Complete subgraphs in multipartite graphs

Florian Pfender
Universität Rostock, Institut für Mathematik
D-18057 Rostock, Germany
Florian.Pfender@uni-rostock.de

Abstract

Turán's Theorem states that every graph G of edge density $\|G\| /\binom{|G|}{2}>\frac{k-2}{k-1}$ contains a complete graph K^{k} and describes the unique extremal graphs. We give a similar Theorem for ℓ-partite graphs. For large ℓ, we find the minimal edge density d_{ℓ}^{k}, such that every ℓ-partite graph whose parts have pairwise edge density greater than d_{ℓ}^{k} contains a K^{k}. It turns out that $d_{\ell}^{k}=\frac{k-2}{k-1}$ for large enough ℓ. We also describe the structure of the extremal graphs.

1 Introduction and Notation

All graphs in this note are simple and undirected, and we follow the notation of [3]. In particular, K^{k} is the complete graph on k vertices, $|G|$ stands for the number of vertices and $\|G\|$ denotes the number of edges in G with vertex set $V(G)$ and edge set $E(G)$. For a vertex $x \in V(G)$, let $N(x)$ be the set of vertices adjacent to x, and let $d(x):=|N(x)|$ be the degree of the vertex. For sets $X, Y \subseteq V(G)$, let $G[X]$ be the graph on X induced by $G, E(X)$ be the edge set of $G[X]$ and $E(X, Y)$ be the set of edges from X to Y.

Let G be an ℓ-partite graph on finite non-empty independent sets $V_{1}, V_{2}, \ldots V_{\ell}$. For $X \subseteq V(G)$, we write $X_{i}:=X \cap V_{i}$. For $i \neq j$, the density between V_{i} and V_{j} is defined as

$$
d_{i j}:=d\left(V_{i}, V_{j}\right):=\frac{\left\|G\left[V_{i} \cup V_{j}\right]\right\|}{\left|V_{i}\right| \cdot\left|V_{j}\right|} .
$$

For a graph H with $|H| \geq \ell$, let $d_{\ell}(H)$ be the minimum number such that every ℓ-partite graph with $\min d_{i j}>d_{\ell}(H)$ contains a copy of H. Clearly, $d_{\ell}(H)$ is monotone decreasing in ℓ. In [2], Bondy et al. study the quantity $d_{\ell}(H)$, and in particular $d_{\ell}^{3}:=d_{\ell}\left(K^{3}\right)$, i.e. the values for the complete graph on three vertices, the triangle. Their main results about triangles can be written as follows.

Theorem 1. [2]

1. $d_{3}^{3}=\tau \approx 0.618$, the golden ratio, and
2. d_{ω}^{3} exists and $d_{\omega}^{3}=\frac{1}{2}$.

Here, d_{ω}^{3} stands for the corresponding value for graphs with a (countably) infinite number of finite parts. They go on and show that $d_{4}^{3} \geq 0.51$ and speculate that $d_{\ell}^{3}>\frac{1}{2}$ for all finite ℓ. We will show that this speculation is false. In fact, $d_{\ell}^{3}=\frac{1}{2}$ for $\ell \geq 12$ as we will prove in Section 3. In Section 4, we will extend the main proof ideas to show that $d_{\ell}^{k}:=d_{\ell}\left(K^{k}\right)=\frac{k-2}{k-1}$ for large enough ℓ.

In order to state our results, we need to define classes \mathcal{G}_{ℓ}^{k} of extremal graphs. We will do this properly in Section 2. Our main result is the following theorem.

Theorem 2. Let $k \geq 2$, let ℓ be large enough and let $G=\left(V_{1} \cup V_{2} \cup \ldots \cup V_{\ell}, E\right)$ be an ℓ-partite graph, such that the pairwise edge densities

$$
d\left(V_{i}, V_{j}\right):=\frac{\left\|G\left[V_{i} \cup V_{j}\right]\right\|}{\left|V_{i}\right| \cdot\left|V_{j}\right|} \geq \frac{k-2}{k-1} \text { for } i \neq j
$$

Then G contains a K^{k} or G is isomorphic to a graph in \mathcal{G}_{ℓ}^{k}.
Corollary 3. For ℓ large enough, $d_{\ell}^{k}=\frac{k-2}{k-1}$.
The bound on ℓ one may get out of the proof is fairly large, and we think that the true bound is much smaller. For triangles $(k=3)$, we can give a reasonable bound on ℓ. We think that this bound is not sharp, either. We conjecture that $\ell \geq 5$ turns out to be sufficient.

Theorem 4. Let $\ell \geq 12$ and let $G=\left(V_{1} \cup V_{2} \cup \ldots \cup V_{\ell}, E\right)$ be an ℓ-partite graph, such that the pairwise edge densities

$$
d\left(V_{i}, V_{j}\right):=\frac{\left\|G\left[V_{i} \cup V_{j}\right]\right\|}{\left|V_{i}\right| \cdot\left|V_{j}\right|} \geq \frac{1}{2} \text { for } i \neq j
$$

Then G contains a triangle or G is isomorphic to a graph in \mathcal{G}_{ℓ}^{3}.
Corollary 5. $d_{12}^{3}=\frac{1}{2}$.

