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Abstract. An assignment of positive integer weights to the edges
of a simple graph G is called irregular if the weighted degrees of
the vertices are all different. The irregularity strength, s(G), is the
maximal edge weight, minimized over all irregular assignments,
and is set to infinity if no such assignment is possible. In this
paper, we determine the exact value s(T ) for trees T in which
every two vertices of degree not equal to two are at distance at
least 8, and we give an iterative algorithm that achieves this value.

1. Introduction and Notation

Let w : E(G)→ N be an assignment of positive integer weights to the
edges of a simple graph G. This assignment yields a weighted degree
w(v) :=

∑
v∈ew(e) for all vertices v ∈ V (G), and is called irregular if

the weighted degrees of the vertices are all different. Let I(G) denote
the set of irregular labelings of G. Define the irregularity strength s(G)
of a simple graph G to be

min
f∈I(G)

max
e∈E(G)

f(e) = s(G)

if I(G) is nonempty and s(G) = ∞ otherwise. It is readily seen that
s(G) <∞ if and only if G contains no isolated edges and at most one
isolated vertex.

Graph irregularity strength was introduced in [?] by Chartrand et
al.. Upper bounds are known for general graphs of order n (Nierhoff [?]
shows the sharp bound s(G) ≤ n− 1), and d-regular graphs (Frieze et
al. [?] show a bound of s(G) ≤ c · n/d for d ≤ n1/2, and s(G) ≤
c ·n log n/d for general d, which was recently improved to s(G) ≤ c ·n/d
for all d by Przyby lo [?]). The exact irregularity strength is known only
for very few classes of graphs.
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Let ni denote the number of vertices of degree i in a graph G. Then
a simple counting argument shows that

s(G) ≥ λ(G) := max
k

⌈
1

k

k∑
i=1

ni

⌉
.

Kinch and Lehel [?] demonstrated, by considering the irregularity
strength of tP3, that λ(G) and s(G) may differ asymptotically. They
subsequently conjectured that if G is connected graph, then λ(G) and
s(G) differ by at most an additive constant.

It is easy to see that for trees, 1
k

∑k
i=1 ni attains its maximum for

k = 1 or for k = 2. Cammack et al. [?] show that s(T ) = λ(T ) for
full d-ary trees, and Amar and Togni [?] show that s(T ) = λ(T ) = n1

for all trees with n2 = 0 and n1 ≥ 3. For general trees, it is not
even the case that s(T ) is within an additive constant of n1. Bohman
and Kravitz [?] present an infinite sequence of trees with irregularity

strength converging to 11−
√

5
8

n1 > n1 >
n1+n2

2
.

In this paper, we present an iterative algorithm showing that s(T ) =
λ(T ) for another class of trees, but this time n1 < n2, i.e. s(T ) =⌈

n1+n2

2

⌉
. We believe that the methods developed here have the poten-

tial to be modified and used to determine the irregularity strength of
a broader class of trees or more general graphs. The following is the
main result of this paper.

Theorem 1. Let T be a tree in which every two vertices of degree
not equal to two are at distance at least 8, and with n1 ≥ 3. Then
s(T ) = λ(T ) =

⌈
n1+n2

2

⌉
.

The reader should note that we may obtain T from a tree containing
no vertices of degree 2 by subdividing each edge at least 7 times.

2. Proof of Theorem 1

2.1. A helpful lemma. Repeated application of the following lemma
is at the heart of our algorithm.

Lemma 2. Let P = v0v1 . . . v`+1, ` ≥ 1 be a path, and let w1, w2, . . . w`

be a strictly increasing sequence of natural numbers greater than one,
so that all even numbers between w1 and w` are part of the sequence.
Then there exists a weighting w of the edges of P such that

