NEW ORE-TYPE CONDITIONS FOR H-LINKED GRAPHS

MICHAEL FERRARA ${ }^{1}$, RONALD GOULD ${ }^{2}$, MICHAEL JACOBSON ${ }^{3}$, FLORIAN PFENDER ${ }^{4}$, JEFFREY POWELL ${ }^{5}$, THOR WHALEN ${ }^{6}$

Abstract

For a fixed (multi)graph H, a graph G is H-linked if any injection $f: V(H) \rightarrow V(G)$ can be extended to an H-subdivision in G. The notion of an H-linked graph encompasses several familiar graph classes, including k-linked, k ordered and k-connected graphs. In this paper, we give two sharp Ore-type degree sum conditions that assure a graph G is H-linked for arbitrary H. These results extend and refine several previous results on H-linked, k-linked and k-ordered graphs.

All graphs in this paper are finite. For notation not defined here we refer the reader to [1]. If $X \subseteq V(G)$ is a vertex set, we will often just write X for the induced subgraph $G[X]$ if the context is clear. Given an integer-valued graph parameter p and a graph property \mathcal{P}, the p-threshold for \mathcal{P} is the minimum $k=k(n)$ such that any graph G of order n with $p(G) \geq k$ has property \mathcal{P}. We will frequently consider p-thresholds restricted to specific graph classes, such as sufficiently large graphs, or graphs with a prescribed number of edges.

Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of G, respectively, and let $\sigma_{2}(G)$ denote the minimum degree sum of nonadjacent vertices in G. Throughout the paper, we will often refer to σ_{2} conditions as Ore-type conditions in light of Ore's classical theorem on hamiltonian graphs. We will also let $n_{i}(G)$ be the number of vertices of degree i in G.

A graph G is k-linked if for any ordered subset of $2 k$ vertices $S=\left\{s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right\}$ there exist disjoint paths P_{1}, \ldots, P_{k} such that for each i, P_{i} is an $s_{i}-t_{i}$ path. We will refer to this collection of paths as an S-linkage in G. We also say that G is k-ordered if for any list of k vertices v_{1}, \ldots, v_{k} in G, there exists a cycle that visits these vertices in the given order.

For a fixed graph H, a graph G is H-linked if any injection $f: V(H) \rightarrow V(G)$ can be extended to an H-subdivision in G. We refer to the injection f as an H-linkage

[^0]problem (in G). The notion of an H-linked graph generalizes those of k-linked, k ordered and k-connected graphs, as G is $k K_{2}$-linked if and only if G is k-linked, G is C_{k}-linked if and only if G is k-ordered and G is k-connected if and only if G is $K_{1, k}$-linked.

1. Degree Conditions for H-Linked Graphs

Kawarabayashi, Kostochka and Yu [8] determined sharp minimum degree and degree sum conditions for a graph G of order at least $2 k$ to be k-linked.

Theorem 1. Let G be a graph on $n \geq 2 k$ vertices. If

$$
\delta(G) \geq \begin{cases}\frac{n+2 k-3}{2}, & \text { if } n \geq 4 k-1 \\ \frac{n+5 k-5}{3}, & \text { if } 3 k \leq n \leq 4 k-2 \\ n-1, & \text { if } 2 k \leq n \leq 3 k-1\end{cases}
$$

or

$$
\sigma_{2}(G) \geq \begin{cases}n+2 k-3, & \text { if } n \geq 4 k-1 \\ \frac{2(n+5 k)}{3}-3, & \text { if } 3 k \leq n \leq 4 k-2 \\ 2 n-3, & \text { if } 2 k \leq n \leq 3 k-1\end{cases}
$$

then G is k-linked. These bounds are best possible.
For sufficiently large graphs, the relevant portion of these conditions were obtained independently in [6]. Sharp minimum degree and degree sum conditions for k-ordered graphs were determined in [2] and [9], respectively.

Theorem 2. Let G be a graph of order n and $k \geq 2$ be an integer. If
(a) $n \geq 11 k-3$ and $\delta(G) \geq\left\lceil\frac{n}{2}\right\rceil+\left\lfloor\frac{k}{2}\right\rfloor-1$, or
(b) $n \geq 53 k^{2}$ and $\sigma_{2}(G) \geq n+\left\lceil\frac{3 k-9}{2}\right\rceil$,
then G is k-ordered.
Turning our attention the the broader class of H-linked graphs, minimum degree conditions that assure a graph G is H-linked for arbitrary connected H were first given in [3] and [10]. These were subsequently strengthened in [5] to include arbitrary multigraphs H, thereby extending Theorem 1. Similar conditions concerned with finding (strong) H-immersions in a graph G appear in [4]. In order to discuss these results, we must first introduce a useful parameter.

