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Abstract

Turán’s Theorem states that every graphG of edge density ‖G‖/
(|G|

2

)
> k−2

k−1 contains a complete
graph Kk and describes the unique extremal graphs. We give a similar Theorem for `-partite graphs.
For large `, we find the minimal edge density dk

` , such that every `-partite graph whose parts have
pairwise edge density greater than dk

` contains a Kk. It turns out that dk
` = k−2

k−1 for large enough `.
We also describe the structure of the extremal graphs.

1 Introduction and Notation

All graphs in this note are simple and undirected, and we follow the notation of [3]. In particular, Kk

is the complete graph on k vertices, |G| stands for the number of vertices and ‖G‖ denotes the number
of edges in G with vertex set V (G) and edge set E(G). For a vertex x ∈ V (G), let N(x) be the set of
vertices adjacent to x, and let d(x) := |N(x)| be the degree of the vertex. For sets X,Y ⊆ V (G), let
G[X] be the graph on X induced by G, E(X) be the edge set of G[X] and E(X,Y ) be the set of edges
from X to Y .

Let G be an `-partite graph on finite non-empty independent sets V1, V2, . . . V`. For X ⊆ V (G), we
write Xi := X ∩ Vi. For i 6= j, the density between Vi and Vj is defined as

dij := d(Vi, Vj) :=
‖G[Vi ∪ Vj ]‖
|Vi| · |Vj |

.

For a graph H with |H| ≥ `, let d`(H) be the minimum number such that every `-partite graph with
min dij > d`(H) contains a copy of H . Clearly, d`(H) is monotone decreasing in `. In [2], Bondy et al.
study the quantity d`(H), and in particular d3

` := d`(K3), i.e. the values for the complete graph on three
vertices, the triangle. Their main results about triangles can be written as follows.

Theorem 1. [2]

1. d3
3 = τ ≈ 0.618, the golden ratio, and

2. d3
ω exists and d3

ω = 1
2 .

Here, d3
ω stands for the corresponding value for graphs with a (countably) infinite number of finite

parts. They go on and show that d3
4 ≥ 0.51 and speculate that d3

` >
1
2 for all finite `. We will show that

this speculation is false. In fact, d3
` = 1

2 for ` ≥ 12 as we will prove in Section 3. In Section 4, we will
extend the main proof ideas to show that dk` := d`(Kk) = k−2

k−1 for large enough `.
In order to state our results, we need to define classes Gk` of extremal graphs. We will do this properly

in Section 2. Our main result is the following theorem.
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Theorem 2. Let k ≥ 2, let ` be large enough and let G = (V1 ∪ V2 ∪ . . .∪ V`, E) be an `-partite graph,
such that the pairwise edge densities

d(Vi, Vj) :=
‖G[Vi ∪ Vj ]‖
|Vi| · |Vj |

≥ k − 2
k − 1

for i 6= j.

Then G contains a Kk or G is isomorphic to a graph in Gk` .

Corollary 3. For ` large enough, dk` = k−2
k−1 .

The bound on ` one may get out of the proof is fairly large, and we think that the true bound is much
smaller. For triangles (k = 3), we can give a reasonable bound on `. We think that this bound is not
sharp, either. We conjecture that ` ≥ 5 turns out to be sufficient.

Theorem 4. Let ` ≥ 12 and letG = (V1∪V2∪ . . .∪V`, E) be an `-partite graph, such that the pairwise
edge densities

d(Vi, Vj) :=
‖G[Vi ∪ Vj ]‖
|Vi| · |Vj |

≥ 1
2

for i 6= j.

Then G contains a triangle or G is isomorphic to a graph in G3
` .

Corollary 5. d3
12 = 1

2 .

2 Extremal graphs

For ` ≥ (k − 1)!, a graph G is in Ḡk` , if it can be constructed as follows. For a sketch, see the figure
below. Let {π1, π2, . . . , π(k−1)!} be the set of all permutations of the set {1, . . . , k − 1}. For 1 ≤ i ≤ `
and 1 ≤ s ≤ k − 1, pick integers nsi such that

n
πi(1)
i ≥ nπi(2)

i ≥ . . . ≥ nπi(k−1)
i for 1 ≤ i ≤ (k − 1)!,

n1
i = n2

i = . . . = nk−1
i for (k − 1)! < i ≤ `, and∑

s

nsi > 0 for 1 ≤ i ≤ `.

