Pancyclicity in Claw-free Graphs

R.J. Gould, F. Pfender
Emory University, Department of Mathematics and Computer Science, Atlanta, GA 30322, USA

Abstract

In this paper, we present several conditions for $K_{1,3}$-free graphs, which guarantee the graph is subpancyclic. In particular, we show that every $K_{1,3}$-free graph with minimum degree sum $\delta_{2}>2 \sqrt{3 n+1}-4$; every $\left\{K_{1,3}, P_{7}\right\}$-free graph with $\delta_{2} \geq 9$; every $\left\{K_{1,3}, Z_{4}\right\}$-free graph with $\delta_{2} \geq 9$; and every $K_{1,3}$-free graph with maximum degree $\Delta, \operatorname{diam}(G)<\frac{\Delta+6}{4}$ and $\delta_{2} \geq 9$ is subpancyclic.

Key words: claw-free, pancyclicity, forbidden subgraphs

1 Introduction

If not specified otherwise, we will use notation from [1]. We consider finite simple graphs only. A graph on n vertices is called subpancyclic if it contains cycles of every length l with $3 \leq l \leq c(G)$, where $c(G)$ denotes the circumference of G. If G is subpancyclic and hamiltonian, it is called pancyclic.

We will always denote the edge set of the graph G by E, and V will denote its vertex set. For some graph H, a graph is said to be H-free, if it does not contain an induced copy of H. The complete bipartite graph $K_{1,3}$ is also called the claw. The graph Z_{4} is a triangle with a path of length four attached to one of its vertices, the graph P_{7} is the path on seven vertices.

The degree of a vertex v is denoted by $d(v)$. We will write $\Delta(G)$ or (if no confusion arises) Δ for the maximum degree in G, and $\delta(G)$ or δ for the minimum degree in G. By $\delta_{2}(G)$ or δ_{2}, we will denote the minimum of $\{d(u)+$ $d(v) \mid u, v \in V, u v \notin E\}$.

Email addresses: rg@mathcs.emory.edu (R.J. Gould), fpfende@mathcs.emory.edu (F. Pfender).

Let C be a cycle in G, and assign some orientation to C. For two vertices $x, y \in V(C)$, the notation $x C y$ will stand for the path from x to y along C following the orientation of C. An $x y$-path P in G is called a shortening path of C, if $V(P) \cap V(C)=\{x, y\}$ and $|P|<\min \{|x C y|,|y C x|\}$. An edge $x y \notin E(C)$ with $x, y \in V(C)$ is called a chord of C.

We will start by proving the following Lemma.
Lemma 1 Let G be a claw-free graph with $\delta_{2}(G) \geq 9$. Suppose, for some $m>3, G$ has an m-cycle C, but no ($m-1$)-cycle. Then there is no shortening path of C.

As we will see, Lemma 1 has several interesting consequences.
Theorem 2 Let G be a claw-free graph with maximum degree Δ and $\delta_{2}(G) \geq$ 9. If $\operatorname{diam}(G)<\frac{\Delta+6}{4}$, then G is subpancyclic.

Theorem 3 Let G be a claw-free graph with minimum degree δ and $\delta_{2}(G) \geq 9$. If G is not a line graph, and $\operatorname{diam}(G)<\frac{\delta+3}{2}$, then G is subpancyclic.

Theorem 4 Let G be a $\left\{K_{1,3}, Z_{4}\right\}$-free graph with $\delta_{2} \geq 9$. Then G is subpancyclic. If G is 2 -connected, then G is pancyclic.

Theorem 5 Let G be a $\left\{K_{1,3}, P_{7}\right\}$-free graph with $\delta_{2} \geq 9$. Then G is subpancyclic.

Theorem 6 Let G be a claw-free graph on $n \geq 5$ vertices with $\delta_{2}>2 \sqrt{3 n+1}-$ 4. Then G is subpancyclic.

From Theorem 6 we obtain as a corollary the following Theorem of Trommel, Veldman and Verschut [2]:

Theorem 7 Let G be a claw-free graph on $n \geq 5$ vertices. If the minimum degree δ is $\delta>\sqrt{3 n+1}-2$, then G is subpancyclic.