For a (multi-)graph H, let

$$
b(H)=\max _{\substack{A \cup B \cup C=V(H) \\ V(H) \neq C}}|E(A, B)|+|C| .
$$

As every graph G has a bipartite subgraph with at least half of the edges in G, $b(H) \geq|E(H)| / 2$. When H is connected, it is straightforward to see that we may choose C to be empty in any optimal partition, so that $b(H)$ is equal to the maximum
number of edges in a bipartite subgraph of H. As was noted in [4] and [5], when H is disconnected, $b(H)$ depends not only on the maximum size of a bipartite subgraph of H, but also on the number of components of H without even cycles.

The following result of Gould, Kostochka and Yu gives the δ-threshold for H linkedness and also represents the current best bound on the necessary order of the target graph G.

Theorem 3. Let H be a (multi-) graph with $c(H)$ components that do not contain even cycles and G be a graph of order $n \geq 9.5(|E(H)|+c(H)+1)$. If

$$
\delta(G) \geq \frac{1}{2}(n+b(H)-2),
$$

then G is H-linked. This result is sharp.
Kostochka and Yu [11] gave Ore-type conditions, dependent on k, implying that a graph G is H-linked for every graph H with k edges.

Theorem 4. Let G be a graph of order n and let H be a simple graph with k edges and minimum degree at least two. If

$$
\sigma_{2}(G) \geq\left\{\begin{array}{cl}
\left\lceil n+\frac{3 k-9}{2}\right\rceil & n>2.5 k-5.5 \\
\left\lceil n+\frac{3 k-8}{2}\right\rceil & 2 k \leq n \leq 2.5 k-5.5 \\
2 n-3 & k \leq n \leq 2.5 k-1,
\end{array}\right.
$$

then G is H-linked.
In light of Theorem 2, one interesting consequence of Theorem 4 is that amongst those graphs H with k edges, C_{k} has the largest σ_{2}-threshold for H-linkedness when n is sufficiently large.

The goal of this paper is to refine Theorem 4 by giving sharp Ore-type conditions that assure a graph G is H-linked for an arbitrarily chosen H. We note here that the σ_{2}-threshold for H-linkedness is not, in general, twice the minimum degree given in Theorem 3, as Theorem 2 demonstrates that this is not the case for $H=C_{k}$ when n is sufficiently large. Our first result demonstrates that twice the minimum degree in Theorem 3 does suffice if we add only a mild minimum degree condition to G.

Theorem 5. Let H be a multigraph and G be a graph with $|G| \geq 20|E(H)|+n_{0}(H)$. If

$$
\begin{aligned}
\delta(G) & \geq 4|E(H)|+n_{0}(H), \quad \text { and } \\
\sigma_{2}(G) & \geq|G|+b(H)-2,
\end{aligned}
$$

then G is H-linked. This result is sharp.

We also utilize Theorem 5 to give a sharp σ_{2} bound that, without any additional minimum degree condition, assures a graph G is H-linked for any simple graph H. Let

$$
a(H)=\max _{A \cup B=V(H)}\left(|E(A, B)|+|B|-\Delta_{B}(A)\right) .
$$

Theorem 6. Let H be a simple graph and G be a graph of order $n>20|E(H)|$. If

$$
\sigma_{2}(G) \geq n+a(H)-2
$$

then G is H-linked. This result is sharp.
Observe that for arbitrary $H, a(H) \geq b(H)$. To see this, suppose that $V(H)=$ $A \cup B \cup C$ with $e(A, B)+|C|=b(H)$. Then, if we let $B^{*}=B \cup C$, it follows that

$$
a(H) \geq e\left(A, B^{*}\right)+\left|B^{*}\right|-\Delta_{B^{*}}(A) \geq e(A, B)+|C|=b(H) .
$$

There are a number of graphs H, including C_{k}, for which $a(H)>b(H)$. As such, Theorem 6 demonstrates that there are many choices of H for which the σ_{2}-threshold for H-linkedness is more than twice the δ-threshold.

2. Preliminary Lemmas

A version of the following Lemma originally appears in [12], pertaining to directed graphs. The proof for undirected graphs is analogous and, hence, omitted.

Lemma 7. Let G be a graph, $k \geq 1$ and $v \in V(G)$ with $d(v) \geq 2 k-1$. If $G-v$ is k-linked, then G is k-linked.

