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Abstract. A weighting of the edges of a graph is called irregular
if the weighted degrees of the vertices are all different. In this
note we show that such a weighting is possible from the weight set
{1, 2, . . . , 6dnδ e} for all graphs not containing a component with
exactly 2 vertices or two isolated vertices.

1. Introduction

All graphs in this note are finite and simple. For notation not defined
here we refer the reader to [4].

For some k ∈ N, let ω : E(G)→ {1, 2, . . . , k} be an integer weighting
of the edges of a graph G. This weighting is called irregular if the
weighted degrees dω(v) =

∑
u∈N(v) ω(uv) of the vertices are all different.

It is easy to see that for every graph G which has at most one isolated
vertex and no component isomorphic to K2, there exists an irregular
weighting for some smallest k, the irregularity strength s(G) of G. If G
contains a K2 or multiple isolated vertices, we set s(G) =∞.

The irregularity strength was introduced in [2] by Chartrand et al. .
For all graphs with n := |G| > 3 and s(G) < ∞, Nierhoff [8] showed
the tight bound s(G) ≤ n−1, extending a result by Aigner and Triesch
[1]. Faudree and Lehel considered regular graphs in [5]. They showed
that if G is d-regular (d ≥ 2), then

⌈
n+d−1

d

⌉
≤ s(G) ≤ dn

2
e + 9, and

they conjectured that s(G) ≤
⌈
n
d

⌉
+ c for some constant c.

A first bound involving the minimum degree δ was given by Frieze
et al. in [6] where they showed that s(G) ≤ 60dn

δ
e, for graphs with

maximum degree ∆ ≤ n1/2. For graphs with high minimum degree,
Cuckler and Lazebnik showed that s(G) ≤ 48dn

δ
e + 6 in [3]. Finally,

Przyby lo showed in [10] that s(G) ≤ 112n
δ

+ 28 for general graphs and
in [9] that s(G) ≤ 16n

d
+ 6 for d-regular graphs.

In this note we give a construction improving the bounds stated in
the previous paragraph. We use ideas similar to the ones used in [7].
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Theorem 1. Let δ be the minimum degree of G and n = |G|. If
s(G) <∞, then s(G) ≤ 6dn

δ
e.

Considering the sharpness of these results, no graphs classes with
s(G) > dn

δ
e+ c are known to us, similarly to the case of regular graphs

mentioned above.

2. Proof

Since s(G) ≤ n − 1, there is nothing to prove for δ ≤ 6, so we
may assume that δ ≥ 7. Order the vertices v1, v2, . . . , vn such that for
1 ≤ i < k ≤ j ≤ n, whenever vi and vj belong to the same component
of G,

• vk also belongs to that component of G, and
• vi has a neighbor v` with ` > i.

Going through the vertices in order, we will assign two weights ω1 and
ω2 to each edge vivj (where i < j), and ω(vivj) = ω1(vivj) + ω2(vivj).
The first weight ω1(vivj) ∈ {1, 2, . . . , 2dnδ e} is assigned when we process
vi, the second weight ω2(vivj) ∈ {0, 2dnδ e, 4d

n
δ
e} is initially set to 2dn

δ
e

and finalized when we process vj.
Let

W :=
{
{a+ 4bdn

δ
e, a+ (4b+ 2)dn

δ
e} | a, b ∈ Z, 0 ≤ a ≤ 2dn

δ
e − 1

}
be a set of disjoint pairs of integers covering Z, and for a given ω and
1 ≤ i ≤ n, let W (vi) ∈ W be the unique pair containing dω(vi).

Let X be the set of indices i, such that either vi or vi+1 is the final
vertex of a component. For i ≤ n, assume that all vertices vk with
k < i have been considered already.

If i /∈ X, we want to adjust ω such that W (vi) 6= W (vk) for all k < i.
In the remainder of the construction, W (vi) will not change anymore.
Reserving a pair of values for dω(vi) like this gives us the freedom to
later adjust ω2(vivj) for j > i without creating a conflict.

To this end, we can freely choose ω1(vivj) for i < j and choose
ω2(vkvi) for k < i from one of the two values keeping dω(vk) in W (vk).
If vi has d+ ≥ 1 neighbors vj with j > i and d− neighbors vk with
k < i, this gives us

2dn
δ
e(d+ + d−)− d+ ≥ 2n− d+ > 2i

consecutive options for dω(vi). These options intersect more than i
pairs of W . At most i − 1 of these pairs can already be used as some
W (vk) by a neighbor vk of vi with k < i, so we can find the desired
pair W (vi), together with a preliminary weighting ω.
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If {i, i + 1} ⊆ X, note that vivi+1 is an edge. We may choose
ω1(vivi+1) such that no three vertices vj with j ∈ X and j ≤ i + 1
have the same weight ω1 as there are less than dn

δ
e components and

thus |X| < 2dn
δ
e.

Let j ∈ {i, i + 1} ⊆ X. We want to adjust ω2(vkvj) for edges with
k < i so that all weighted degrees dω(v`) for ` ≤ j are different. At this
stage we allow that W (vj) = W (v`) for one ` < j, since both dω(vj)
and dω(v`) are finalized in this step as they don’t have neighbors vs
with s > i+ 1. There are at least δ − 1 neighbors vk of vj with k < i.
As we have picked all the W (vk) after finalizing dω(vs) for all s ∈ X
with s < i, at most one of the pairs W (vk) may contain the weighted
degrees of two vertices (namely, dω(vk) and dω(vi) if j = i+ 1). Thus,
we may adjust ω2(vkvj) on all these edges but possibly one, keeping
dω(vk) ∈ W (vk).

This gives us δ−1 options for dω(vj), an arithmetic progression with
step size 2dn

δ
e. These options completely contain at least δ−3

2
≥ 2 pairs

in W . At most one such pair may contain some dω(v`) with j > ` ∈ X
by our choice of ω1(vivi+1), so there is a pair left which does not contain
such a weighted degree. At most one vertex v` with j > ` /∈ X can have
its weighted degree in that pair. Adjust the weights ω2(vkvj) so that
dω(vj) is in that pair. If now dω(vj) = dω(v`), we may either change
some weight ω2(vkvj) with k 6= ` to move dω(vj) to the other value in
that pair, or change both ω2(vkvj) and ω2(v`vj) to keep dω(vj) and to
move dω(v`) to the other value in that pair (which may be necessary if
v`vj ∈ E). This concludes the proof. �
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