subpancyclic, improving a recent result of Xiong and Li. The bound on $\sigma_2(G)$ is best possible.

1 Introduction

All graphs considered here are simple. For all terms not defined here we refer the reader to [1]. We denote the neighborhood of a vertex set $X \subseteq V(G)$ in a graph G by $N_G(X)$ or N(X). The degree of a vertex in $v \in V(G)$ is $d_G(v) = d(v) = |N_G(v)|$. The maximum degree of G is $\Delta(G)$, the minimum degree $\delta(G)$. Let $\sigma_2(G) := \min\{d(x) + d(y) \mid x, y \in V(G) \land xy \notin E(G)\}$. The number of vertices in G is denoted by |G|, the number of edges by ||G||. The cycle with k edges is called C^k , and every cycle is given a direction. For a cycle C and two vertices $v, w \in V(C)$, vCw denotes the v - w path following C in the direction of C, v^+ and v^- are the successor and the predecessor of v on C. For a tree T and two vertices $v, w \in V(C)$, vTw denotes the v - w path following T.

The distance between two vertices $v, w \in G$ is $d_G(v, w) = d(v, w)$. The diameter of a graph G is $\operatorname{diam}(G) = \max_{v,w} d(v, w)$, and the radius is $\operatorname{rad}(G) = \min_v \max_w d(v, w)$. A subgraph $H \subseteq G$ is distance preserving if $d_H(v, w) = d_G(v, w)$ for all $v, w \in V(H)$. A shortening path of a subgraph H is a v - w path P such that $V(H) \cap V(P) = \{v, w\}$ and $d_P(v, w) < d_H(v, w)$, i.e., a witness to the fact that H is not distance preserving.

We write L(G) for the line graph of G. The complete bipartite graph $K_{1,3}$ is called a claw, and a graph is said to be claw-free if it does not contain a claw as an induced subgraph. All line graphs are claw-free.

A graph G is subpancyclic if it contains cycles of all lengths $3 \le k \le c(G)$, where c(G) is the circumference of G, i.e. the length of the longest cycle in G.

Gould and Pfender [2] showed the following lemma about claw-free graphs.

Lemma 1. Let G be a claw-free graph with $\sigma_2(G) \ge 9$. Suppose, for some m > 3, G has an m-cycle C, but no (m-1)-cycle. Then C is distance preserving.

This yields as an immediate consequence the following corollary.

Corollary 2. Let G be a claw-free graph with $\sigma_2(G) \ge 9$ and circumference c(G). Then for every k with $2 \operatorname{diam}(G) + 1 \le k \le c(G)$, G contains C^k .

For line graphs, we strengthen Lemma 1 as follows.

Lemma 3. Let G be a line graph with $\sigma_2(G) \ge 7$. Suppose, for some m > 3, G has an m-cycle C, but no (m-1)-cycle. Then C is distance preserving.

Xiong and Li [3] prove the following theorem.

Theorem 4. Let *H* be a graph and G = L(H) its line graph with $\delta(G) \ge 6$, and $rad(H) \le \frac{\Delta(H)}{2}$. Then *G* is subpancyclic.

We will prove the following.

Theorem 5. Let H be a graph and G = L(H) its line graph with $\sigma_2(G) \ge 7$. Then G contains cycles of all lengths k, $2 \operatorname{rad}(H) + 1 \le k \le c(G)$.

Since G = L(H) trivially contains cycles of all lengths $3 \le k \le \Delta(H)$, we can improve Theorem 4.

Corollary 6. Let H be a graph and G = L(H) its line graph with $\sigma_2(G) \ge 7$, and $rad(H) \le \frac{\Delta(H)}{2}$. Then G is subpancyclic.

Corollary 7. Let H be a graph and G = L(H) its line graph with $\delta(G) \ge 4$, and $rad(H) \le \frac{\Delta(H)}{2}$. Then G is subpancyclic.

2 Proof of Lemma 3

The lemma can be proved very similarly to Lemma 1. Here is a sketch of the proof.