Let

V (G) = {(i, s, t) : 1 ≤ i ≤ `, 1 ≤ s ≤ k − 1, 1 ≤ t ≤ nsi}, and

E(G) = {(i, s, t)(i′, s′, t′) : i 6= i′, s 6= s′}.

Figure 1: A sketch of a member of Ḡ4
` , all edges between different colors in different parts exist.
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Let Gk` be the class of graphs which can be obtained from graphs in Ḡ` by deletion of some edges in
{(i, s, k)(i′, s′, k′) : s 6= s′ ∧ 1 ≤ i < i′ ≤ (k − 1)!}.

All graphs in Gk` are `-partite and Gk` contains graphs with min dij ≥ k−2
k−1 (e.g., we get dij = k−2

k−1
for all i 6= j if all nsi are equal).

For k = 3, the density condition is fulfilled for all graphs in Ḡ3
` , and for all graphs in G3

` which
have d1,2 ≥ 1

2 . For k > 3, this description is not a full characterization of the extremal graphs in the
problem, as for some choices of the nsi , the resulting graphs will have lower densities than stated in the
theorem. We would need some extra conditions on the nsi to make sure that the graphs fulfill the density
conditions.

3 Theorem 4—triangles

In this section we prove Theorem 4. We will start with a few useful lemmas and this easy fact.

Fact 6. Let G = (V1 ∪ V2, E) be a bipartite graph on 2n vertices with ‖G‖ ≥ 1
2n

2, and let X be an
independent set. Then |X1| · |X2| ≤ 1

2n
2.

Proof. There are at most n2 pairs of vertices v1v2 with vi ∈ Vi. If 1
2n

2 of them are edges, then at most
1
2n

2 of them can be non-edges.

An important lemma for the study of d3
ω in [2] is the following.

Lemma 7. [2] LetG = (V1∪V2∪V3∪V4, E) be a 4-partite graph with |V1| = 1, such that the pairwise
edge densities d(Vi, Vj) > 1

2 for i 6= j. Then G contains a triangle.

With the same proof one gets a slightly stronger result which we will use in our proof. In most cases
occurring later, X will be the neighborhood of a vertex, and the Lemma will be used to bound the degree
of the vertex. For the sake of exposition, we present a slightly modified version of the proof here.

Lemma 8. Let G = (V1 ∪ V2 ∪ V3, E) be a 3-partite graph and X an independent set, such that the
pairwise edge densities d(Vi, Vj) ≥ 1

2 for i 6= j and |Xi| ≥ 1
2 |Vi| for 1 ≤ i ≤ 3, with a strict inequality

for at least two of the six inequalities. Then G contains a triangle.

Proof. In the following, all indices are computed modulo 3. For i ∈ {1, 2, 3}, consider the 4-partite
graph G[Xi, Yi, Xi+1, Yi+1]. For the different choices of i, we get the three inequalities

d(Xi, Yi+1) + d(Yi, Xi+1) + d(Yi, Yi+1) ≥ 2.

Indeed, if we fix the number of edges between Vi and Vi+1 and the sizes of Xi, Yi, Xi+1, Yi+1, the above
sum is minimized if we minimize the number of edges between Yi and Yi+1. As

|Xi| · |Yi+1|+ |Yi| · |Xi+1| ≤
1
2
|Vi| · |Vi+1|

and d(Vi, Vi+1) ≥ 1
2 , the sum must be at least 2. As we have strict inequality in at least two of the six

inequalities in the statement of the lemma, at least one of the three sums is in fact greater than 2, and so
3∑
i=1

d(Xi, Yi−1) + d(Xi, Yi+1) + d(Yi−1, Yi+1) =
3∑
i=1

d(Xi, Yi+1) + d(Yi, Xi+1) + d(Yi, Yi+1) > 6,

and thus for some i ∈ {1, 2, 3},

d(Xi, Yi−1) + d(Xi, Yi+1) + d(Yi−1, Yi+1) > 2.