2 Extremal graphs

For $\ell \geq(k-1)$!, a graph G is in $\overline{\mathcal{G}}_{\ell}^{k}$, if it can be constructed as follows. For a sketch, see the figure below. Let $\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{(k-1)!}\right\}$ be the set of all permutations of the set $\{1, \ldots, k-1\}$. For $1 \leq i \leq \ell$ and $1 \leq s \leq k-1$, pick integers n_{i}^{s} such that

$$
\begin{aligned}
n_{i}^{\pi_{i}(1)} \geq n_{i}^{\pi_{i}(2)} \geq & \ldots \geq n_{i}^{\pi_{i}(k-1)} \text { for } 1 \leq i \leq(k-1)! \\
n_{i}^{1}=n_{i}^{2}= & \ldots=n_{i}^{k-1} \text { for }(k-1)!<i \leq \ell, \text { and } \\
& \sum_{s} n_{i}^{s}>0 \text { for } 1 \leq i \leq \ell
\end{aligned}
$$

Let

$$
\begin{aligned}
& V(G)=\left\{(i, s, t): 1 \leq i \leq \ell, 1 \leq s \leq k-1,1 \leq t \leq n_{i}^{s}\right\}, \text { and } \\
& E(G)=\left\{(i, s, t)\left(i^{\prime}, s^{\prime}, t^{\prime}\right): i \neq i^{\prime}, s \neq s^{\prime}\right\}
\end{aligned}
$$

Figure 1: A sketch of a member of $\overline{\mathcal{G}}_{\ell}^{4}$, all edges between different colors in different parts exist.

Let \mathcal{G}_{ℓ}^{k} be the class of graphs which can be obtained from graphs in $\overline{\mathcal{G}}_{\ell}$ by deletion of some edges in $\left\{(i, s, k)\left(i^{\prime}, s^{\prime}, k^{\prime}\right): s \neq s^{\prime} \wedge 1 \leq i<i^{\prime} \leq(k-1)!\right\}$.

All graphs in \mathcal{G}_{ℓ}^{k} are ℓ-partite and \mathcal{G}_{ℓ}^{k} contains graphs with $\min d_{i j} \geq \frac{k-2}{k-1}$ (e.g., we get $d_{i j}=\frac{k-2}{k-1}$ for all $i \neq j$ if all n_{i}^{s} are equal).

For $k=3$, the density condition is fulfilled for all graphs in $\overline{\mathcal{G}}_{\ell}^{3}$, and for all graphs in \mathcal{G}_{ℓ}^{3} which have $d_{1,2} \geq \frac{1}{2}$. For $k>3$, this description is not a full characterization of the extremal graphs in the problem, as for some choices of the n_{i}^{s}, the resulting graphs will have lower densities than stated in the theorem. We would need some extra conditions on the n_{i}^{s} to make sure that the graphs fulfill the density conditions.

3 Theorem 4-triangles

In this section we prove Theorem 4. We will start with a few useful lemmas and this easy fact.
Fact 6. Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph on $2 n$ vertices with $\|G\| \geq \frac{1}{2} n^{2}$, and let X be an independent set. Then $\left|X_{1}\right| \cdot\left|X_{2}\right| \leq \frac{1}{2} n^{2}$.
Proof. There are at most n^{2} pairs of vertices $v_{1} v_{2}$ with $v_{i} \in V_{i}$. If $\frac{1}{2} n^{2}$ of them are edges, then at most $\frac{1}{2} n^{2}$ of them can be non-edges.

An important lemma for the study of d_{ω}^{3} in [2] is the following.
Lemma 7. [2] Let $G=\left(V_{1} \cup V_{2} \cup V_{3} \cup V_{4}, E\right)$ be a 4-partite graph with $\left|V_{1}\right|=1$, such that the pairwise edge densities $d\left(V_{i}, V_{j}\right)>\frac{1}{2}$ for $i \neq j$. Then G contains a triangle.

With the same proof one gets a slightly stronger result which we will use in our proof. In most cases occurring later, X will be the neighborhood of a vertex, and the Lemma will be used to bound the degree of the vertex. For the sake of exposition, we present a slightly modified version of the proof here.

Lemma 8. Let $G=\left(V_{1} \cup V_{2} \cup V_{3}, E\right)$ be a 3-partite graph and X an independent set, such that the pairwise edge densities $d\left(V_{i}, V_{j}\right) \geq \frac{1}{2}$ for $i \neq j$ and $\left|X_{i}\right| \geq \frac{1}{2}\left|V_{i}\right|$ for $1 \leq i \leq 3$, with a strict inequality for at least two of the six inequalities. Then G contains a triangle.

Proof. In the following, all indices are computed modulo 3. For $i \in\{1,2,3\}$, consider the 4-partite graph $G\left[X_{i}, Y_{i}, X_{i+1}, Y_{i+1}\right]$. For the different choices of i, we get the three inequalities

$$
d\left(X_{i}, Y_{i+1}\right)+d\left(Y_{i}, X_{i+1}\right)+d\left(Y_{i}, Y_{i+1}\right) \geq 2
$$