Thomas and Wollan [14] used the following to prove that every $10 m$-connected graph is m-linked, which represents the current best bound on connectivity sufficient to assure linkedness.

Theorem 8. Let $m \geq 2$ and G be a $2 m$-connected graph. If $|E(G)| \geq 5 m|G|$, then G is m-linked.

Corollary 9. Let $m \geq 2$ and G be a $2 m$-connected graph of order n. If $\sigma_{2}(G) \geq n$ and $n \geq 20 m$, then G is m-linked.

We close with the following straightforward fact and a useful, but equally straightforward, lemma.

Fact 10. Let G be a graph and H a (multi-)graph with $|E(H)|=m$ and $n_{0}(H)=0$. If G is m-linked, then G is H-linked.

Lemma 11. Let H be a multigraph, and let G be an edge maximal non-H-linked graph. Then for every $m \geq|E(H)|$ and $X \subseteq V(G)$ with $|X| \geq 2 m$:

$$
G[X] \text { is m-linked } \Longleftrightarrow G[X] \text { is complete. }
$$

3. Proofs of Theorems 5 and 6

We are now ready to prove our main results.
Proof of Theorem 5. Sharpness is established by the following example, which is identical to the sharpness example for Theorem 3. Let $A \cup B \cup C$ be a partition of $V(H)$ such that $|E(A, B)|+|C|=b(H)$. Create G by first adding $|E(A, B)|-1$ vertices to C to obtain C^{*}, and then adding vertices to A and B to create sets A^{*} and B^{*}, each of size $\frac{n-\left|C^{*}\right|}{2}$. The edges of G are all possible edges in $\left(A^{*} \cup C^{*}\right)$ and $\left(B^{*} \cup C^{*}\right)$. It is straightforward to see that G is not H-linked, as there is not a sufficient number of edges to create paths representing the edges in $E(A, B)$.

For the proof of the main statement of the Theorem, we will in fact show a slightly stronger statement as follows.

Claim 1. Let H be a multigraph and G be a graph with $|G| \geq 20|E(H)|+n_{0}(H)$, and let $V(H) \subseteq V(G)$. If

$$
\begin{aligned}
\delta(G) & \geq 4|E(H)|+n_{0}(H), \text { and } \\
d(x)+d(y) & \geq|G|+b(H)-2, \text { whenever } x, y \in V(G) \backslash V(H) \text { and } x y \notin E(G),
\end{aligned}
$$

then there is an H-linkage in G.
Let $n=|G|$ and $m=|E(H)|$. Note that the statement is trivial for $m \leq 1$, so we may also assume that $m \geq 2$.

For the sake of contradiction, we assume that there is no H-linkage in G, and furthermore that Claim 1 is true for every proper subgraph $H^{\prime} \subsetneq H$. Further, assume that G is edge maximal without an H-linkage.

If $v \in V(H)$ is isolated in H, then solving the H-linkage problem in G is equivalent to solving the associated $(H-v)$-linkage problem in $G-v$. As $G-v$ satisfies all of the conditions in Claim 1 (note that $b(H-v)=b(H)-1$), this yields a contradiction, so H does not contain any isolated vertices.

If G is $2 m$-connected, we are done by Corollary 9 , so we may assume that there is a minimal cut set Z in G with $|Z| \leq 2 m-1$. The degree conditions on G imply that $G-Z$ has exactly two components, call them X and Y and we assume, without loss of generality, that $|X| \leq|Y|$. Let $x \in X$ and $y \in Y$, then

$$
n+b(H)-2 \leq d(x)+d(y) \leq|X|+|Y|+2|Z|-2 \leq n+|Z|-2
$$

so

$$
\delta_{X}(X)+\delta_{Y}(Y) \geq|X|+|Y|-|Z|+b(H)-2
$$

Therefore,

$$
\delta_{X}(X) \geq \max \{|X|-|Z|+b(H)-1, \delta(G)-|Z|\} \geq|X|-\frac{3}{2} m
$$

We now wish to show that both X and Y are m-linked. If $|X| \geq 5 m$, then $\delta_{X}(X) \geq \frac{7|X|}{2}$, so X is m-linked by Theorem 1. Suppose, then, that $|X|<5 m$, so $2(|X|+|Z|)<|G|$ and X is complete by the degree sum condition. Since $|X| \geq$
$\delta(G)+1-|Z| \geq 2 m+2$, the fact that X is complete implies that X is m-linked. Analogously, we also conclude that Y is m-linked.

