VERTEX COLORING EDGE WEIGHTINGS WITH INTEGER WEIGHTS AT MOST 6

MACIEJ KALKOWSKI, MICHAŁ KAROŃSKI, AND FLORIAN PFENDER

ABSTRACT. A weighting of the edges of a graph is called neighbor distinguishing if the weighted degrees of the vertices yield a proper coloring of the graph. In this note we show that such a weighting is possible from the weight set $\{1, 2, 3, 4, 5, 6\}$ for all graphs not containing components with exactly 2 vertices.

All graphs in this note are finite and simple. For notation not defined here we refer the reader to [3].

For some $k \in \mathbb{N}$, let $f : E(G) \to \{1, 2, \ldots, k\}$ be an integer weighting of the edges of a graph G. This weighting is called vertex coloring if the weighted degrees $w(v) = \sum_{u \in N(v)} w(uv)$ of the vertices yield a proper coloring of the graph. It is easy to see that for every graph which does not have a component isomorphic to K^2 , there exists such a weighting for some k.

In 2002, Karoński, Łuczak and Thomason (see [6]) conjectured that such a weighting with k = 3 is possible for all such graphs (k = 2 is not sufficient as seen for instance in complete graphs and cycles of length not divisible by 4). A first constant bound of k = 30 was proved by Addario-Berry et al. in 2007 [1], which was later improved to k = 16in [2] and to k = 13 in [7].

In this note we show a completely different approach that improves the bound to k = 6. We were able to further improve the bound to k = 5 in [5], but this current note exhibits some interesting ideas with their own merit which were not used in the other paper.

Consider a related result by the first author using a total weighting, i.e. we add weights to the vertices as well.

Lemma 1 ([4]). For any connected graph G with $|G| \ge 3$, there is an edge weighting $f : E(G) \to \{1, 2, 3\}$, and a vertex weighting f' : $V(G) \to \{0, 1\}$ such that the total weight $w(v) := f'(v) + \sum_{w \in N(v)} f(vw)$ gives a proper coloring of V(G).

With the help of this result, the first author was able to reduce the bound to k = 10 after tripling all weights and adjusting some of the

resulting edge weights by 1 with a Kempe chain type argument to get a neighbor distinguishing edge weighting.

In this note, we use similar ideas to get down to k = 6 in the original problem. We start with a slight generalization of Lemma 1. The proof is almost identical but is included here for completeness.

Lemma 2. Let $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R} \setminus \{0\}$. Then, for any connected graph G with $|G| \geq 3$, and for any spanning tree T, there is an edge weighting $f : E(G) \to \{\alpha - \beta, \alpha, \alpha + \beta\}$, and a vertex weighting $f' : V(G) \to \{0, \beta\}$ such that the total weight $w(v) := f'(v) + \sum_{w \in N(v)} f(vw)$ gives a proper coloring of V(G). Further, we can choose f in a way that $f(e) = \alpha$ for all edges $e \in E(T)$.

Proof. We order the vertices $V(G) = \{v_1, v_2, \ldots, v_n\}$ such that for $k \geq 2$, every v_k has exactly one edge in T to a vertex in $\{v_1, v_2, \ldots, v_{k-1}\}$. We start by assigning the weight α to every edge of G, and then adjust this edge weight at most once to assign a total weight to every v_k in order, which then remains unchanged.

The vertex v_1 gets weight $\alpha d_G(v_1)$. Let us assume for some $k \geq 2$ that we have adjusted edge weights f on $E(G[\{v_1, \ldots, v_{k-1}\}]) \setminus E(T)$ and vertex weights f' on $\{v_1, \ldots, v_{k-1}\}$ so that the first k-1 vertices have their final total weight $w(v_i)$.

For v_k , we can adjust the weights of all edges $E(v_k, \{v_1, \ldots, v_{k-1}\}) \setminus E(T)$, by β : If $v_k v_i \in E(G) \setminus E(T)$ and $f'(v_i) = 0$, we can choose between $(f(v_k v_i) = \alpha, f'(v_i) = 0)$ and $(f(v_k v_i) = \alpha - \beta, f'(v_i) = \beta)$ without changing $w(v_i)$. Similarly, if $v_k v_i \in E(G) \setminus E(T)$ and $f'(v_i) = \beta$, we can choose between $(f(v_k v_i) = \alpha, f'(v_i) = \beta)$ and $(f(v_k v_i) = \alpha + \beta, f'(v_i) = 0)$ without changing $w(v_i)$. Finally, we can choose $f'(v_k)$. This gives us a total of $|E(v_k, \{v_1, \ldots, v_{k-1}\}) \setminus E(T)| + 2 = |E(v_k, \{v_1, \ldots, v_{k-1}\})| + 1$ different possibilities for $w(v_k)$, and we may pick one that is different from all weights in $N(v_k) \cap \{v_1, \ldots, v_{k-1}\}$.

Continuing in this fashion, we can find the desired weighting. \Box

Now we are ready to proof the main result of this note.