Indeed, if we fix the number of edges between V_{i} and V_{i+1} and the sizes of $X_{i}, Y_{i}, X_{i+1}, Y_{i+1}$, the above sum is minimized if we minimize the number of edges between Y_{i} and Y_{i+1}. As

$$
\left|X_{i}\right| \cdot\left|Y_{i+1}\right|+\left|Y_{i}\right| \cdot\left|X_{i+1}\right| \leq \frac{1}{2}\left|V_{i}\right| \cdot\left|V_{i+1}\right|
$$

and $d\left(V_{i}, V_{i+1}\right) \geq \frac{1}{2}$, the sum must be at least 2 . As we have strict inequality in at least two of the six inequalities in the statement of the lemma, at least one of the three sums is in fact greater than 2 , and so

$$
\sum_{i=1}^{3} d\left(X_{i}, Y_{i-1}\right)+d\left(X_{i}, Y_{i+1}\right)+d\left(Y_{i-1}, Y_{i+1}\right)=\sum_{i=1}^{3} d\left(X_{i}, Y_{i+1}\right)+d\left(Y_{i}, X_{i+1}\right)+d\left(Y_{i}, Y_{i+1}\right)>6
$$

and thus for some $i \in\{1,2,3\}$,

$$
d\left(X_{i}, Y_{i-1}\right)+d\left(X_{i}, Y_{i+1}\right)+d\left(Y_{i-1}, Y_{i+1}\right)>2
$$

Picking independently at random vertices $x \in X_{i}, y \in Y_{i-1}, z \in Y_{i+1}$, the expected number of edges in $G[\{x, y, z\}]$ is $d\left(X_{i}, Y_{i-1}\right)+d\left(X_{i}, Y_{i+1}\right)+d\left(Y_{i-1}, Y_{i+1}\right)>2$, and therefore $G\left[X_{i} \cup Y_{i-1} \cup Y_{i+1}\right]$ contains a triangle.

As a corollary from Fact 6 and Lemma 8 we get
Corollary 9. For $\ell \geq 3$, let $G=\left(V_{1} \cup V_{2} \cup \ldots \cup V_{\ell}, E\right)$ be a balanced ℓ-partite graph on $n \ell$ vertices with edge densities $d_{i j} \geq \frac{1}{2}$, which does not contain a triangle. Then for every independent set $X \subseteq V(G)$, $|X| \leq \frac{(\ell+1) n}{2}$.
Proof. We may assume that $\left|X_{1}\right| \geq\left|X_{2}\right| \geq \ldots \geq\left|X_{\ell}\right|$. By Lemma $8,\left|X_{3}\right| \leq \frac{1}{2} n$ and by Fact 6 , $\left|X_{1}\right|+\left|X_{2}\right| \leq \frac{3}{2} n$.

Now we are ready to prove Theorem 4.
Proof of Theorem 4. Suppose that G contains no triangle. Without loss of generality we may assume that each of the $\ell \geq 12$ parts of G contains exactly n vertices, where n is a sufficiently large even integer. Otherwise, multiply each vertex in each part V_{i} by a factor of $\frac{n}{\left|V_{i}\right|}$, which has no effect on the densities or the membership in \mathcal{G}_{ℓ}^{3}, and creates no triangles.

For a vertex x, let $d_{i}(x):=\left|N(x) \cap V_{i}\right|$. For each edge $x y \in E(G)$, choose i and j such that $x \in V_{i}$ and $y \in V_{j}$, and let

$$
s(x y):=d(x)-d_{j}(x)+d(y)-d_{i}(y)
$$

We have

$$
\sum_{x y \in E(G)} s(x y)=\frac{1}{2} \sum_{\substack{x \in V(G) \\ y \in N(x)}} s(x y)=\sum_{x \in V(G)}\left(d(x)^{2}-\sum_{j=1}^{\ell} d_{j}(x)^{2}\right)
$$

The set $N(x)$ is independent, so by Lemma 8 , for fixed x at most two of the $d_{j}(x)$ may be larger than $\frac{n}{2}$, and by Fact $6, d_{j}(x) d_{k}(x) \leq \frac{1}{2} n^{2}$ for every vertex $x \in V_{i}$ and $j \neq k$.

Thus, for fixed $d(x) \geq n$, the sum $\sum d_{j}(x)^{2}$ is maximized if

$$
d_{j}(x)= \begin{cases}n, & \text { if } j=1 \text { and } d(x) \geq n \\ \frac{n}{2}, & \text { if } 2 \leq j \leq\left\lfloor\frac{2 d(x)}{n}\right\rfloor-1 \\ d(x)-j \frac{n}{2}, & \text { if } j=\left\lfloor\frac{2 d(x)}{n}\right\rfloor, \text { and } \\ 0, & \text { otherwise }\end{cases}
$$

in which case

$$
\sum_{j=1}^{\ell} d_{j}(x)^{2}=n^{2}+(d(x)-n) \frac{n}{2}
$$

For fixed $d(x)<n$, we have

$$
\sum_{j=1}^{\ell} d_{j}(x)^{2} \leq d(x)^{2}<(n+d(x)) \frac{n}{2}=n^{2}+(d(x)-n) \frac{n}{2}
$$

Therefore, using that $\sum d(x)=2\|G\| \geq\binom{\ell}{2} n^{2}$,

$$
\begin{aligned}
\frac{1}{\|G\|} \sum_{x y \in E(G)} s(x y) & \geq \frac{2}{\sum d(x)} \sum_{x \in V(G)}\left(d(x)^{2}-n^{2}-(d(x)-n) \frac{n}{2}\right) \\
& =\frac{2 \sum d(x)^{2}}{\sum d(x)}-n-\frac{\ell n^{3}}{\sum d(x)} \\
& \geq \frac{2}{\ell n} \sum d(x)-n-\frac{\ell n^{3}}{\sum d(x)} \\
& \geq(\ell-2) n-\frac{2 n}{\ell-1} .
\end{aligned}
$$