In the proofs of Theorems 2-6, we will frequently use the following theorem from Flandrin, Fournier and Germa [4], and its corollaries:

Theorem 8 Let G be a claw-free graph. Then the graph $\langle N\rangle$ induced by the neighborhood N of any vertex x falls in one of three cases:

1. $\langle N\rangle$ is hamiltonian.
2. $\langle N\rangle$ consists of two complete subgraphs G_{1} and G_{2}, connected with some edges, all of them having a common vertex in G_{1}.
3. $\langle N\rangle$ consists of two complete subgraphs with no edges in between.

Corollary 9 Let G be a claw-free graph with maximum degree Δ. Then G
contains cycles of length l for all l with $3 \leq l \leq\lceil\Delta / 2\rceil+1$.
Proof: The proof is obvious.
Corollary 10 Let G be a claw-free graph with minimum degree δ. If G is not a line graph, then G contains cycles of length l for all l with $3 \leq l \leq \delta+1$.

Proof: Observe that G is a line graph if the neighborhoods of all vertices are in the third class of Theorem 8. Therefore, there is a vertex x with $\langle N(x)\rangle$ in the first or second class of Theorem 8. In either case, $\langle N(x)\rangle$ is traceable, implying $\langle N(x) \cup\{x\}\rangle$ is pancyclic.

2 Proof of Lemma 1

Suppose instead P is a shortest shortening path. We will distinguish two cases.

Case 1 Suppose P is a chord $(P=x y)$.
Pick two chords $u_{1} u_{2}$ and $v_{1} v_{2}$, such that $u_{1}, u_{2} \in x C y, v_{1}, v_{2} \in y C x$, where both chords are minimal in the sense that there is no other chord $u v$ with $u, v \in u_{1} C u_{2}$ or $u, v \in v_{1} C v_{2}$. This does not exclude the possibility of one or both of these chords being identical with $x y$.

Let $K:=\{v \in V(C) \mid \exists u \in V(C): u v$ is a chord $\}, L:=V(C)-K$. If there is a shortening path of C with length exactly two with both its endvertices in $u_{1} C u_{2}\left(v_{1} C v_{2}\right)$, pick such a shortening path $s_{1} s_{2} s_{3}\left(t_{1} t_{2} t_{3}\right)$, such that $s_{1} C s_{3}$ $\left(t_{1} C t_{3}\right)$ is as short as possible, else set $s_{1}=s_{2}=u_{1}, s_{3}=u_{2}\left(t_{1}=t_{2}=v_{1}, t_{3}=\right.$ v_{2}).

Let $a_{1}, a_{2}, \ldots, a_{r}$ be the vertices of $s_{1}^{+} C s_{3}^{-} \cap L$ (in order), let $b_{1}, b_{2}, \ldots, b_{l}$ be the vertices of $t_{1}^{+} C t_{3}^{-} \cap L$. Without loss of generality, by symmetry we may assume that $l \geq r$. Further, if $l=r$ we may assume that $d\left(b_{i}\right) \geq 5$ for all $1 \leq i \leq l$ (since they belong to L, there are no edges between the a_{i} and the b_{j}, so $\delta_{2}(G) \geq 9$ guarantees the statement).

Now we will construct a cycle $C^{\prime} \subset\left\langle C \cup s_{2}\right\rangle$ with $m-r-1 \leq\left|C^{\prime}\right| \leq m-1$, which we will then extend to a C_{m-1} to get a contradiction.

Start with the cycle $s_{1} s_{2} s_{3} C s_{1}$. Note that $c=\left|s_{1} s_{2} s_{3} C s_{1}\right| \leq m-1$. If $c \geq$ $m-r-1$, this cycle is the desired C^{\prime}. Otherwise, $s_{1}^{+} C s_{3}^{-} \cap K \neq \emptyset$ and we can pick a vertex $u \in s_{1}^{+} C s_{3}^{-} \cap K$. Then u has an edge to some vertex $v \in s_{3}^{+} C s_{1}^{-}$. There can't be an edge $v^{-} v^{+}$, else there is a C_{m-1}. There is no claw centered at v, so $v^{+} u \in E$ or $v^{-} u \in E$. Therefore u can be inserted in the cycle between v
and one of its neighbors to extend the cycle. If two vertices $u, w \in s_{1}^{+} C s_{3}^{-} \cap K$ share the same neighbors $v, v^{+} \in s_{3}^{+} C s_{1}^{-}$, then all of $u C w$ (or $w C u$) can be inserted between v and v^{+}to extend the cycle. Thus, any number of vertices in $s_{1}^{+} C s_{3}^{-} \cap K$ can be inserted (we don't have control about the number of vertices of $s_{1}^{+} C s_{3}^{-} \cap L$ inserted in the process). With this process, we insert $m-r-1-c$ vertices out of $s_{1}^{+} C s_{3}^{-} \cap K$. The resulting cycle C^{\prime} is of the desired length, since at most r vertices out of L were inserted.

