A NEW UPPER BOUND FOR THE IRREGULARITY STRENGTH OF GRAPHS

MACIEJ KALKOWSKI, MICHAŁ KAROŃSKI, AND FLORIAN PFENDER

ABSTRACT. A weighting of the edges of a graph is called irregular if the weighted degrees of the vertices are all different. In this note we show that such a weighting is possible from the weight set $\{1, 2, \ldots, 6 \lceil \frac{n}{\delta} \rceil\}$ for all graphs not containing a component with exactly 2 vertices or two isolated vertices.

1. INTRODUCTION

All graphs in this note are finite and simple. For notation not defined here we refer the reader to [4].

For some $k \in \mathbb{N}$, let $\omega : E(G) \to \{1, 2, \dots, k\}$ be an integer weighting of the edges of a graph G. This weighting is called irregular if the weighted degrees $d_{\omega}(v) = \sum_{u \in N(v)} \omega(uv)$ of the vertices are all different. It is easy to see that for every graph G which has at most one isolated vertex and no component isomorphic to K^2 , there exists an irregular weighting for some smallest k, the *irregularity strength* s(G) of G. If Gcontains a K^2 or multiple isolated vertices, we set $s(G) = \infty$.

The irregularity strength was introduced in [2] by Chartrand *et al.*. For all graphs with n := |G| > 3 and $s(G) < \infty$, Nierhoff [8] showed the tight bound $s(G) \le n-1$, extending a result by Aigner and Triesch [1]. Faudree and Lehel considered regular graphs in [5]. They showed that if G is d-regular $(d \ge 2)$, then $\left\lceil \frac{n+d-1}{d} \right\rceil \le s(G) \le \left\lceil \frac{n}{2} \right\rceil + 9$, and they conjectured that $s(G) \le \left\lceil \frac{n}{d} \right\rceil + c$ for some constant c.

A first bound involving the minimum degree δ was given by Frieze *et al.* in [6] where they showed that $s(G) \leq 60 \lceil \frac{n}{\delta} \rceil$, for graphs with maximum degree $\Delta \leq n^{1/2}$. For graphs with high minimum degree, Cuckler and Lazebnik showed that $s(G) \leq 48 \lceil \frac{n}{\delta} \rceil + 6$ in [3]. Finally, Przybyło showed in [10] that $s(G) \leq 112 \frac{n}{\delta} + 28$ for general graphs and in [9] that $s(G) \leq 16 \frac{n}{d} + 6$ for *d*-regular graphs.

In this note we give a construction improving the bounds stated in the previous paragraph. We use ideas similar to the ones used in [7].

¹⁹⁹¹ Mathematics Subject Classification. 05C78, (05C15).

Key words and phrases. irregular graph labelings.

Theorem 1. Let δ be the minimum degree of G and n = |G|. If $s(G) < \infty$, then $s(G) \le 6 \lceil \frac{n}{\delta} \rceil$.

Considering the sharpness of these results, no graphs classes with $s(G) > \lceil \frac{n}{\delta} \rceil + c$ are known to us, similarly to the case of regular graphs mentioned above.

2. Proof

Since $s(G) \leq n - 1$, there is nothing to prove for $\delta \leq 6$, so we may assume that $\delta \geq 7$. Order the vertices v_1, v_2, \ldots, v_n such that for $1 \leq i < k \leq j \leq n$, whenever v_i and v_j belong to the same component of G,

- v_k also belongs to that component of G, and
- v_i has a neighbor v_ℓ with $\ell > i$.

Going through the vertices in order, we will assign two weights ω_1 and ω_2 to each edge $v_i v_j$ (where i < j), and $\omega(v_i v_j) = \omega_1(v_i v_j) + \omega_2(v_i v_j)$. The first weight $\omega_1(v_i v_j) \in \{1, 2, \dots, 2\lceil \frac{n}{\delta} \rceil\}$ is assigned when we process v_i , the second weight $\omega_2(v_i v_j) \in \{0, 2\lceil \frac{n}{\delta} \rceil, 4\lceil \frac{n}{\delta} \rceil\}$ is initially set to $2\lceil \frac{n}{\delta} \rceil$ and finalized when we process v_j .

Let

$$\mathcal{W} := \left\{ \left\{ a + 4b \left\lceil \frac{n}{\delta} \right\rceil, a + (4b+2) \left\lceil \frac{n}{\delta} \right\rceil \right\} \mid a, b \in \mathbb{Z}, 0 \le a \le 2 \left\lceil \frac{n}{\delta} \right\rceil - 1 \right\}$$

be a set of disjoint pairs of integers covering \mathbb{Z} , and for a given ω and $1 \leq i \leq n$, let $W(v_i) \in \mathcal{W}$ be the unique pair containing $d_{\omega}(v_i)$.

Let X be the set of indices i, such that either v_i or v_{i+1} is the final vertex of a component. For $i \leq n$, assume that all vertices v_k with k < i have been considered already.

If $i \notin X$, we want to adjust ω such that $W(v_i) \neq W(v_k)$ for all k < i. In the remainder of the construction, $W(v_i)$ will not change anymore. Reserving a pair of values for $d_{\omega}(v_i)$ like this gives us the freedom to later adjust $\omega_2(v_iv_j)$ for j > i without creating a conflict.