We conclude that there is an edge $x y \in E(G)$ with $s(x y) \geq(\ell-2) n-\frac{2 n}{\ell-1}$. By symmetry, we may assume that $x \in V_{11}$ and $y \in V_{12}$. Note that $N(x)$ and $N(y)$ are disjoint as otherwise there would be a triangle. Let $G^{\prime}:=G\left[\bigcup_{i=1}^{10} V_{i}\right]$. Let

$$
X:=N(x) \cap V\left(G^{\prime}\right), Y:=N(y) \cap V\left(G^{\prime}\right), \text { and } Z:=V\left(G^{\prime}\right) \backslash(X \cup Y)
$$

Note that $|Z| \leq \frac{2}{11} n$. By Lemma 8 , at most two of the sets X_{i} and at most two of the sets Y_{i} are greater than $\frac{n}{2}$, so we assume in the following that $\left|X_{i}\right| \leq \frac{n}{2}$ for $1 \leq i \leq 8$ and $\left|Y_{i}\right| \leq \frac{n}{2}$ for $1 \leq i \leq 6$. Further, we may assume that $\left|X_{9}\right| \leq \min \left\{\left|X_{10}\right|,\left|Y_{7}\right|,\left|Y_{8}\right|\right\}$. Let $X \subseteq X^{\prime} \subseteq X \cup Z$ and $Y \subseteq Y^{\prime} \subseteq Y \cup Z$ such that

1. $X^{\prime} \cap Y^{\prime}=\emptyset$,
2. $X^{\prime} \cup Y^{\prime}=V\left(G^{\prime}\right)$,
3. $\left|Y_{i}^{\prime}\right|=\max \left\{\left|Y_{i}\right|, \frac{n}{2}\right\}$ for $1 \leq i \leq 8$, and
4. $\left|X_{i}^{\prime}\right|=\max \left\{\left|X_{i}\right|, \frac{n}{2}\right\}$ for $9 \leq i \leq 10$.

Let $H:=G^{\prime}-E\left(V_{10}, V_{7} \cup V_{8}\right)$. Let $H^{\prime} \supseteq H[X \cup Y]$ be the complete bipartite graph on X^{\prime} and Y^{\prime}, minus the edges inside the V_{i} and the edges between V_{10} and $V_{7} \cup V_{8}$.

We want to bound $\|H\|$ from above. We have

$$
d_{H}(z) \leq \begin{cases}\frac{8}{2} n, & \text { for } z \in Z_{10} \\ \frac{10}{2} n, & \text { for } z \in Z_{9}, \text { and } \\ \frac{9}{2} n, & \text { for } z \in Z \backslash\left(Z_{9} \cup Z_{10}\right)\end{cases}
$$

by Corollary 9. On the other hand, we have, using that $\frac{n}{2} \leq\left|X_{7}^{\prime}\right|+\left|X_{8}^{\prime}\right| \leq n$,

$$
d_{H^{\prime}}(z) \geq \begin{cases}\frac{8}{2} n, & \text { for } z \in Z_{9}, \text { and } \\ \frac{7}{2} n, & \text { for } z \in Z \backslash Z_{9}\end{cases}
$$

To see that $d_{H^{\prime}}(z) \geq \frac{7}{2} n$ for $z \in Z_{10}$, note that $Z_{10} \subseteq Y_{10}^{\prime}$ if $\left|Y_{10}^{\prime}\right|<\frac{1}{2}$, and thus $d_{H^{\prime}}(z) \geq \frac{6}{2} n+\left|X_{9}^{\prime}\right|$.
Therefore, taking into account a possible double count of edges in the bipartite graph $H^{\prime}[Z]$, we have

$$
\|H\| \leq\left\|H^{\prime}\right\|+n|Z|+\frac{1}{4}|Z|^{2}
$$

Now,

$$
\begin{align*}
\left\|H^{\prime}\right\|= & 39 \frac{n^{2}}{2} \\
& +\left|X_{9}^{\prime}\right| \cdot\left|Y_{10}^{\prime}\right|+\left|X_{10}^{\prime}\right| \cdot\left|Y_{9}^{\prime}\right| \tag{1}\\
& +\left|X_{7}^{\prime}\right| \cdot\left|Y_{8}^{\prime}\right|+\left|X_{8}^{\prime}\right| \cdot\left|Y_{7}^{\prime}\right| \tag{2}\\
& +\left|X_{9}^{\prime}\right|\left(\left|Y_{7}^{\prime}\right|+\left|Y_{8}^{\prime}\right|\right)+\left(\left|X_{7}^{\prime}\right|+\left|X_{8}^{\prime}\right|\right)\left|Y_{9}^{\prime}\right| \tag{3}
\end{align*}
$$

For fixed $\left|X_{9}^{\prime}\right| \geq \frac{n}{2}$, (1) is maximized for minimal $\left|X_{10}^{\prime}\right| \geq\left|X_{9}^{\prime}\right|$, and (3) is maximized for maximal $\left|Y_{7}^{\prime}\right|+\left|Y_{8}^{\prime}\right|$. For fixed $\left|Y_{7}^{\prime}\right|+\left|Y_{8}^{\prime}\right|$, (2) is maximized for maximal $\left|Y_{8}^{\prime}\right|-\left|Y_{7}^{\prime}\right|$. Thus, (1)+(2)+(3) is maximized for

$$
\left|X_{10}^{\prime}\right|=\left|Y_{7}^{\prime}\right|=\left|X_{9}^{\prime}\right|
$$

in which case $(1)+(2)+(3)=2 n^{2}$. This shows that $\left\|H^{\prime}\right\| \leq 43 \frac{n^{2}}{2}$, and thus

$$
\|H\| \leq 43 \frac{n^{2}}{2}+|Z| n+\frac{1}{4}|Z|^{2} \leq 43 \frac{n^{2}}{2}+\frac{23}{121} n^{2}
$$