To extend C^{\prime}, consider $b_{1}, b_{4}, b_{7}, \ldots, b_{3[l / 3]-2}$. Since $t_{1} C t_{3}$ is the shortest such segment possible, these vertices have pairwise disjoint neighborhoods. Further, none of them is a neighbor of s_{2}, else there is a claw at s_{2}. By Theorem $8, C^{\prime}$ can be extended through the neighborhoods of these vertices by any number of vertices up to $d\left(b_{i}\right)-2$ for each $b_{i}, i=1,4, \ldots$.
If $l=r$, then $d\left(b_{i}\right) \geq 5$, so this extends C^{\prime} by up to $3\lceil l / 3\rceil \geq r$ vertices, resulting in a C_{m-1}.

If $3 \leq r<l$, let $d:=\min \left\{4, d\left(b_{1}\right), d\left(b_{4}\right), \ldots\right\}$. Then C^{\prime} is extendable by $\sum_{i=0}^{\lceil l / 3\rceil-1}\left(d\left(b_{1+3 i}\right)-2\right) \geq d-2+(\lceil l / 3\rceil-1)(7-d) \geq 3\lceil l / 3\rceil-1$ vertices, yielding a C_{m-1}.

If $1 \leq r<l=3$, consider b_{1} and b_{3}. One of them has degree at least 5 , so we can extend by up to 3 vertices, which is again enough.

If $r=1, l=2$, the only problem would be if $d\left(b_{1}\right)=d\left(b_{2}\right)=2$, else we could extend by one, which is enough. But then, $d\left(a_{1}\right) \geq 7$, and by a symmetric argument we can find a cycle $C^{\prime \prime} \subset\left\langle C \cup t_{2}\right\rangle$ which includes $a_{1}^{-} a_{1} a_{1}^{+}$, and $m-3 \leq\left|C^{\prime \prime}\right| \leq m-1$. This cycle can now be extended around a_{1} to a C_{m-1}.

Finally, if $r=0, C^{\prime}$ is already a C_{m-1}. This contradiction concludes the argument, hence C has no chords.

Case 2 Suppose P has length $\geq 2\left(P=z_{0} z_{1} z_{2} \ldots z_{l}\right.$, with $\left.x=z_{0}, y=z_{l}\right)$.
Assume, that P is chosen such that $k=|x C y|$ is minimal. Observe, that $k>l-1$ (else $k=l-1$, and a C_{m-1} is easily found). Let $v_{0}=y, v_{1}=$ $y^{+}, \ldots, v_{m-k+1}=x$. Since k is minimal, $x^{+} z_{1} \notin E$. Since C is chordless, $x^{+} v_{m-k} \notin E$. Thus $v_{m-k} z_{1} \in E$ to prevent a claw at x. A symmetric argument shows that $v_{1} z_{l-1} \in E$. Now $m-k \geq k$, else k would not have been minimal.

Consider $C^{\prime}=x P y C x$. We know that $m-k+l+1=\left|C^{\prime}\right| \leq m-2$. We will now extend C^{\prime} to a C_{m-1} to get the contradiction. None of the edges $v_{i} z_{j}, 2 \leq i \leq m-k-1,0 \leq j \leq l$ exists, else let j be minimal, such that for some $2 \leq i \leq m-k-1$, there is an edge $v_{i} z_{j}$ ($j \geq 1$, else chord). To prevent a claw at $z_{j}, z_{j+1} v_{i} \in E$ is necessary. But now, consider the paths $P^{\prime}=v_{i} z_{j+1} P y$ and $P^{\prime \prime}=v_{i} z_{j} P x$. Both of them are shorter than P. Since P is the shortest shortening path, P^{\prime} and $P^{\prime \prime}$ can not be shortening paths, thus
$1+l-j=\left|P^{\prime}\right| \geq\left|y C v_{i}\right|=i+1$, and $j+2=\left|P^{\prime \prime}\right| \geq\left|v_{i} C x\right|=m-k-i+2$. But this implies that $l \geq m-k \geq k$, a contradiction to P being a shortening path.

Now, note that none of the neighborhoods of $v_{2}, v_{5}, \ldots, v_{3\lfloor k / 3\rfloor-1}$ intersect, else k was not minimal.