Picking independently at random vertices x ∈ Xi, y ∈ Yi−1, z ∈ Yi+1, the expected number of edges
in G[{x, y, z}] is d(Xi, Yi−1) + d(Xi, Yi+1) + d(Yi−1, Yi+1) > 2, and therefore G[Xi ∪ Yi−1 ∪ Yi+1]
contains a triangle.
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As a corollary from Fact 6 and Lemma 8 we get

Corollary 9. For ` ≥ 3, letG = (V1∪V2∪ . . .∪V`, E) be a balanced `-partite graph on n` vertices with
edge densities dij ≥ 1

2 , which does not contain a triangle. Then for every independent set X ⊆ V (G),
|X| ≤ (`+1)n

2 .

Proof. We may assume that |X1| ≥ |X2| ≥ . . . ≥ |X`|. By Lemma 8, |X3| ≤ 1
2n and by Fact 6,

|X1|+ |X2| ≤ 3
2n.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Suppose that G contains no triangle. Without loss of generality we may assume
that each of the ` ≥ 12 parts of G contains exactly n vertices, where n is a sufficiently large even integer.
Otherwise, multiply each vertex in each part Vi by a factor of n

|Vi| , which has no effect on the densities
or the membership in G3

` , and creates no triangles.
For a vertex x, let di(x) := |N(x) ∩ Vi|. For each edge xy ∈ E(G), choose i and j such that x ∈ Vi

and y ∈ Vj , and let
s(xy) := d(x)− dj(x) + d(y)− di(y).

We have ∑
xy∈E(G)

s(xy) =
1
2

∑
x∈V (G)
y∈N(x)

s(xy) =
∑

x∈V (G)

d(x)2 −
∑̀
j=1

dj(x)2

 .

The set N(x) is independent, so by Lemma 8, for fixed x at most two of the dj(x) may be larger than n
2 ,

and by Fact 6, dj(x)dk(x) ≤ 1
2n

2 for every vertex x ∈ Vi and j 6= k.
Thus, for fixed d(x) ≥ n, the sum

∑
dj(x)2 is maximized if

dj(x) =


n, if j = 1 and d(x) ≥ n,
n
2 , if 2 ≤ j ≤

⌊
2d(x)
n

⌋
− 1,

d(x)− j n2 , if j =
⌊

2d(x)
n

⌋
, and

0, otherwise,

in which case ∑̀
j=1

dj(x)2 = n2 + (d(x)− n)n2 .

For fixed d(x) < n, we have∑̀
j=1

dj(x)2 ≤ d(x)2 < (n+ d(x))n2 = n2 + (d(x)− n)n2 .

Therefore, using that
∑
d(x) = 2‖G‖ ≥

(
`
2

)
n2,

1
‖G‖

∑
xy∈E(G)

s(xy) ≥ 2∑
d(x)

∑
x∈V (G)

(d(x)2 − n2 − (d(x)− n)n2 )

=
2
∑
d(x)2∑
d(x)

− n− `n3∑
d(x)

≥ 2
`n

∑
d(x)− n− `n3∑

d(x)

≥ (`− 2)n− 2n
`− 1

.
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We conclude that there is an edge xy ∈ E(G) with s(xy) ≥ (` − 2)n − 2n
`−1 . By symmetry, we may

assume that x ∈ V11 and y ∈ V12. Note that N(x) and N(y) are disjoint as otherwise there would be a
triangle. Let G′ := G[

⋃10
i=1 Vi]. Let

X := N(x) ∩ V (G′), Y := N(y) ∩ V (G′), and Z := V (G′) \ (X ∪ Y ).