On the other hand, by the density condition,

$$
\|H\| \geq 43 \frac{n^{2}}{2}
$$

so $\left|E\left(H^{\prime}\right) \backslash E(H)\right| \leq \frac{23}{121} n^{2}$. In particular, no vertex z can have large neighborhoods in both X and Y, as $N(z)$ is an independent set and this would force $\left|E\left(H^{\prime}\right) \backslash E(H)\right|$ to be large. To be more precise, let $\bar{X}:=X \backslash X_{10}$ and $\bar{Y}:=Y \backslash Y_{10}$, then we have

$$
\begin{equation*}
(|N(z) \cap \bar{Y}|-n)|N(z) \cap \bar{X}|<\frac{23}{121} n^{2} \tag{4}
\end{equation*}
$$

as every vertex in $N(z) \cap \bar{X}_{i}$ forces $\left|(N(z) \cap \bar{Y}) \backslash V_{i}\right|>|N(z) \cap \bar{Y}|-n$ missing edges. Note that $|\bar{X}|,|\bar{Y}| \leq 5 n$ by Corollary 9 . Let $G^{\prime \prime}:=G^{\prime}-V_{10}$, and let

$$
\begin{aligned}
X^{\prime \prime} & :=\left\{v \in V\left(G^{\prime \prime}\right):|N(v) \cap \bar{X}|>\frac{1}{2}|\bar{X}|\right\} \\
Y^{\prime \prime} & :=\left\{v \in V\left(G^{\prime \prime}\right):|N(v) \cap \bar{Y}|>\frac{1}{2}|\bar{Y}|\right\}, \text { and } \\
Z^{\prime \prime} & :=V\left(G^{\prime \prime}\right) \backslash\left(X^{\prime \prime} \cup Y^{\prime \prime}\right)
\end{aligned}
$$

The sets $X^{\prime \prime}$ and $Y^{\prime \prime}$ are disjoint by (4). As any two vertices in $X^{\prime \prime}$ (or $Y^{\prime \prime}$) have a common neighbor, $X^{\prime \prime}$ and $Y^{\prime \prime}$ are independent sets.

If $z \in Z^{\prime \prime}$ and $|N(z) \cap \bar{Y}| \geq \frac{6}{5} n$, then

$$
\begin{align*}
d_{H}(z) & \leq|N(z) \cap \bar{Y}|+|N(z) \cap \bar{X}|+|N(z) \cap Z| \\
& \leq{ }_{(4)}|N(z) \cap \bar{Y}|+\frac{23 n^{2}}{121(|N(z) \cap \bar{Y}|-n)}+|Z| \tag{5}
\end{align*}
$$

The last expression is a convex function in $|N(z) \cap \bar{Y}|$ and thus maximized on the boundary of the interval $\left[\frac{6}{5} n, \frac{5}{2} n\right]$. In the case $|N(z) \cap \bar{Y}|=\frac{5}{2} n$, (5) gives

$$
d_{H}(z) \leq \frac{5}{2} n+\frac{46}{363} n+\frac{2}{11} n<2.81 n .
$$

For $|N(z) \cap \bar{Y}|=\frac{6}{5} n$, (5) gives

$$
d_{H}(z) \leq \frac{6}{5} n+\frac{115}{121} n+\frac{2}{11} n<2.4 n
$$

We get the same upper bound with a symmetric argument for $\left|N(z) \cap X^{\prime \prime}\right| \geq \frac{6}{5} n$ (the symmetric statement of (4) also holds). Finally, if $\left|N(z) \cap X^{\prime \prime}\right|+\left|N(z) \cap Y^{\prime \prime}\right| \leq \frac{12}{5} n$, then

$$
d_{H}(z) \leq \frac{12}{5} n+\frac{2}{11} n<2.6 n
$$

Every vertex $z \in Y_{i}^{\prime} \cap Z^{\prime \prime}$ is incident to at least $\frac{1}{2}|\bar{X}|-\left|X_{i}\right| \geq \frac{1}{2}(9 n-|\bar{Y}|-|Z|)-n \geq \frac{10}{11} n$ edges in $E\left(H^{\prime}\right) \backslash E(H)$. So we have

$$
\left|Y^{\prime} \cap Z^{\prime \prime}\right| \leq \frac{23 \cdot 11}{121 \cdot 10} n<0.21 n
$$

and similarly,

$$
\left|X^{\prime} \cap Z^{\prime \prime}\right|<0.21 n
$$

Thus,

$$
\left|Z^{\prime \prime}\right|<0.42 n
$$

Like above, we may assume (after possibly renumbering the sets) that $\left|X_{i}^{\prime \prime}\right| \leq \frac{n}{2}$ for $1 \leq i \leq 7$ and $\left|Y_{i}^{\prime \prime}\right| \leq \frac{n}{2}$ for $1 \leq i \leq 5$. Further, we may assume that $\left|X_{8}^{\prime \prime}\right| \leq \min \left\{\left|X_{9}^{\prime \prime}\right|,\left|Y_{6}^{\prime \prime}\right|,\left|Y_{7}^{\prime \prime}\right|\right\}$ (switch Y s and X s if necessary). Let $H^{\prime \prime}:=G^{\prime \prime}-E\left(V_{9}, V_{6} \cup V_{7}\right)$. By the density condition,