If $k \geq 6$, let $d:=\min \left\{4, d\left(v_{2}\right), d\left(v_{5}\right), \ldots d\left(v_{3\lfloor k / 3\rfloor-1}\right)\right\}$. We can extend C^{\prime} around $v_{2}, v_{5}, \ldots, v_{3\lfloor k / 3\rfloor-1}$ by up to $\sum_{i=0}^{\lfloor k / 3\rfloor-1}\left(d\left(v_{2+3 i}\right)-2\right) \geq d-2+(\lfloor l / 3\rfloor-$ 1) $(7-d) \geq 3\lfloor k / 3\rfloor-1 \geq k-3$ vertices to get a C_{m-1}, just like in the first case.

If $k=5,\left|C^{\prime}\right|=m+l-4 \geq m-2$. As either $d\left(v_{2}\right) \geq 5$ or $d\left(v_{4}\right) \geq 5$, we can extend around it by one vertex, and we have our contradiction.

If $k \leq 4$, then $m-2 \geq\left|C^{\prime}\right| \geq m-k+l+1 \geq m-4+2+1=m-1$, a contradiction.

3 Proofs of the Theorems

Proof of Theorem 2: Suppose G is not subpancyclic. Then for some m, G has a C_{m}, but no C_{m-1}. By Corollary $9, m \geq \frac{\Delta+6}{2}$. But now the diameter condition guarantees a shortening path, which is impossible by Lemma 1.

Proof of Theorem 3: Suppose G is not subpancyclic. Then for some m, G has a C_{m}, but no C_{m-1}. By Corollary $10, m \geq \delta+3$. But now the diameter condition guarantees a shortening path, which is impossible by Lemma 1 .

Proof of Theorem 4: Suppose G is not subpancyclic. Then for some m, G has a C_{m}, but no C_{m-1}. By Corollary $9, m \geq 6$. By Lemma $1, C:=C_{m}$ has no chords. By the degree condition, there is a vertex $v \in V(C)$ with $d(v) \geq 5$.

If $m=6$, the neighborhood of v is split into two complete subgraphs, not connected by edges. Else there was a 5 -cycle in $N(v) \cup v$ by Theorem 8 (take a P_{4} in $N(v)$, and connect both its ends with v). Without loss of generality, let $x, y \in N(v) \cap N\left(v^{+}\right)\left(\right.$so $\left.x v^{-}, y v^{-} \notin E, x y \in E\right)$. Observe that $x v^{++}, y v^{++} \notin E$, else there is a 5 -cycle. Further x and y can not be adjacent to any other vertex of C, else there is a shortening path of C, which is not possible by Lemma 1 . Now $y x v^{+} C v^{-}$form a Z_{4}, a contradiction.

If $m \geq 7$, there exist $z \in V-V(C), y \in V(C)$, such that $z \in\left(N(y) \cap N\left(y^{+}\right)\right)-$ $N\left(y^{++}\right)$. But then $z y y^{+} C y^{5+}$ form a Z_{4} (Again, z can not be adjacent to any of $y^{3+}, y^{4+} y^{5+}$, else there was a shortening path of C).

If G is 2-connected, then it is hamiltonian by a result of Brousek, Ryjáček and Favaron [3], thus G is pancyclic.

Proof of Theorem 5: Suppose G is not subpancyclic. Then for some m, G has a C_{m}, but no C_{m-1}. By Corollary $9, m \geq 6$. By Lemma $1, C:=C_{m}$ has no chords.

If $m=6$, let $v \in V(C)$ be the vertex on C with the largest degree. The degree condition guarantees $d(v) \geq 5$. By Theorem 8 , the neighborhood of v is split into two complete subgraphs of size at most 3, not connected by edges, else there is a C_{5} in $N(v) \cup v$. Hence, $\left|N(v) \cap N\left(v^{-}\right)\right|,\left|N(v) \cap N\left(v^{+}\right)\right| \in\{1,2\}$, with one of them being 1 only in the case that $d(v)=5$. Let $x \in N(v) \cap N\left(v^{+}\right), y \in$ $N(v) \cap N\left(v^{-}\right)$. Clearly $x y \notin E$ or a C_{5} is immediate. Now neither of the two edges $x v^{++}, y v^{--}$can exist by the following argument: If $\left|N(v) \cap N\left(v^{+}\right)\right|=2$, then $x v^{++}$completes a 5 -cycle. If $\left|N(v) \cap N\left(v^{+}\right)\right|=1$, then $d(v)=5$, and therefore $d(z) \geq 4$ for all $z \in V(C)$ (a z with a smaller degree would guarantee a vertex of degree ≥ 6 in the chordless C, contradicting $d(v)$'s maximality). In particular $d\left(v^{+}\right) \geq 4$. Let $x^{\prime} \in N\left(v^{+}\right)-\left\{v, v^{++}, x\right\}$. Then $x^{\prime} v^{++} \in E$ to prevent a claw at v^{+}. If $x v^{++} \in E$, then $x v^{++} x^{\prime} v^{+} v x$ is a C_{5}. Hence, in either case $x v^{++} \notin E$. The argument against $y v^{--} \in E$ is symmetric.