(1) w(v0) is odd,
(2) w(vi) = wi for 1 ≤ i ≤ `,
(3) −1 ≤ w(vivi+1)− w(vi−1vi) ≤ 2 for 1 ≤ i ≤ `.
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Proof. We proceed by induction on `. To begin, let ` = 1. Depending
on w1, we assign edge weights as follows:

w1 w(v0v1) w(v1v2)
4k 2k − 1 2k + 1

4k + 1 2k + 1 2k
4k + 2 2k + 1 2k + 1
4k + 3 2k + 1 2k + 2

Assume now that ` ≥ 2 and we are given w1, . . . , w`. By the induc-
tion hypothesis, we can assign weights to the edges of P ′ = v0v1 . . . v`

so that w(v0) is odd, w(vi) = wi, and −1 ≤ w(vivi+1)− w(vi−1vi) ≤ 2
for 1 ≤ i ≤ `− 1.

If w` − w`−1 = 1, let w(v`v`+1) = w(v`−2v`−1) + 1. Then w(v`) = w`

and
−1 ≤ w(v`v`+1)− w(v`−1v`)︸ ︷︷ ︸

=w(v`−2v`−1)−w(v`−1v`)+1

≤ 2.

If w` − w`−1 = 2, and thus w`−1 is an even number, let w(v`v`+1) =
w(v`−2v`−1) + 2. Then w(v`) = w` and

0 ≤ w(v`v`+1)− w(v`−1v`)︸ ︷︷ ︸
=w(v`−2v`−1)−w(v`−1v`)+2

≤ 2.

�

2.2. Setting up the weighting. We are given a tree T in which any
two vertices of degree not equal to two are at distance at least 8. We
decompose E(T ) into edge disjoint paths such that the end vertices of
the paths correspond to the vertices in T with degree not equal to 2.
If one thinks of T as a subdivision of a tree T ′ with n2(T

′) = 0, then
each path corresponds to an edge of T ′. A bottom vertex in a path is
called a pendant vertex if it is a leaf of T and we will call any of these
paths a pendant path if it contains a pendant edge.

We will root T at a vertex root of maximum degree, giving each path
a top-to-bottom orientation. We then order the paths in our decom-
position of T in the following manner. Select any dT (root) pendant
paths to be the final, or bottom, paths in the ordering. We then order
the remaining paths such that any path having bottom vertex v with
dT (v) ≥ 3 will have exactly dt(v) − 2 pendant paths directly above it
in the path ordering. For an example, see Figure ??.

Let P1, . . . , Pt denote the paths under this ordering, where P1 is the
top path. We will also allow this path ordering to induce an order on
the vertices of the paths, where x in Pi is below y in Pj if either i > j
or i = j and x is below y on Pi.
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Figure 1. A tree and its associated path ordering

Let M̄ be the set of vertices of degree two which are right below
the top vertex in a path. Let M be the set of all other vertices of
degree two. Next, we apply Lemma 2 to the paths in order. We will
initially assign the weights 2, . . . , |M | + 1 to the vertices in M from
the bottom to the top. In applying the lemma, we will require that
the lowest internal vertex in each path receive the lowest weight and so
on. Finally, for λ = λ(T ) = dn1+n2

2
e, we will label each top edge with

weight λ or λ− 1 so that each vertex in M̄ has an odd weight. We call
this initial weighting w0.

Clearly this is not an irregular weighting, as each pendant vertex
will certainly have the same weight as some vertex in M preceding it
in the ordering. We will attempt to improve our weighting. Let H0

denote the set of weights of pendant and M̄ -vertices under w0. Note
that these weights are all different and odd.

We apply Lemma 2 to the paths Pi. In particular, starting with
the bottomost vertex in M , we assign to each vertex in M the lowest
weight that is neither in H0 nor assigned to a lower vertex in M . Again,
we will conclude this new weighting by labeling each top edge of each
path with either λ or λ− 1 such that the weight of the corresponding
vertex in M̄ is odd. We will call this new weighting w1. If this is not an
irregular weighting with maximum edge weight at most λ, then we will
repeat this process by constructing a weighting that avoids the (odd)
weights H1 of the pendant and M̄ -vertices in w1, and so on.