$$
\left\|H^{\prime \prime}\right\| \geq 34 \frac{n^{2}}{2}
$$

On the other hand, we can repeat the above arguments for H for $H^{\prime \prime}$, and create a bipartite graph $H^{\prime \prime \prime}$ on $X^{\prime \prime \prime} \supseteq X^{\prime \prime}$ and $Y^{\prime \prime \prime} \supseteq Y^{\prime \prime}$ with $d_{H^{\prime \prime \prime}}(z) \geq \frac{6}{2} n$ for all $z \in Z^{\prime \prime}$, and conclude that

$$
\left\|H^{\prime \prime}\right\| \leq 34 \frac{n^{2}}{2}-\left(\frac{6}{2}-2.81\right) n\left|Z^{\prime \prime}\right|+\frac{1}{4}\left|Z^{\prime \prime}\right|^{2} \leq 34 \frac{n^{2}}{2}-0.08 n\left|Z^{\prime \prime}\right|
$$

Therefore, $\left\|H^{\prime \prime}\right\|=34 \frac{n^{2}}{2}$ and $Z^{\prime \prime}=\emptyset$. This shows that $d_{\ell}^{3}=d_{12}^{3}=\frac{1}{2}$.
But more is true, $G\left[\bigcup_{i \leq 8} V_{i}\right]=H^{\prime \prime} \backslash V_{9}$ is a complete bipartite graph minus the edges inside the V_{i}, and we may assume that $\left|X_{1}^{\prime \prime}\right|=\left|X_{2}^{\prime \prime}\right|=\left|X_{3}^{\prime \prime}\right|=\frac{1}{2} n$, as at most one of the $\left|X_{i}^{\prime \prime}\right|$ and at most one of the $\left|Y_{i}^{\prime \prime}\right|(1 \leq i \leq 8)$ may be greater than $\frac{1}{2} n$ by the density condition. For $9 \leq k \leq \ell, 1 \leq i \leq 8,1 \leq j \leq 8$ with $i \neq j$, for every $v \in V_{k}$, we have $\left|N(v) \cap X_{i}^{\prime \prime}\right| \cdot\left|N(v) \cap Y_{j}^{\prime \prime}\right|=0$ as otherwise there is a triangle. Thus, $\left|N(v) \cap\left(V_{1} \cup V_{2} \cup V_{3}\right)\right| \leq \frac{3}{2} n$ with equality only for $N(v) \cap X^{\prime \prime}=\emptyset$ or $N(v) \cap Y^{\prime \prime}=\emptyset$. Since $d_{i k} \geq \frac{1}{2}$, equality must hold for every $v \in V_{k}$, showing that G is isomorphic to a graph in \mathcal{G}_{ℓ}^{3}.

4 Theorem 2-complete subgraphs

Graphs which have almost enough edges to force a K^{k} either contain a K^{k} or have a structure very similar to the Turán graph. This is described by the following theorem from [1], where a more general version is credited to Erdös and Simonovits.

Theorem 10. [1, Theorem VI.4.2] Let $k \geq 3$. Suppose a graph G contains no K^{k} and

$$
\|G\|=\left(1-\frac{1}{k-1}+o(1)\right)\binom{|G|}{2}
$$

Then G contains $a(k-1)$-partite graph of minimal degree $\left(1-\frac{1}{k-1}+o(1)\right)|G|$ as an induced subgraph.

Proof of Theorem 2. For the ease of reading and since we are not trying to minimize the needed ℓ, we will use a number of variables ℓ_{i} and $c_{i}>0$ depending on ℓ. As ℓ is chosen larger, the ℓ_{i} grow without bound and the c_{i} approach 0 .

Let G be an ℓ-partite graph with $V(G)=V_{1} \cup V_{2} \cup \ldots \cup V_{\ell}$ with densities $d_{i j} \geq \frac{k-2}{k-1}$, and suppose that G contains no K^{k}. Without loss of generality we may assume that each of the V_{i} contains exactly n vertices, where n is an integer divisible by $k-1$.

We have

$$
\|G\| \geq\left(1-\frac{1}{k-1}-\frac{1}{\ell}\right)\binom{|G|}{2}
$$

Let H be the $(k-1)$-partite subgraph of G guaranteed by Theorem 10, with parts

$$
V(H)=X^{1} \cup X^{2} \cup \ldots \cup X^{k-1}
$$

and $Z:=V(G) \backslash V(H)$. Further by Theorem 10, there is a $c_{1}>0$ depending on ℓ, so that $|Z| \leq c_{1}|G|$, and this c_{1} becomes arbitrarily small if ℓ is chosen large enough. In particular, $\left|Z_{i}\right| \leq 2 c_{1} n$ for at least
half the indices $1 \leq i \leq \ell$. By the pigeon hole principle, we can renumber the V_{i} and the X^{j}, such that $\left|Z_{i}\right| \leq 2 c_{1} n$ and $\left|X_{i}^{1}\right| \geq\left|X_{i}^{2}\right| \geq \ldots \geq\left|X_{i}^{k-1}\right|$ for $1 \leq i \leq \ell_{1}$, where $\ell_{1}:=\frac{\ell}{2(k-1)!}$.