Further, x, y can not have any other adjacencies on C, else a shortening path of C exists, a contradiction to Lemma 1. Now $x v^{+} C v^{-} y$ is a P_{7}, a contradiction.

If $m=7$, observe that there are at most two vertices on C with degree ≤ 4. Thus there is a vertex $v \in V(C)$ with $d(v), d\left(v^{+}\right), d\left(v^{-}\right) \geq 5$. By Theorem 8 , the neighborhood of v is split into two complete subgraphs, not connected by edges, else there is a C_{6} in $N(v) \cup v$. Without loss of generality, let $x, y \in N(v) \cap$ $N\left(v^{+}\right)$. Then $x v^{++} \notin E$, else there is a C_{6} in $v^{+} \cup N\left(v^{+}\right)$, using v, v^{+}, v^{++}, x, y and one other neighbor of v^{+}. Further, x has no other neighbors on C, else a shortening path of C exists. But now $x v^{+} C v^{-}$is a P_{7}, a contradiction.

If $m \geq 8, v C v^{6+}$ forms a P_{7} for any $v \in V(C)$, a contradiction.
Hence, G is subpancyclic.
Proof of Theorem 6: Suppose G is not subpancyclic. Then for some m, G has a C_{m}, but no C_{m-1}. By Corollary $9, m \geq \Delta / 2+3 \geq \delta_{2} / 4+3$.

Case 1 Suppose $n<12$.
Note that the degree sum condition implies the following bounds on δ_{2} :

$$
\begin{array}{ll}
n \in\{6,7,8\} & \Rightarrow \delta_{2} \geq n-1, \\
n \in\{9,10\} & \Rightarrow \delta_{2} \geq n-2, \\
n=11 & \Rightarrow \delta_{2} \geq n-3 .
\end{array}
$$

Consider all the possible values for m. Since $n \geq 5, m \geq \frac{\Delta}{2}+3>\frac{\sqrt{3 n+1}}{2}+3 \geq 5$. Say, $C=C_{m}=v_{1} \ldots v_{m} v_{1}$.

If $m=6$, then the only chords C could have are of the form $v_{i} v_{i+3}$. But then claw-freeness forces either $v_{i} v_{i+2}$ or $v_{i} v_{i+4}$, which leads to a C_{5}. So C has no chords.

For $n \leq 8$, there are at least

$$
\sum_{i=1}^{6}\left(d\left(v_{i}\right)-2\right) \geq 3 \delta_{2}-12 \geq 3(n-1)-12=3 n-15
$$

edges from C to $V-C$, but at most $3(n-6)=3 n-18$ edges from $V-C$ to C, since no vertex in $V-C$ can have more then three neighbors on C without producing a C_{5}. Thus, $n \geq 9$.

For $9 \leq n \leq 10$, the same count shows that there are exactly $3 n-18$ edges from C to $V-C$, hence every vertex of $V-C$ has exactly three neighbors on C. To avoid a claw and a C_{5}, all three have to be in a row. If two of the vertices $u, w \in V-C$ are adjacent, a C_{5} can easily be found. But now $d(u)+d(w)=6<\delta_{2}$, a contradiction.

For $n=11$, there are at least $3 \delta_{2}-12 \geq 12$ edges from C to $V-C$, so out of the five vertices in $V-C$, at least two vertices $u, w \in V-C$ have three neighbors on the cycle, and two more vertices $x, y \in V-C$ have at least two neighbors on the cycle. If any of the edges $u w, u x, u y, w x, w y$ exists, a C_{5} can easily be found. Since $\delta_{2} \geq 8$, both u and w must be adjacent to the remaining vertex z. But now again, a C_{5} can be found.