Note that |Z| ≤ 2
11n. By Lemma 8, at most two of the sets Xi and at most two of the sets Yi are greater

than n
2 , so we assume in the following that |Xi| ≤ n

2 for 1 ≤ i ≤ 8 and |Yi| ≤ n
2 for 1 ≤ i ≤ 6. Further,

we may assume that |X9| ≤ min{|X10|, |Y7|, |Y8|}. Let X ⊆ X ′ ⊆ X ∪ Z and Y ⊆ Y ′ ⊆ Y ∪ Z such
that

1. X ′ ∩ Y ′ = ∅,

2. X ′ ∪ Y ′ = V (G′),

3. |Y ′i | = max{|Yi|, n2 } for 1 ≤ i ≤ 8, and

4. |X ′i| = max{|Xi|, n2 } for 9 ≤ i ≤ 10.

Let H := G′ − E(V10, V7 ∪ V8). Let H ′ ⊇ H[X ∪ Y ] be the complete bipartite graph on X ′ and Y ′,
minus the edges inside the Vi and the edges between V10 and V7 ∪ V8.

We want to bound ‖H‖ from above. We have

dH(z) ≤


8
2n, for z ∈ Z10,
10
2 n, for z ∈ Z9, and
9
2n, for z ∈ Z \ (Z9 ∪ Z10),

by Corollary 9. On the other hand, we have, using that n2 ≤ |X
′
7|+ |X ′8| ≤ n,

dH′(z) ≥

{
8
2n, for z ∈ Z9, and
7
2n, for z ∈ Z \ Z9.

To see that dH′(z) ≥ 7
2n for z ∈ Z10, note that Z10 ⊆ Y ′10 if |Y ′10| < 1

2 , and thus dH′(z) ≥ 6
2n+ |X ′9|.

Therefore, taking into account a possible double count of edges in the bipartite graphH ′[Z], we have

‖H‖ ≤ ‖H ′‖+ n|Z|+ 1
4
|Z|2.

Now,

‖H ′‖ = 39
n2

2
+ |X ′9| · |Y ′10|+ |X ′10| · |Y ′9 | (1)

+ |X ′7| · |Y ′8 |+ |X ′8| · |Y ′7 | (2)

+ |X ′9|(|Y ′7 |+ |Y ′8 |) + (|X ′7|+ |X ′8|)|Y ′9 |. (3)

For fixed |X ′9| ≥ n
2 , (1) is maximized for minimal |X ′10| ≥ |X ′9|, and (3) is maximized for maximal

|Y ′7 | + |Y ′8 |. For fixed |Y ′7 | + |Y ′8 |, (2) is maximized for maximal |Y ′8 | − |Y ′7 |. Thus, (1)+(2)+(3) is
maximized for

|X ′10| = |Y ′7 | = |X ′9|,

in which case (1) + (2) + (3) = 2n2. This shows that ‖H ′‖ ≤ 43n
2

2 , and thus

‖H‖ ≤ 43
n2

2
+ |Z|n+ 1

4 |Z|
2 ≤ 43

n2

2
+

23
121

n2.
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On the other hand, by the density condition,

‖H‖ ≥ 43
n2

2
,

so |E(H ′) \ E(H)| ≤ 23
121n

2. In particular, no vertex z can have large neighborhoods in both X and Y ,
as N(z) is an independent set and this would force |E(H ′) \ E(H)| to be large. To be more precise, let
X̄ := X \X10 and Ȳ := Y \ Y10, then we have

(|N(z) ∩ Ȳ | − n)|N(z) ∩ X̄| < 23
121

n2, (4)

as every vertex in N(z) ∩ X̄i forces |(N(z) ∩ Ȳ ) \ Vi| > |N(z) ∩ Ȳ | − n missing edges. Note that
|X̄|, |Ȳ | ≤ 5n by Corollary 9. Let G′′ := G′ − V10, and let

X ′′ := {v ∈ V (G′′) : |N(v) ∩ X̄| > 1
2 |X̄|},

Y ′′ := {v ∈ V (G′′) : |N(v) ∩ Ȳ | > 1
2 |Ȳ |}, and

Z ′′ := V (G′′) \ (X ′′ ∪ Y ′′).

The sets X ′′ and Y ′′ are disjoint by (4). As any two vertices in X ′′ (or Y ′′) have a common neighbor,
X ′′ and Y ′′ are independent sets.