For $c_{2}=2(k-1) c_{1}$, there is at most one index $i \leq \ell_{1}$ with $\left|X_{i}^{1}\right|>\left(\frac{1}{k-1}+c_{2}\right) n$, as otherwise there is a pair $\left(V_{i}, V_{i^{\prime}}\right)$ with

$$
\begin{aligned}
d_{i i^{\prime}} & \leq 1-\frac{1}{n^{2}} \sum_{j=1}^{k}\left|X_{i}^{j}\right| \cdot\left|X_{i^{\prime}}^{j}\right| \\
& <1-\left(\frac{1}{k-1}+c_{2}\right)^{2}-(k-2)\left(\frac{1-\left(\frac{1}{k-1}+c_{2}\right)-2 c_{1}}{k-2}\right)^{2}+4 c_{1} \\
& \leq \frac{k-2}{k-1}-\frac{2 c_{2}}{k-1}+4 c_{1} \\
& =\frac{k-2}{k-1}
\end{aligned}
$$

So we may assume that

$$
\left(\frac{1}{k-1}-k c_{2}\right) n \leq\left|X_{i}^{j}\right| \leq\left(\frac{1}{k-1}+c_{2}\right) n
$$

for $1 \leq i \leq \ell_{1}-1$ and $1 \leq j \leq k-1$. This implies that

$$
\left\|G\left[X_{i}^{j}, X_{i^{\prime}}^{j^{\prime}}\right]\right\|>\left|X_{i}^{j}\right| \cdot\left|X_{i^{\prime}}^{j^{\prime}}\right|-c_{3} n^{2}
$$

for $i \neq i^{\prime}, j \neq j^{\prime}, 1 \leq i, i^{\prime} \leq \ell_{1}-1,1 \leq j, j^{\prime} \leq k-1$ and some $c_{3}>0$ with $c_{3} \rightarrow 0$.
For every $v \in \bigcup_{i \leq \ell_{1}-1} V_{i}$, find a maximum set \mathcal{P}_{v} of pairs $\left(i_{s}, j_{s}\right)$ with

$$
\begin{aligned}
& (1,1) \leq\left(i_{s}, j_{s}\right) \leq(\ell-1, k-1), \\
& i_{s} \neq i_{s^{\prime}}, j_{s} \neq j_{s^{\prime}}, \text { and } \\
& \left|N(v) \cap X_{i_{s}}^{j_{s}}\right|>c_{4} n,
\end{aligned}
$$

where $c_{4}:=k \sqrt{c_{3}}$. If there is a vertex v with $\left|\mathcal{P}_{v}\right|=k-1$, then we have a K^{k} as follows. If we pick a vertex v_{s} independently at random in each $\left.\mid N(v) \cap X_{i_{s}}^{j_{s}}\right) \mid$, then the probability that $v_{s} v_{s^{\prime}}$ is an edge is larger than $\frac{c_{4}^{2}-c_{3}}{c_{4}^{2}}=\frac{k^{2}-1}{k^{2}}$, and therefore the expected total number of such edges is greater than $\frac{k^{2}-1}{k^{2}}\binom{k-1}{2}>\binom{k-1}{2}-1$. Thus, there is a choice for the v_{s} inducing a K^{k-1} in $N(v)$.

So we may assume that $\left|\mathcal{P}_{v}\right| \leq k-2$ for all v. For $1 \leq i \leq \ell_{1}-1$, assign $v \in Z_{i}$ to one set $Y_{i}^{j} \supseteq X_{i}^{j}$, if there is no pair (i, j) in \mathcal{P}_{v}. If there is more than one available set, arbitrarily pick one of them.

Now we reorder the V_{i} and Y^{j} again to guarantee that $\left|Y_{i}^{1}\right| \geq \ldots \geq\left|Y_{i}^{k-1}\right|$ for $1 \leq i \leq \ell_{2}$, with $\ell_{2}:=\frac{\ell_{1}-1}{(k-1)!}$. In the following, only consider indices $i \leq \ell_{2}$. Note that for $v \in Y_{i}^{j},\left|N(v) \cap Y_{i}^{j^{\prime}}\right|<$ $\left(c_{4}+2 c_{1}\right) n$ for all but at most $k-2$ different j^{\prime}, as $Y_{i}^{j^{\prime}} \backslash X_{i}^{j^{\prime}} \subseteq Z_{j^{\prime}}$.

Let $\bar{Y}^{i} \subseteq Y^{i}$ be the set of all vertices $v \in Y^{i}$ with $\left.\mid N(v) \cap Y^{j}\right) \left\lvert\,<\frac{1}{2}\left(\frac{1}{k-1}+c_{5}\right) \ell_{2} n\right.$ for some $j \neq i, c_{5}:=c_{2}+c_{4}$. Note that the sets $Y^{i} \backslash \bar{Y}^{i}$ are independent, as the intersection of the neighborhoods of every two vertices in this set contain a K^{k-2}. Every vertex in $v \in \bar{Y}_{j}^{i}$ may have up to