If $m=7$, the only possible chords are of the form $v_{i} v_{(i+3) \bmod 7}$. To avoid claws, all chords of this form have to exist if one exists. But now $v_{1} v_{2} v_{5} v_{6} v_{7} v_{4} v_{1}$ is a C_{6}. Therefore, C has no chords. This yields immediately $n \geq 8$. Observe, that for $n<12$, the degree sum condition ensures that $\delta_{2} \geq n-3$. Now a similar count as in the last case gives at least

$$
\sum_{i=1}^{7}\left(d\left(v_{i}\right)-2\right) \geq \frac{7}{2} \delta_{2}-14 \geq \frac{7}{2}(n-3)-14=3 n-21+\frac{n-7}{2}
$$

edges going out of C, with at most $3(n-7)$ going in, a contradiction.
If $m=8$ and C has a chord, then C has exactly the chords (after a cyclic renumbering of the vertices) $v_{1} v_{5}, v_{1} v_{6}, v_{2} v_{5}, v_{2} v_{6}$. If any of those are missing, there is a claw, if there are any more than those, there is a C_{7}. But now the degree sum condition forces v_{3} or v_{8} to have a neighbor outside the cycle, say $v_{3} x \in E$. To avoid a claw, $v_{2} x \in E$ or $v_{4} x \in E$. But this again yields a C_{7}. So
C has no chords, and a similar count as before yields

$$
\sum_{i=1}^{8}\left(d\left(v_{i}\right)-2\right) \geq 4 \delta_{2}-16 \geq 4(n-3)-16=4 n-28>3(n-8)
$$

a contradiction.

If $m=9$, a similar count shows the existence of chords. But if there is a chord, claw-freeness forces the appearance of a K_{4} of the form $v_{i} v_{i+1} v_{i+4} v_{i+5}$ inside $\langle C\rangle$, say at $v_{1} v_{2} v_{5} v_{6}$.

Now v_{8} has no neighbors outside C : Suppose $x \in V-C, x v_{8} \in E$. To prevent a claw at v_{8}, x has to be adjacent to v_{7} or v_{9}. But then the 7 -cycle $C^{\prime}=v_{2} v_{5} C v_{2}$ can be extended to a C_{8} through x.

If $v_{8} v_{3} \in E$, then v_{3} is adjacent to either v_{7} or v_{9} to avoid a claw at v_{8}. But then again, C^{\prime} can be extended through v_{3}. The symmetric argument shows that $v_{8} v_{4} \notin E$. Further, if $v_{8} v_{2} \in E$, then $v_{8} v_{3} \in E$ to prevent a claw at v_{2}, which is not possible. The symmetric argument shows that $v_{8} v_{5} \notin E$. So $d\left(v_{8}\right)=2$. But this implies that $d\left(v_{3}\right) \geq n-5$. We know that v_{3} is not adjacent to v_{8}, v_{1} and v_{5}. Further, v_{3} can not be adjacent to v_{9} without creating a claw at v_{9}. Thus, v_{3} is adjacent to all other vertices, in particular $v_{3} v_{6}, v_{3} v_{7} \in E$. But now, C^{\prime} can be extended through v_{3}, a contradiction.

If $m \geq 10$, a chord is guaranteed, again. Consider a chord $v_{i} v_{j}$, such that $\left|v_{i} C v_{j}\right|$ is minimal. Now find a chord $v_{r} v_{s}$ on $v_{j} C v_{i}$, such that there is no other chord within $v_{r} C v_{s}$. Either all vertices in $v_{r} C v_{s}$ or all vertices in $V_{i} C v_{j}$ have chords, since there is at most one vertex outside C, and all vertices with degree at most 3 have to be pairwise adjacent. Say all vertices in $v_{r} C v_{s}$ have chords. Now, similar to the first case in the proof of Lemma 1, insert all but one of $v_{r+1} C v_{s-1}$ into $v_{s} C v_{r} v_{s}$ to construct a C_{m-1}.