If z ∈ Z ′′ and |N(z) ∩ Ȳ | ≥ 6
5n, then

dH(z) ≤ |N(z) ∩ Ȳ |+ |N(z) ∩ X̄|+ |N(z) ∩ Z|

≤(4) |N(z) ∩ Ȳ |+ 23n2

121(|N(z) ∩ Ȳ | − n)
+ |Z|. (5)

The last expression is a convex function in |N(z) ∩ Ȳ | and thus maximized on the boundary of the
interval

[
6
5n,

5
2n
]
. In the case |N(z) ∩ Ȳ | = 5

2n, (5) gives

dH(z) ≤ 5
2
n+

46
363

n+
2
11
n < 2.81n.

For |N(z) ∩ Ȳ | = 6
5n, (5) gives

dH(z) ≤ 6
5
n+

115
121

n+
2
11
n < 2.4n.

We get the same upper bound with a symmetric argument for |N(z)∩X ′′| ≥ 6
5n (the symmetric statement

of (4) also holds). Finally, if |N(z) ∩X ′′|+ |N(z) ∩ Y ′′| ≤ 12
5 n, then

dH(z) ≤ 12
5
n+

2
11
n < 2.6n.

Every vertex z ∈ Y ′i ∩ Z ′′ is incident to at least 1
2 |X̄| − |Xi| ≥ 1

2

(
9n− |Ȳ | − |Z|

)
− n ≥ 10

11n edges in
E(H ′) \ E(H). So we have

|Y ′ ∩ Z ′′| ≤ 23 · 11
121 · 10

n < 0.21n,

and similarly,
|X ′ ∩ Z ′′| < 0.21n.

Thus,
|Z ′′| < 0.42n.
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Like above, we may assume (after possibly renumbering the sets) that |X ′′i | ≤ n
2 for 1 ≤ i ≤ 7 and

|Y ′′i | ≤ n
2 for 1 ≤ i ≤ 5. Further, we may assume that |X ′′8 | ≤ min{|X ′′9 |, |Y ′′6 |, |Y ′′7 |} (switch Y s and

Xs if necessary). Let H ′′ := G′′ − E(V9, V6 ∪ V7). By the density condition,

‖H ′′‖ ≥ 34
n2

2
.

On the other hand, we can repeat the above arguments for H for H ′′, and create a bipartite graph H ′′′ on
X ′′′ ⊇ X ′′ and Y ′′′ ⊇ Y ′′ with dH′′′(z) ≥ 6

2n for all z ∈ Z ′′, and conclude that

‖H ′′‖ ≤ 34
n2

2
−
(

6
2 − 2.81

)
n|Z ′′|+ 1

4
|Z ′′|2 ≤ 34

n2

2
− 0.08n|Z ′′|.

Therefore, ‖H ′′‖ = 34n
2

2 and Z ′′ = ∅. This shows that d3
` = d3

12 = 1
2 .

But more is true, G[
⋃
i≤8 Vi] = H ′′ \ V9 is a complete bipartite graph minus the edges inside the Vi,

and we may assume that |X ′′1 | = |X ′′2 | = |X ′′3 | = 1
2n, as at most one of the |X ′′i | and at most one of the

|Y ′′i | (1 ≤ i ≤ 8) may be greater than 1
2n by the density condition. For 9 ≤ k ≤ `, 1 ≤ i ≤ 8, 1 ≤ j ≤ 8

with i 6= j, for every v ∈ Vk, we have |N(v) ∩X ′′i | · |N(v) ∩ Y ′′j | = 0 as otherwise there is a triangle.
Thus, |N(v) ∩ (V1 ∪ V2 ∪ V3)| ≤ 3

2n with equality only for N(v) ∩X ′′ = ∅ or N(v) ∩ Y ′′ = ∅. Since
dik ≥ 1

2 , equality must hold for every v ∈ Vk, showing that G is isomorphic to a graph in G3
` .

4 Theorem 2—complete subgraphs

Graphs which have almost enough edges to force a Kk either contain a Kk or have a structure very
similar to the Turán graph. This is described by the following theorem from [1], where a more general
version is credited to Erdös and Simonovits.