Let H and G be as in the statement of the lemma, and let C be an m-cycle in G. Suppose first that C has a shortening path of length at most two. Pick four vertices s_1 , t_1 , s_2 , t_2 such that there are shortening paths P_i of length at most two between s_i and t_i , $s_i^+ \notin s_{2-i}Ct_{2-1}$ and the s_iCt_i are minimal according to these conditions. Let K_i be the set of vertices on $s_i^+Ct_i^-$ which are not incident to a chord of C. By symmetry, we may assume that either $|K_1| < |K_2|$ (in which case note that all but at most two vertices in K_2 have degree at least 4), or $|K_1| = |K_2|$ and $\min_{v \in K_2} d(v) \ge 4$. Let $C' = t_1Cs_1P_1t_1$. Then $|C'| \le m - 1$. Now we can extend C' one vertex at a time by inserting the vertices of $V(s_1^+Ct_1^-) \setminus K_1$. Then, we can insert all neighbors outside C' of vertices in K_2 . Note that every such neighbor has at most two adjacent vertices on $s_2^+Ct_2^-$, so $|N(K_2) \setminus C| \ge \frac{1}{2} \sum_{v \in K_2} (d(v) - 2) \ge |K_1| - 1$. Thus, we can insert vertices until we have a C^{m-1} .

On the other hand, if there is no shortening path of length at most 2, we can construct from C and a shortening path P a cycle C' with $|C'| \le m - 1$ and $|C' \cap C| \ge \frac{m}{2}$, which we can again extend one by one through vertices in $N(C' \cap C) \setminus V(P)$ until we have a C^{m-1} . This contradiction shows that there is no shortening path of C in G, and thus C is distance preserving.

3 Proof of Theorem 5

For the sake of contradiction, suppose that H and G = L(H) are graphs as in the statement, and suppose that for some $m > 2 \operatorname{rad}(H) + 1$, G contains a C^m but no C^{m-1} . The cases that $m \in \{4, 5\}$ (and thus $\operatorname{rad}(H) = 1$) are easy to rule out, so we may assume that $m \ge 6$. By Lemma 3, this cycle is distance preserving, so its line graph original in H is an induced cycle C on m vertices which is distance preserving as well.

Since G contains no C^{m-1} , we know that G contains no induced C^k for $\frac{2}{3}(m-1) \le k \le m-1$, as each such cycle could easily be extended to a C^{m-1} . Thus, H contains no C^k with $\frac{2}{3}(m-1) \le k \le m-1$ (the line graph operation bijectively maps cycles in H to induced cycles of the same length in G).

Let S be the graph obtained from H through a single subdivision of every edge. Then $2 \operatorname{rad}(H) \leq \operatorname{rad}(S) \leq 2 \operatorname{rad}(H) + 1$ and S contains no C^k with $\frac{4}{3}(m-1) \leq k \leq 2m-2$. Note that all cycles

in S have even length. Let Z be the 2m-cycle in S obtained from C. Choose $z \in V(S)$ such that $\max_{v \in V(Z)} d(z, v)$ is minimal, and therefore at most $\operatorname{rad}(S)$. Let T be a minimal tree in S such that $d_{Z \cup T}(z, v) = d(z, v)$ for all $v \in V(Z)$. Since Z is distance preserving, T intersects Z exactly in the leaves of T. Let $\{v_1, \ldots, v_\ell\} = V(T) \cap V(Z)$ be the leaves of T in the order they appear on Z. For ease of notation, let $v_{\ell+1} = v_1$. Let $P_i = v_i Tz$.

Now consider the cycles $Z_{i,j} = v_i Z v_j T v_i$. We have $||Z_{i,i+1}|| \le 2 \operatorname{rad}(S) \le 2m-2$, since otherwise there would be a vertex v on $v_i Z v_{i+1}$ with $d_{Z \cup T}(z, v) > \operatorname{rad}(S)$. Therefore, we get $||Z_{i,i+1}|| < \frac{4}{3}(m-1)$, as S contains no C^k with $\frac{4}{3}(m-1) \le k \le 2m-2$. As Z is distance preserving, this implies that $||v_i Z v_{i+1}|| \le \frac{1}{2} ||Z_{i,i+1}|| < \frac{2}{3}(m-1)$.

Let us pick $i, j \in \{1, \ldots, \ell\}$ such that

- 1. there is a vertex $u \in v_i Z v_j$, such that $d(u, z) = \max_{v \in V(C)} d(z, v)$,
- 2. $||v_i Z v_j|| < \frac{2}{3}(m-1),$
- 3. $||Z_{i,j}|| < \frac{4}{3}(m-1)$, and
- 4. $||v_i Z v_j||$ is maximal under these conditions.