Case 2 Suppose $n \geq 12$, $m \geq \delta_{2} / 2+3$.
By Lemma 1, C has no chords ($n \geq 12$ guarantees $\delta_{2} \geq 9$). Thus there are

$$
\sum_{v \in V(C)}(d(v)-2) \geq m\left(\frac{\delta_{2}}{2}-2\right)
$$

edges from C to $G-C$. On the other hand, every vertex in $G-C$ can have at most three neighbors on C, otherwise C has a shortening path, which is impossible by Lemma 1. So

$$
m\left(\frac{\delta_{2}}{2}-2\right) \leq 3(n-m)
$$

thus

$$
3 n \geq m\left(\frac{\delta_{2}}{2}+1\right) \geq\left(\frac{\delta_{2}}{2}+3\right)\left(\frac{\delta_{2}}{2}+1\right)>(\sqrt{3 n+1}+1)(\sqrt{3 n+1}-1)=3 n
$$

a contradiction.
Case 3 Suppose $n \geq 12$, $m<\delta_{2} / 2+3$.
Let $d:=\left\lceil\delta_{2} / 2\right\rceil$, so $m \leq d+2$. By Corollary 9 , we know that $m \geq \Delta / 2+$ $3 \geq d / 2+3$, particularly $m \geq 6$. By Lemma $1, C$ has no chords. Let $C=$ $v_{1} v_{2} \ldots v_{m} v_{1}$. Since all vertices of degree $<d$ have to be pairwise adjacent, we may assume that $d\left(v_{i}\right) \geq d$ for $3 \leq i \leq m$. For $i=1,2, \ldots, m-1$, let $N_{i}:=N\left(v_{i}\right) \cap N\left(v_{i+1}\right)$, let $N_{m}:=N\left(v_{m}\right) \cap N\left(v_{1}\right)$. Since G is claw-free, every vertex adjacent to C lies in some N_{i}. Note, that if $d\left(v_{i}\right) \geq d$, then $N_{i-1} \cap N_{i}=\emptyset$, and N_{i-1} and N_{i} induce complete subgraphs, otherwise, $\left\langle N\left(v_{i}\right)\right\rangle$ is traceable by Theorem 8 , so we can find cycles of any length up to $d\left(v_{i}\right)+1$ in $\left\langle N\left(v_{i}\right) \cup v_{i}\right\rangle$, in particular one of length $m-1$.

Now we claim that there can not be any edges or 2-paths between N_{i} and N_{j}, for $3 \leq i<j \leq m-1$. If $j-i \geq 4$, an edge or 2-path leads to a shortening path of C, a contradiction to Lemma 1. If $j-i \leq 3$ and $m \geq 7$, one can easily find a cycle of length at most 6 through that edge or 2-path, v_{i+1} and v_{j}, which we can then extend to a C_{m-1}, using any number of vertices out of $N\left(v_{j}\right)$. If $m=6$, then $j-i \leq 2$, and one can easily find a cycle of length at most 5 through that edge or 2-path, v_{i+1} and v_{j}, which we can then extend to a C_{5}, using any number of vertices out of $N\left(v_{j}\right)$.

Since all vertices of degree less than d have to be pairwise adjacent, we can now guarantee, after possibly renumbering the vertices of C, that all such vertices in $H:=\bigcup N_{i} \cup C$ must lie in $N_{m} \cup N_{1} \cup N_{2} \cup\left\{v_{1}, v_{2}\right\}$.

Our next claim is, that for two vertices $x, y \in N_{i}, 3 \leq i \leq m-1$, their neighborhoods intersect as follows: $N(x) \cap N(y)=N_{i} \cup\left\{v_{i}, v_{i+1}\right\}-\{x, y\}$. We already established that it is at least of that size, since $\left\langle N_{i}\right\rangle$ is complete. But it can not be bigger; for suppose, there is a $z \in(N(x) \cap N(y))-H$. Then, z is not adjacent to v_{i}. Therefore, the neighborhood of x is traceable by Theorem 8 , and since $d(x) \geq d$, we can find a C_{m-1} in $\langle N(x) \cup x\rangle$.

Let $M_{i}:=\left\{z \in V-H: z x \in E\right.$ for some $\left.x \in N_{i}\right\}$. Since $\left|N_{i}\right| \leq m-4$ for all $3 \leq i \leq m-1$ (else you can find a C_{m-1} in $\left\langle N_{i} \cup\left\{x_{i}, x_{i+1}\right\}\right\rangle$, since $\left\langle N_{i}\right\rangle$ is complete), and the degree of vertices in N_{i} is at least d, every $x \in N_{i}$ has at least $d-m+3$ neighbors outside $N_{i} \cup\left\{x_{i}, x_{i+1}\right\}$. Thus, $\left|M_{i}\right| \geq(d-m+3)\left|N_{i}\right|$ for $3 \leq i \leq m-1$. Further, the M_{i} are disjoint, otherwise there would be 2-paths between the N_{i}.