Theorem 10. [1, Theorem VI.4.2] Let k ≥ 3. Suppose a graph G contains no Kk and

‖G‖ =
(

1− 1
k − 1

+ o(1)
)(
|G|
2

)
.

Then G contains a (k − 1)-partite graph of minimal degree
(

1− 1
k−1 + o(1)

)
|G| as an induced sub-

graph.

Proof of Theorem 2. For the ease of reading and since we are not trying to minimize the needed `, we
will use a number of variables `i and ci > 0 depending on `. As ` is chosen larger, the `i grow without
bound and the ci approach 0.

Let G be an `-partite graph with V (G) = V1 ∪ V2 ∪ . . . ∪ V` with densities dij ≥ k−2
k−1 , and suppose

that G contains no Kk. Without loss of generality we may assume that each of the Vi contains exactly n
vertices, where n is an integer divisible by k − 1.

We have

‖G‖ ≥
(

1− 1
k − 1

− 1
`

)(
|G|
2

)
.

Let H be the (k − 1)-partite subgraph of G guaranteed by Theorem 10, with parts

V (H) = X1 ∪X2 ∪ . . . ∪Xk−1

and Z := V (G) \ V (H). Further by Theorem 10, there is a c1 > 0 depending on `, so that |Z| ≤ c1|G|,
and this c1 becomes arbitrarily small if ` is chosen large enough. In particular, |Zi| ≤ 2c1n for at least
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half the indices 1 ≤ i ≤ `. By the pigeon hole principle, we can renumber the Vi and the Xj , such that
|Zi| ≤ 2c1n and |X1

i | ≥ |X2
i | ≥ . . . ≥ |X

k−1
i | for 1 ≤ i ≤ `1, where `1 := `

2(k−1)! .

For c2 = 2(k − 1)c1, there is at most one index i ≤ `1 with |X1
i | >

(
1

k−1 + c2

)
n, as otherwise

there is a pair (Vi, Vi′) with

dii′ ≤ 1− 1
n2

k∑
j=1

|Xj
i | · |X

j
i′ |

< 1−
(

1
k − 1

+ c2

)2

− (k − 2)

1−
(

1
k−1 + c2

)
− 2c1

k − 2

2

+ 4c1

≤ k − 2
k − 1

− 2c2
k − 1

+ 4c1

=
k − 2
k − 1

.

So we may assume that (
1

k − 1
− kc2

)
n ≤ |Xj

i | ≤
(

1
k − 1

+ c2

)
n

for 1 ≤ i ≤ `1 − 1 and 1 ≤ j ≤ k − 1. This implies that

‖G[Xj
i , X

j′

i′ ]‖ > |Xj
i | · |X

j′

i′ | − c3n
2

for i 6= i′, j 6= j′, 1 ≤ i, i′ ≤ `1 − 1, 1 ≤ j, j′ ≤ k − 1 and some c3 > 0 with c3 → 0.
For every v ∈

⋃
i≤`1−1 Vi, find a maximum set Pv of pairs (is, js) with

(1, 1) ≤ (is, js) ≤ (`− 1, k − 1),
is 6= is′ , js 6= js′ , and

|N(v) ∩Xjs
is

)| > c4n,

where c4 := k
√
c3. If there is a vertex v with |Pv| = k − 1, then we have a Kk as follows. If we

pick a vertex vs independently at random in each |N(v) ∩ Xjs
is

)|, then the probability that vsvs′ is an

edge is larger than c24−c3
c24

= k2−1
k2 , and therefore the expected total number of such edges is greater than

k2−1
k2

(
k−1
2

)
>
(
k−1
2

)
− 1. Thus, there is a choice for the vs inducing a Kk−1 in N(v).