Theorem 3. For every graph G without components isomorphic to a K^2 , there is a weighting $\omega : E(G) \to \{1, 2, \dots, 6\}$, such that the induced vertex weights $\omega(v) := \sum_{u \in N(v)} \omega(uv)$ properly color V(G).

Proof. We may assume that G is connected as we can treat every component separately. Start with any spanning tree T and consider the weighting (f, f', w) from Lemma 2 with parameters $\alpha = 4$ and $\beta = -2$. At this point, all edges and vertices have even weights. In the remainder of the proof we will adjust f and f', but w(v) will remain unchanged (and even) for every vertex $v \in V(G)$.

 $\mathbf{2}$

Let $H = G[\{v \in V(G) \mid f'(v) = -2\}]$, and find a maximal spanning subgraph H_1 of H with maximum degree at most 2. Add -1 to the weights f(e) of all edges in H_1 , and adjust f'(v) accordingly for all vertices in $V(H_1)$ to keep w(v) unchanged. Now all vertices $v \in V(G)$ have $f'(v) \in \{0, -1, -2\}$, all edges $e \in E(G)$ have $f(e) \in \{1, 2, \dots, 6\}$, and all edges $e \in E(T)$ have $f(e) \in \{3, 4\}$.

For $i \in \{0, 1, 2\}$ let $S_i := \{v \in V(G) \mid f'(v) = -i\}$ and $s_i := |S_i|$. Note that all vertices $v \in S_0 \cup S_2$ have even weights w(v) - f'(v), and vertices in S_1 have odd weights. By the maximality of H_1 , all edges uv with $u, v \in S_1 \cup S_2$ have $u, v \in S_1$ and $uv \in E(H_1)$. In particular, $w(u) - f'(u) \neq w(v) - f'(v)$ for the end vertices of these edges. Let us denote the set of these edges by E^* .

If $s_2 = 0$, we are done by setting $\omega = f$. If $s_2 = 1$ and $s_1 = 0$, let $u \in S_2$. Note that all edges e incident to u have weights $f(e) \in \{2, 4, 6\}$. If u has a neighbor v with $w(u) + 2 \neq w(v)$, subtract 1 on the edge uv and we are done by setting $\omega = f$ (note that u and v are the only vertices with odd weight ω). If for all neighbors $v \in N(u)$ we have w(u) + 2 = w(v) and $|N(u)| \geq 2$, subtract 1 on two different edges incident to u. Again, this leads to a proper weighting ω . Finally, if the only neighbor $v \in N(u)$ has w(u) + 2 = w(v), we can find a vertex $x \in N_T(v) \setminus \{u\}$, subtract 1 from f(uv) and add 1 to f(xv), and again this leads to a proper weighting ω .

If $s_2 = 1$ and $s_1 \ge 1$, take a *T*-path between $u \in S_2$ and $v \in S_1$, and, in the manner of a Kempe chain argument, add and subtract 1 in turn to all edges of this path, making sure that we subtract 1 on the edge incident to v. This leads to a proper weighting ω .

If $s_2 \geq 2$, the following inductive argument shows that we can find $\lceil s_2/2 \rceil$ paths in T such that the set of ends of the paths is exactly S_2 , and every edge of T is used at most twice. For $2 \leq s_2 \leq 3$, these paths are easy to find. For $s_2 \geq 4$, find an edge $e \in E(T)$ so that both components of T - e contain at least 2 vertices in S_2 and at least one of the components contains an even number of vertices in S_2 . Now apply induction on the two components to find the desired paths.

In the manner of a Kempe chain argument, add and subtract 1 in turn to all edges of each of these paths, such that only the weights of the end vertices are affected, and adjust f' for these vertices accordingly. If a vertex $u \in S_2$ is end vertex of two paths (i.e., if s_2 is odd), we make sure to subtract 1 on the edges incident to u of both paths so that we end up with f'(u) = 0. Note that we only use edges in E(T), and therefore we do not introduce edge weights less than 1 or greater than 6. After this process, all vertices previously in S_2 now have weights $f'(v) \in \{-3, -1, 0\}$. If we set $\omega = f$, we see that $\omega = w$ for all vertices with w(v) even, and the only edges between vertices with odd weight $\omega(v)$ are in E^* , and therefore their end vertices have different weights. Thus, ω is as desired.

Thanks

The third author thanks Christian Reiher for very productive discussions on the topic.

References

- L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed and A. Thomason, Vertex-colouring edge-wheitings, *Combinatorica* 27 (2007), 1 - 12.
- L. Addario-Berry, K. Dalal and B.A. Reed , Degree constrainted subgraphs, Discrete Applied Mathematics 156 (2008), 1168-1174.
- 3. R. Diestel, "Graph Theory," Springer Verlag, Heidelberg, 2005.
- 4. M. Kalkowski, manuscript (2008)
- 5. M. Kalkowski, M. Karoński, F. Pfender, Vertex coloring edge weightings: towards the 1-2-3 conjecture, preprint.
- M. Karoński, T. Łuczak and A. Thomason, Edge weights and vertex colours, J. Combinatorial Theory (B) 91 (2004), 151-157.
- T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008), 1-7.