Throughout this process, the following facts hold.

Fact 3. Let mj,mk ∈ M such that mj is below mk. Then wi(mj) <
wi(mk) for any i > 0.
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Fact 4. The weights of the pendant and M̄-vertices depend on the
weight of their neighbor in M as follows:

neighbor pendant vertex in M̄
λ even λ odd

4k 2k − 1 λ+ 2k − 1 or λ+ 2k + 1 λ+ 2k
4k + 1 2k + 1 λ+ 2k − 1 or λ+ 2k + 1 λ+ 2k
4k + 2 2k + 1 λ+ 2k + 1 λ+ 2k or λ+ 2k + 2
4k + 3 2k + 1 λ+ 2k + 1 λ+ 2k or λ+ 2k + 2

Each of the paths in our decomposition have length at least eight
and as such, the second lowest and third highest vertices on each path
are distance at least five apart. Consequently when applying Lemma 2
these vertices receive weights at least five apart in any iteration. This
observation, along with Fact ?? yields the following lemmas.

Lemma 5. Let pj and pk denote the bottom vertices of Pj and Pk

respectively, where j > k and dT (pj) = dT (pk) = 1. Then for any
i ≥ 0, wi(pk)− wi(pj) ≥ 2.

Lemma 6. Let pj and pk denote the bottom vertices of Pj and Pk

respectively, where j > k and dT (pj) = dT (pk) ≥ 3. Then for any
i ≥ 0,

wi(pk)− wi(pj) ≥ 2dT (pj)− 2.

Lemma 7. Let {pj} = M̄∩V (Pj) and {pk} = M̄∩V (Pk), where j > k.
Then for any i ≥ 0, wi(pk)− wi(pj) ≥ 2.

As a corollary of Lemma ??, we get the following statement.

Lemma 8. Let x, y be two different vertices of degree three or more in
T , then wi(x) 6= wi(y) for all i ≥ 0.

Proof. All that is left to show is the inequality for vertices x, y with
dT (x) > dT (y) ≥ 3. As root is a vertex of maximum degree in T and x
is on Pi for some i ≥ dT (root) + 1 > dT (x), we have

wi(y) ≤ λdT (y) < (λ− 1)(dT (x)− 1) + 3dT (x) ≤ wi(x).

�

Note that wi+1 is completely determined by the setHi ⊂ {1, 2, . . . , 2λ}.
As there are only finitely many such sets, this process will eventually
stabilize in a loop with some period p, i.e. Hi = Hi+p for i ≥ i0 and
minimal p ≥ 1. If p = 1, then wi0+1 is an irregular weighting with
maximum edge weight at most λ and we are done, so we assume in the
following that p > 1.
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For 0 ≤ i < p, let ŵi = wi0+1+i, where all index calculations regard-

ing ŵ will be modulo p. Define Ĥi in a similar manner. Let

m = max
i,k

x∈M

ŵi(x)− ŵi−k(x).

The parameter m is the maximum amount that the weight of an
M -vertex can vary as we iteratively modify the edge labels throughout
one period.

The following lemma is crucial for the proof of Theorem 1.

Lemma 9. m = 1.

Proof. If m = 0 then p = 1, which we already excluded, so m ≥ 1 and
we need to show that m ≤ 1. Let x ∈ M be the lowest vertex in the
ordering for which we can find i and k such that ŵi(x)− ŵi−k(x) = m.