So we may assume that |Pv| ≤ k−2 for all v. For 1 ≤ i ≤ `1−1, assign v ∈ Zi to one set Y j
i ⊇ X

j
i ,

if there is no pair (i, j) in Pv. If there is more than one available set, arbitrarily pick one of them.
Now we reorder the Vi and Y j again to guarantee that |Y 1

i | ≥ . . . ≥ |Y k−1
i | for 1 ≤ i ≤ `2, with

`2 := `1−1
(k−1)! . In the following, only consider indices i ≤ `2. Note that for v ∈ Y j

i , |N(v) ∩ Y j′

i | <
(c4 + 2c1)n for all but at most k − 2 different j′, as Y j′

i \X
j′

i ⊆ Zj′ .
Let Ȳ i ⊆ Y i be the set of all vertices v ∈ Y i with |N(v) ∩ Y j)| < 1

2

(
1

k−1 + c5

)
`2n for some

j 6= i, c5 := c2 + c4. Note that the sets Y i \ Ȳ i are independent, as the intersection of the neighborhoods
of every two vertices in this set contain a Kk−2. Every vertex in v ∈ Ȳ i

j may have up to(
(c4 + 2c1)(`2 − k + 1) + k − 2

)
n

neighbors in Y i. But, at the same time, v has at least

|Y i′ | − 1
2

(
1

k − 1
+ c5

)
`2n− n >

1
3k
`2n
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non-neighbors in some Y i′ \ Vj , i′ 6= i. Then

‖G[V1 ∪ . . . V`2 ]‖ ≤
`2∑
i 6=i′
j<j′

|Y j
i | · |Y

j′

i′ |+
∑
i≤`2

|Ȳ i|
(
((c4 + 2c1)(`2 − k + 1) + k − 2)n− 1

3k `2n
)

≤
∑
i 6=i′
j<j′

|Y j
i | · |Y

j′

i′ |+
∑
i≤`2

|Ȳ i|
(
c4 + 2c1 + k

`2
− 1

3k

)
︸ ︷︷ ︸
<0 for large enough `

`2n

≤
(
`2
2

)
n2 −

∑
i≤`2
j<j′

|Y j
i | · |Y

j′

i |

≤
(
`2
2

)
k−2
k−1 n

2,

where equality only holds if |Ȳi| = 0 for all i, and |Y j
i | =

n
k−1 for 1 ≤ j ≤ k− 1 and all but at most one

index i.
This completes the proof of dk` = k−2

k−1 for large enough `. We are left to analyze the extremal graphs.

After reordering, we have |Y j
i | = n

k−1 and d(Y j
i , Y

j′

i′ ) = 1 for 1 ≤ j, j′ ≤ k − 1 and 1 ≤ i, i′ ≤ k, if
i 6= i′ and j 6= j′.

Let v ∈ Vi′ for some i′ > k. Then |N(v) ∩
⋃
i≤k Vi| ≤

k(k−2)
k−1 n, as otherwise there is a Kk−1

in N(v). On the other hand, equality must hold for all vertices v ∈ Vi′ due to the density condition.
Therefore, N(v)∩

⋃
i≤k Vi = Vi \Yj for some 1 ≤ j ≤ k− 1. Define Y j

i′ accordingly for all i′ > k, and
let Y j =

⋃
i Y

j
i . Then V =

⋃
Y j . For every permutation π of the set {1, . . . , k − 1}, there can be at

most one set Vi with |Y π(1)
i | ≥ |Y π(2)

i | ≥ . . . ≥ |Y π(k−1)
i | and |Y π(1)

i | > |Y π(k−1)
i |. Otherwise, this pair

of sets would have density smaller than k−2
k−1 . Thus, all but at most (k − 1)! of the Vi have |Y j

i | = n
k−1

for 1 ≤ j ≤ k − 1. Therefore, all extremal graphs are in Gk` .

5 Open problems

As mentioned above, the characterization of the extremal graphs is not complete for k > 3. We need to
determine all parameters nsi so that the resulting graphs in Ḡk` fulfill the density conditions.

The other obvious question left open is a good bound on ` depending on k in Theorem 2, and the
determination of the exact values of dk` for smaller `. In particular, is it true that d3

5 = 1
2?

Another interesting open topic is the behavior of d`(H) for non-complete H . Bondy et al. [2] show
that

lim
`→∞

d`(H) =
χ(H)− 2
χ(H)− 1

,

but it should be possible to show with similar methods as in this note that d`(H) = χ(H)−2
χ(H)−1 for large

enough ` depending on H .
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