Without loss of generality we may assume that $1 \le i < j \le \ell$, and that $||P_i \cap Z_{i,j}|| \le ||P_j \cap Z_{i,j}||$. Consider $Z_{i,j+1}$. If $||Z_{i,j+1}|| \le 2m-2$, then in fact again $||Z_{i,j+1}|| < \frac{4}{3}(m-1)$, $||v_iZv_{j+1}|| < \frac{2}{3}(m-1)$, and we get a contradiction to the maximality of $||v_iZv_j||$. Thus, $||Z_{i,j+1}|| \ge 2m$.

If $Z_{i,j+1}$ contains no edges of $E(P_j) \setminus E(P_i)$, then

$$||Z_{i,j+1}|| \le ||Z_{i,j}|| + ||Z_{j,j+1}|| - 2|E(P_j) \setminus E(P_i)| \le ||Z_{j,j+1}|| + ||Z_{i,j}|| - \frac{2}{4}||Z_{i,j}|| < 2m - 2,$$

a contradiction. Thus, $Z_{i,j+1}$ contains edges of $E(P_j) \setminus E(P_i)$.

Let $u_1 \in V(v_i Z v_j)$ such that $||u_1 Z v_i P_i z|| = ||u_1 Z v_j P_j z||$ and $u_2 \in V(v_j Z v_{j+1})$ such that $||u_2 Z v_j P_j z|| = ||u_2 Z v_{j+1} P_{j+1} z||$. Then $||u_1 Z v_j P_j z|| \ge d(u, z) \ge ||u_2 Z v_j P_j z||$, and therefore $||u_1 Z v_j|| \ge ||u_2 Z v_j||$. But now

$$\begin{aligned} \|Z_{i,j+1}\| &= \|Z_{i,j}\| + \|Z_{j,j+1}\| - 2\|Z_{i,j} \cap Z_{j,j+1}\| \\ &= \|Z_{i,j}\| + \|Z_{j,j+1}\| - 2(\frac{1}{2}\|Z_{j,j+1}\| - \|u_2 Z v_j\|) \\ &= \|Z_{i,j}\| + 2\|u_2 Z v_j\| \\ &\leq \|Z_{i,j}\| + 2\|u_1 Z v_j\| \le \|Z_{i,j}\| + \frac{2}{4}\|Z_{i,j}\| \qquad < 2m - 2. \end{aligned}$$

This contradiction concludes the proof of the Theorem.

4 Sharpness

Consider the following graph H_1 (see Figure 4) with $G_1 = L(H_1)$ demonstrating that the condition $\sigma_2(G) \ge 7$ is best possible in Lemma 3 and Theorem 5. For $k \ge 3$, start with two copies of C^{2k} and identify them at one vertex. At every vertex at even distance from the vertex with degree 4, attach a star $K_{1,4}$ by identifying one of its leaves with the vertex, resulting in a graph H_1 .

Then $G_1 = L(H_1)$ has minimum degree $\delta(G_1) = 3$ (and $\sigma_2(G_1) = 6$), contains a C^{4k} and no C^{ℓ} for $3k + 2 \leq \ell \leq 4k - 1$. But, the C^{4k} has chords and is thus not distance preserving, showing that the bound on σ_2 is best possible for Lemma 3. The radius of H_1 is $k + 1 \leq \operatorname{rad}(H) \leq k + 2$, concluding that the bound on σ_2 is best possible for Theorem 5 as well.

To see that the bound on the radius in Theorem 5 is best possible, start with a complete graph K^4 , and subdivide the three edges incident to some vertex v k-times each for some $k \ge 2$. Add three pendant edges to every vertex of degree 2 to get a graph H_2 , and let $G_2 = L(H_2)$. We have $c(G_2) = 8k + 7$, $\delta(G_2) = 4$, rad $(H_2) = k + 1$, and G_2 contains no C^{2k+2} .

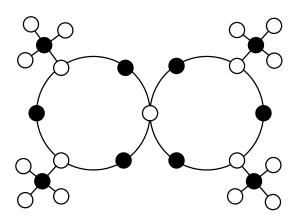


Figure 1: The graph H_1 for k = 3

References

- [1] R. Diestel, Graph Theory, Springer-Verlag New York (1997).
- [2] R. Gould and F. Pfender, Pancyclicity in Claw-free Graphs, Discrete Math. 256 (2002), 151–160.
- [3] L. Xiong and M. Li, Radius and subpancyclity in line graphs, preprint, 13 pages.