$$
\left(\left(c_{4}+2 c_{1}\right)\left(\ell_{2}-k+1\right)+k-2\right) n
$$

neighbors in Y^{i}. But, at the same time, v has at least

$$
\left|Y^{i^{\prime}}\right|-\frac{1}{2}\left(\frac{1}{k-1}+c_{5}\right) \ell_{2} n-n>\frac{1}{3 k} \ell_{2} n
$$

non-neighbors in some $Y^{i^{\prime}} \backslash V_{j}, i^{\prime} \neq i$. Then

$$
\begin{aligned}
\left\|G\left[V_{1} \cup \ldots V_{\ell_{2}}\right]\right\| & \leq \sum_{\substack{i \neq i^{\prime} \\
j<j^{\prime}}}^{\ell_{2}}\left|Y_{i}^{j}\right| \cdot\left|Y_{i^{\prime}}^{j^{\prime}}\right|+\sum_{i \leq \ell_{2}}\left|\bar{Y}^{i}\right|\left(\left(\left(c_{4}+2 c_{1}\right)\left(\ell_{2}-k+1\right)+k-2\right) n-\frac{1}{3 k} \ell_{2} n\right) \\
& \leq \sum_{\substack{i \neq i^{\prime} \\
j<j^{\prime}}}\left|Y_{i}^{j}\right| \cdot\left|Y_{i^{\prime}}^{j^{\prime}}\right|+\sum_{i \leq \ell_{2}}\left|\bar{Y}^{i}\right| \underbrace{\left(c_{4}+2 c_{1}+\frac{k}{\ell_{2}}-\frac{1}{3 k}\right)}_{<0 \text { for large enough } \ell} \ell_{2} n \\
& \leq\binom{\ell_{2}}{2} n^{2}-\sum_{\substack{i \leq \ell_{2} \\
j<j^{\prime}}}\left|Y_{i}^{j}\right| \cdot\left|Y_{i}^{j^{\prime}}\right| \\
& \leq\binom{\ell_{2}}{2} \frac{k-2}{k-1} n^{2},
\end{aligned}
$$

where equality only holds if $\left|\bar{Y}_{i}\right|=0$ for all i, and $\left|Y_{i}^{j}\right|=\frac{n}{k-1}$ for $1 \leq j \leq k-1$ and all but at most one index i.

This completes the proof of $d_{\ell}^{k}=\frac{k-2}{k-1}$ for large enough ℓ. We are left to analyze the extremal graphs. After reordering, we have $\left|Y_{i}^{j}\right|=\frac{n}{k-1}$ and $d\left(Y_{i}^{j}, Y_{i^{\prime}}^{j^{\prime}}\right)=1$ for $1 \leq j, j^{\prime} \leq k-1$ and $1 \leq i, i^{\prime} \leq k$, if $i \neq i^{\prime}$ and $j \neq j^{\prime}$.

Let $v \in V_{i^{\prime}}$ for some $i^{\prime}>k$. Then $\left|N(v) \cap \bigcup_{i \leq k} V_{i}\right| \leq \frac{k(k-2)}{k-1} n$, as otherwise there is a K^{k-1} in $N(v)$. On the other hand, equality must hold for all vertices $v \in V_{i^{\prime}}$ due to the density condition. Therefore, $N(v) \cap \bigcup_{i \leq k} V_{i}=V_{i} \backslash Y_{j}$ for some $1 \leq j \leq k-1$. Define $Y_{i^{\prime}}^{j}$ accordingly for all $i^{\prime}>k$, and let $Y^{j}=\bigcup_{i} Y_{i}^{j}$. Then $V=\bigcup Y^{j}$. For every permutation π of the set $\{1, \ldots, k-1\}$, there can be at most one set V_{i} with $\left|Y_{i}^{\pi(1)}\right| \geq\left|Y_{i}^{\pi(2)}\right| \geq \ldots \geq\left|Y_{i}^{\pi(k-1)}\right|$ and $\left|Y_{i}^{\pi(1)}\right|>\left|Y_{i}^{\pi(k-1)}\right|$. Otherwise, this pair of sets would have density smaller than $\frac{k-2}{k-1}$. Thus, all but at most $(k-1)$! of the V_{i} have $\left|Y_{i}^{j}\right|=\frac{n}{k-1}$ for $1 \leq j \leq k-1$. Therefore, all extremal graphs are in \mathcal{G}_{ℓ}^{k}.

5 Open problems

As mentioned above, the characterization of the extremal graphs is not complete for $k>3$. We need to determine all parameters n_{i}^{s} so that the resulting graphs in $\overline{\mathcal{G}}_{\ell}^{k}$ fulfill the density conditions.

The other obvious question left open is a good bound on ℓ depending on k in Theorem 2, and the determination of the exact values of d_{ℓ}^{k} for smaller ℓ. In particular, is it true that $d_{5}^{3}=\frac{1}{2}$?

Another interesting open topic is the behavior of $d_{\ell}(H)$ for non-complete H. Bondy et al. [2] show that

$$
\lim _{\ell \rightarrow \infty} d_{\ell}(H)=\frac{\chi(H)-2}{\chi(H)-1}
$$

but it should be possible to show with similar methods as in this note that $d_{\ell}(H)=\frac{\chi(H)-2}{\chi(H)-1}$ for large enough ℓ depending on H.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press London (1978).
[2] A. Bondy, J. Shen, S. Thomassé and C. Thomassen, Density conditions for triangles in multipartite graphs, Combinatorica 26 (2006), 121-131.
[3] R. Diestel, Graph Theory, Springer-Verlag New York (1997).