The fact that the weight of x has increased by m implies that there
are m pendant vertices or M̄ -vertices x1, x2, . . . , xm, such that for all
t ≥ 0

ŵt(x1) ≤ ŵt(x2)− 2 ≤ . . . ≤ ŵt(xm)− 2m+ 2, (1)

ŵi−k−1(x1) > ŵi−k(x), (2)

and

ŵi−1(xm) < ŵi(x). (3)

Here (??) follows from the fact pendants and M̄ vertices receive
distinct odd weights, while (??) and (??) follow from the assumption
that the weight of x has changed by exactly m. For m ≤ 3, this implies
that

ŵi−1(x1) ≤(??) ŵi−1(xm)− 2m+ 2

≤(??) ŵi(x)− 2m+ 1 = ŵi−k(x)−m+ 1

≤(??) ŵi−k−1(x1)−m.
Both ŵi−1(x1) and ŵi−k−1(x1) are odd, so in fact

ŵi−k−1(x1)− ŵi−1(x1) ≥ 2
⌈m

2

⌉
. (4)

For m ≥ 4, we get

ŵi−1(x1) ≤(??) ŵi−1(xm)− 2m

≤(??) ŵi(x)− 2m− 1 = ŵi−k(x)−m− 1

≤(??) ŵi−k−1(x1)−m− 2.

Both ŵi−1(x1) and ŵi−k−1(x1) are odd, so in fact

ŵi−k−1(x1)− ŵi−1(x1) ≥ 2
⌈m

2

⌉
+ 2.
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Let y1 ∈M be a neighbor of x1, and suppose that m ≥ 4. If dT (x1) = 1,
i.e. ŵi(x1) < λ. Fact ?? then yields that

ŵi−1(y1) ≤ 2ŵi−1(x1) + 2

and
ŵi−k−1(y1) ≥ 2ŵi−k−1(x1)− 1.

Thus,

ŵi−k−1(y1)−ŵi−1(y1) ≥ 2(ŵi−k−1(x1)−ŵi−1(x1))−3 ≥ 4
⌈m

2

⌉
+1 > m,

a contradiction to (??).
Now suppose that dT (x1) = 2. Here, Fact ?? yields that

ŵi−1(y1) ≤ 2(ŵi−1(x1)− λ+ 1) + 1

and
ŵi−k−1(y1) ≥ 2(ŵi−k−1(x1)− λ)− 2.

Thus,

ŵi−k−1(y1)− ŵi−1(y1) ≥ 4
⌈m

2

⌉
− 1 > m,

a contradiction. This implies that m ≤ 3.
It then follows that between ŵi and ŵi−k, the weight of a vertex in

M̄ can change by at most four, and the weight of a pendant vertex can
change by at most two. This is a consequence of Fact ??, which shows
that if the weight of some pendant vertex were to change by three or
more, then the weight of its neighbor in M would change by at least
four. A similar analysis shows that no vertex in M̄ can have its weight
change by more than four.

Next assume that m = 3. From (??), we know that

ŵi−k−1(x1)− ŵi−1(x1) ≥ 4,

thus x1, x2, x3 ∈ M̄ . Further,

ŵi−k−1(y1)− ŵi−1(y1) ≥ 3,

as otherwise ŵ(x1) could not decrease by four. But since ŵi−1(x1) <
ŵi−1(x), we know that ŵi−1(y1) < ŵi−1(x), contradicting the choice of
x. This shows that m ≤ 2 and in turn that weights of vertices in M̄
can change by at most two, again by Fact ??.

Finally assume that m = 2. All the inequalities in (??) are in fact
equalities and we get that for some t,

ŵi−k−1(x1) = ŵi−1(x2) = 2t+ 3,

ŵi−k−1(x2) = 2t+ 5,

wi−1(x1) = 2t+ 1.
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Let y2 be the neighbor of x2 in M . If x1 is a pendant vertex, then
Fact ?? shows that ŵi−1(y) ≥ 4t+ 1 and

ŵi−1(y2) ≤ ŵi−k−1(y2) + 2 ≤ 4t+ 6,

a contradiction as at least five vertices from M lie between y1 and y2

in the path-ordering, so ŵi−1(y2)− ŵi−1(y1) ≥ 6.
Thus, x1 ∈ M̄ . As y1 and y2 come before x in the ordering,

|ŵi−1(y1)− ŵi−k−1(y1)| ≤ 1 and |ŵi−1(y2)− ŵi−k−1(y2)| ≤ 1.