But now we see that

$$
\begin{aligned}
n & \geq|C|+\left|N_{m} \cup N_{1} \cup N_{2}\right|+\sum_{i=3}^{m-1}\left|N_{i} \cup M_{i}\right| \\
& \geq|C|+\left|N_{m} \cup N_{1} \cup N_{2}\right|+\sum_{i=3}^{m-1}(d-m+4)\left|N_{i}\right| \\
& \geq^{*} m+\frac{\left(d\left(v_{m}\right)-2\right)+\left(d\left(v_{1}\right)-2\right)+\left(d\left(v_{3}\right)-2\right)+(d-m+4) \sum_{i=4}^{m-1}\left(d\left(v_{i}\right)-2\right)}{2} \\
& \geq \frac{d}{2}+3+\frac{d-2+\delta_{2}-4+(d-m+4)(m-4)(d-2)}{2} \\
& \geq^{* *} \frac{4 d-1+(2 d-4)(d-2)}{2} \\
& >d^{2}-2 d+3 \\
& >n,
\end{aligned}
$$

where \geq^{*} results from a count that counts every vertex in the N_{i} at most twice, and $\geq^{* *}$ comes from the fact, that for $d \geq 2$,

$$
\min _{d / 2+3 \leq m \leq d+2}((d-m+4)(m-4))=2 d-4,
$$

and $\delta_{2} \geq 2 d-1$. This contradiction concludes the proof.

4 Sharpness

In this section we demonstrate the sharpness of some of the results.
The following family of graphs (see also figure 1) demonstrates the sharpness of the bound on δ_{2} in Lemma 1 . Let $k \geq 4$, and let $H_{1}, \ldots, H_{2 k}$ be $2 k$ disjoint copies of K_{5}, and $u_{i} v_{i}$ an edge of $H_{i}(i=1, \ldots, 2 k)$. Now the graph F_{k} is obtained from $\bigcup_{i=1}^{2 k} H_{i}-u_{i} v_{i}$ by adding the edges $v_{1} u_{2}, v_{2} u_{3}, \ldots, v_{2 k-1} u_{2 k}, v_{2 k} u_{1}$ and the edges $u_{1} v_{k}, u_{1} u_{k+1}, u_{2 k} v_{k}, u_{2 k} v_{k+1}$. We have $\delta_{2}\left(F_{k}\right)=8$, and there is a $C_{6 k}$ with chords, but no C_{p} for $5 k+2<p<6 k$.

The graph G in figure 2 shows that in Theorem $5 P_{7}$-free can not be replaced by P_{8}-free. This graph is $\left\{K_{1,3}, P_{8}\right\}$-free with $\delta_{2}=10$, and G contains a C_{8} but no C_{7}.

The degree bounds in Theorem 6 and Theorem 7 are sharp. Consider the following family of graphs from [2] :

For any integer $p \geq 2$, we define the graph G_{p} as follows. Let H_{1}, \ldots, H_{p} be p disjoint copies of $K_{3 p-2}$, and $u_{i} v_{i}$ an edge of $H_{i}(i=1, \ldots, p)$. Now G_{p} is obtained from $\bigcup_{i=1}^{p} H_{i}-u_{i} v_{i}$ by adding the edges $v_{1} u_{2}, v_{2} u_{3}, \ldots, v_{p-1} u_{p}, v_{p} u_{1}$.

The graph G_{p} is both hamiltonian and claw-free. Furthermore, we have $\delta\left(G_{p}\right)=$ $3 p-3$ and $\left|V\left(G_{p}\right)\right|=p(3 p-2)$, implying that $\delta\left(G_{p}\right)=\sqrt{3 n+1}-2$. It is
obvious that G_{p} does not contain $C_{3 p-1}$ and hence G_{p} is not (sub)pancyclic.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press Inc, London, 1978.
[2] H. Trommel, H.J. Veldman, A. Verschut, Pancyclicity of claw-free hamiltonian graphs, Discrete Mathematics 197/198 (1999) 781-789.
[3] J. Brousek, Z. Ryjáček, O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Mathematics 196 (1999) 29-50.
[4] E. Flandrin, I. Fournier, A. Germa, Pancyclism in $K_{1,3}$-free graphs, Ph.D Thesis, 1990.

11,431

Fig. 1. Graph F_{k}

Fig. 2. Graph G