To this end, we can freely choose $\omega_1(v_iv_j)$ for i < j and choose $\omega_2(v_kv_i)$ for k < i from one of the two values keeping $d_{\omega}(v_k)$ in $W(v_k)$. If v_i has $d^+ \geq 1$ neighbors v_j with j > i and d^- neighbors v_k with k < i, this gives us

$$2\lceil \frac{n}{\delta} \rceil (d^+ + d^-) - d^+ \ge 2n - d^+ > 2i$$

consecutive options for $d_{\omega}(v_i)$. These options intersect more than *i* pairs of \mathcal{W} . At most i-1 of these pairs can already be used as some $W(v_k)$ by a neighbor v_k of v_i with k < i, so we can find the desired pair $W(v_i)$, together with a preliminary weighting ω .

If $\{i, i + 1\} \subseteq X$, note that $v_i v_{i+1}$ is an edge. We may choose $\omega_1(v_i v_{i+1})$ such that no three vertices v_j with $j \in X$ and $j \leq i + 1$ have the same weight ω_1 as there are less than $\lceil \frac{n}{\delta} \rceil$ components and thus $|X| < 2\lceil \frac{n}{\delta} \rceil$.

Let $j \in \{i, i+1\} \subseteq X$. We want to adjust $\omega_2(v_k v_j)$ for edges with k < i so that all weighted degrees $d_{\omega}(v_{\ell})$ for $\ell \leq j$ are different. At this stage we allow that $W(v_j) = W(v_{\ell})$ for one $\ell < j$, since both $d_{\omega}(v_j)$ and $d_{\omega}(v_{\ell})$ are finalized in this step as they don't have neighbors v_s with s > i + 1. There are at least $\delta - 1$ neighbors v_k of v_j with k < i. As we have picked all the $W(v_k)$ after finalizing $d_{\omega}(v_s)$ for all $s \in X$ with s < i, at most one of the pairs $W(v_k)$ may contain the weighted degrees of two vertices (namely, $d_{\omega}(v_k)$ and $d_{\omega}(v_i)$ if j = i + 1). Thus, we may adjust $\omega_2(v_k v_j)$ on all these edges but possibly one, keeping $d_{\omega}(v_k) \in W(v_k)$.

This gives us $\delta - 1$ options for $d_{\omega}(v_j)$, an arithmetic progression with step size $2\lceil \frac{n}{\delta} \rceil$. These options completely contain at least $\frac{\delta-3}{2} \ge 2$ pairs in \mathcal{W} . At most one such pair may contain some $d_{\omega}(v_{\ell})$ with $j > \ell \in X$ by our choice of $\omega_1(v_i v_{i+1})$, so there is a pair left which does not contain such a weighted degree. At most one vertex v_{ℓ} with $j > \ell \notin X$ can have its weighted degree in that pair. Adjust the weights $\omega_2(v_k v_j)$ so that $d_{\omega}(v_j)$ is in that pair. If now $d_{\omega}(v_j) = d_{\omega}(v_{\ell})$, we may either change some weight $\omega_2(v_k v_j)$ with $k \neq \ell$ to move $d_{\omega}(v_j)$ to the other value in that pair, or change both $\omega_2(v_k v_j)$ and $\omega_2(v_\ell v_j)$ to keep $d_{\omega}(v_j)$ and to move $d_{\omega}(v_{\ell})$ to the other value in that pair (which may be necessary if $v_{\ell}v_j \in E$). This concludes the proof. \Box

References

- M. Aigner and E. Triesch, Irregular assignments of trees and forests. SIAM J. Discrete Math. 3(1990), 439–449.
- G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, F. Saba, Irregular Networks. Congressus Numerantium 64 (1988), 187 – 192.
- B. Cuckler and F. Lazebnik, Irregularity Strength of Dense Graphs, J. Graph Theory 58 (2008), 299–313.
- 4. R. Diestel, "Graph Theory," Springer Verlag, Heidelberg, 2005.
- R.J. Faudree and J. Lehel, Bound on the irregularity strength of regular graphs. Colloq. Math. Soc. János Bolyai, 52, Combinatorics, Eger. North Holland, Amsterdam, 1987, 247–256.
- A. Frieze, R. Gould., M. Karoński, F. Pfender, On Graph Irregulaity Strength, J. Graph Theory 41 (2002), 120–137.
- M. Kalkowski, M. Karoński, F. Pfender, Vertex-Coloring Edge Weightings: Towards the 1-2-3-Conjecture, J. Combin. Theory (B), to appear.
- T. Nierhoff, A tight bound on the irregularity strength of graphs. SIAM J. Discrete Math. 13 (2000), 313–323.

- Przybyło, J. Irregularity strength of regular graphs, Electronic J. Combinatorics 15 (2008) (1)#R82
- 10. Przybyło J., Linear bound for on the irregularity strength and the total vertex irregularity strength of graphs, SIAM J. Discrete Math., to appear.

Current address, M. Kalkowski: Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznań, Poland

E-mail address: kalkos@atos.wmid.amu.edu.pl

Current address, M. Karoński: Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Poznań, Poland, and Emory University, Department of Mathematics and Computer Science, Atlanta, GA, USA

E-mail address: karonski@amu.edu.pl

Current address, F. Pfender: Universität Rostock, Institut für Mathematik, Rostock, Germany

E-mail address: Florian.Pfender@uni-rostock.de