Fact ?? shows that ŵi−1(y2)− ŵi−1(y1) ≤ 6 with equality only if

|ŵi−1(y1)− ŵi−k−1(y1)| = |ŵi−1(y2)− ŵi−k−1(y2)| = 1.

But this last equality implies that Hi−2 contains a number between
ŵi−1(y1) and ŵi−1(y2), and therefore ŵi−1(y2)− ŵi−1(y1) ≥ 7, the final
contradiction proving the lemma. �

The vertices outside of M are sufficiently far apart in T to immedi-
ately yield the following corollary to Lemma ??.

Lemma 10. For two vertices x, y /∈M , ŵi(x) > ŵi(y) implies ŵj(x) >
ŵk(y) for all i, j, k.

2.3. Clean up. We will now modify the weighting ŵ1 to get an irreg-
ular weighting ŵ with Ĥ = Ĥ1. Let x ∈ M such that ŵ1(x) ∈ Ĥ1.
By Lemma ??, either ŵ2(x) = ŵ1(x) + 1 or ŵ2(x) = ŵ1(x) − 1. Let
y ∈ M be the neighbor of x with ŵ1(y) = ŵ2(x). Note that there is
no vertex z with ŵ1(z) = 2ŵ2(x) − ŵ1(x) (i.e. ŵ1(z) = ŵ1(x) ± 2), as

2ŵ2(x)− ŵ1(x) ∈ Ĥ0 \ Ĥ1. We differentiate four cases.

Case 1. xy ∈ E and ŵ2(x) = ŵ1(x) + 1.

Set ŵ(xy) = ŵ1(xy) + 1.

Case 2. xy ∈ E and ŵ2(x) = ŵ1(x)− 1.

Set ŵ(xy) = ŵ1(xy)− 1.

Case 3. xy /∈ E and ŵ2(x) = ŵ1(x) + 1.

Let x1 ∈M be the neighbor of x with ŵ1(x1) = ŵ1(x)−1, and y1 ∈M
be the neighbor of y with ŵ1(y1) = ŵ1(x)+3. Set ŵ(xx1) = ŵ1(xx1)+3
and ŵ(yy1) = ŵ1(yy1)− 2.

Case 4. xy /∈ E and ŵ2(x) = ŵ1(x)− 1.

Let x1 ∈M be the neighbor of x with ŵ1(x1) = ŵ1(x)+1, and y1 ∈M
be the neighbor of y with ŵ1(y1) = ŵ1(x)−3. Set ŵ(xx1) = ŵ1(xx1)−3
and ŵ(yy1) = ŵ1(yy1) + 2.
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Repeating the above for every x ∈M with ŵ1(x) ∈ Ĥ1 will result in
an irregular weighting. Observe that if x and x′ both fall in Cases ??
or ??, then |ŵ1(x) − ŵ1(x

′)| ≥ 6, and therefore the weight changes
used to correct the weighting do not affect each other. For all other
cases, Lemma ?? guarantees that the weight changes stemming from
different vertices will not interfere. It is easy to check that none of the
edge weights in Ŵ are below one or above λ+ 1.

If there is an edge with ŵ(xy) = λ+ 1, then x and y are the second
and third to last vertices of the last path, ŵ(x) = 2λ+1 and ŵ(y) = 2λ,
and there is no vertex z with ŵ(z) = 2λ − 1. Change the weight of

xy to ŵ′(xy) = λ, and the resulting weighting Ŵ ′ is irregular and does
not use edge weights above λ. This finishes the proof of Theorem 1.

3. Conclusions

We have extended the known classes of trees with s(T ) = λ(T ).
More importantly, however, we have given an explicit algorithm that
will generate an irregular weighting for trees in the class under consid-
eration. We are hopeful that this iterative approach will be adaptable
to a larger class of trees or more general graphs. For instance, it may be
possible to show, via a modification of our algorithm, that there is some
absolute constant c such that if T is any tree with n2(T ) ≥ cn1(T ), then
λ(T ) = s(T ) = dn1+n2

2
e.
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