Let $z \in Z$, and suppose there are vertices $x \in X$ and $y \in Y$ such that $x z, y z \notin$ $E(G)$. Then

$$
n+|Z|+2 d(z) \geq d(x)+2 d(z)+d(y) \geq 2 n+m-4
$$

so

$$
d(z) \geq \frac{1}{2}(n+m-|Z|-4) \geq \frac{1}{2}(n-m-4)>6 m .
$$

Thus, for every $z \in Z$, we have $d_{X}(z) \geq 2 m$ or $d_{Y}(z) \geq 2 m$. Let

$$
\begin{aligned}
B & :=\left\{v \in V(G): d_{Y}(v) \geq 2 m-1\right\}, \text { and } \\
A & :=V(G) \backslash B .
\end{aligned}
$$

Then, $A \supseteq X$ and $B \supseteq Y$ are m-linked by Lemma 7 , and therefore complete by Lemma 11. Let A^{H}, B^{H} be the partition of $V(H)$ induced by this partition of $V(G)$.

Choose $a b \in E(H)$, let $H^{\prime}=H-a b$ and let $F \subseteq G$ be a solution of the H^{\prime} linkage problem of minimum order. In particular, this implies that $|F \cap A| \leq 2 m$ and $|F \cap B| \leq 2 m$, so $A \backslash F \neq \emptyset$ and $B \backslash F \neq \emptyset$. Since A and B are complete, we conclude that $a \in A$ and $b \in B$, and in particular, $E(H)=E_{H}(A, B)$. By the minimality of F we have $\left|E_{F}(A, B)\right|=\left|E_{H^{\prime}}(A, B)\right|=|E(H)|-1$.

Let $v \in A \backslash F$ and $w \in B \backslash F$. If $v w \in E(G)$, then we can extend F to a solution of the H-linkage problem using the path $a v w b$, so we conclude that $v w \notin E(G)$. Similarly, if there exists an $x \in(N(v) \cap N(w)) \backslash F$, we can extend F to a solution of the H-linkage problem using avxwb, so $N(v) \cap N(w) \subseteq F$.

It is our goal to show that $|N(v) \cap N(w)| \leq\left|E_{F}(A, B)\right|$. Consider first $x y \in$ $E(F) \backslash E(H)$ with $x \in A$ and $y \in B$. If $x \in N(w)$ and $y \in N(v)$, then we can replace $x y$ by $x w$ and $v y$ in F and solve the H-linkage problem, using one of the new edges instead of $x y$ and the other to connect a and b. So $|N(v) \cap N(w) \cap\{x, y\}| \leq 1$ for all $x y \in E_{F}(A, B) \backslash E(H)$.

Now, let $x y \in E(F) \cap E(H)$ with $x \in A$ and $y \in B$. If $\{x, y\}=\{a, b\}$ (so that a and b are joined by at least two edges in H), then by the same argument as above, $|N(v) \cap N(w) \cap\{x, y\}| \leq 1$. If, instead $\{x, y\} \neq\{a, b\}$, then there is another edge $x^{\prime} y^{\prime} \in E(F)$ with $x^{\prime} \in A$ and $y^{\prime} \in B$ that lies on an $x-y$ path in F. Now, if $x=x^{\prime}$ (or, nearly identically, if $y=y^{\prime}$) then as above, $\left|N(v) \cap N(w) \cap\left\{x, y^{\prime}\right\}\right| \leq 1$, and so $\left|N(v) \cap N(w) \cap\left\{x, y, x^{\prime}, y^{\prime}\right\}\right| \leq 2$. Also, if $x \neq x^{\prime}, y \neq y^{\prime}$, and $v y, x^{\prime} w \in E(G)$, then we can replace $x^{\prime} y^{\prime}$ by $v y$ in F and use $x^{\prime} w$ to connect a and b. Similarly, we can't have $x \neq x^{\prime}, y \neq y^{\prime}$ and both of $x w, v y^{\prime} \in E(G)$, so again, $\left|N(v) \cap N(w) \cap\left\{x, y, x^{\prime}, y^{\prime}\right\}\right| \leq 2$.

We therefore conclude that $|N(v) \cap N(w)| \leq\left|E_{F}(A, B)\right|$. This yields a contradiction, as then

$$
a(H) \leq|N(v) \cap N(w)| \leq\left|E_{F}(A, B)\right|=|E(H)|-1 \leq a(H)-1 .
$$

Proof of Theorem 6. Sharpness follows from the following example. Starting from a partition $A \cup B$ of $V(H)$ with $\left(|E(A, B)|+|B|-\Delta_{B}(A)\right)=a(H)$, add a set C of $|E(A, B)|-1$ vertices. Blow up B to B^{*} by adding $n-|A|-|B|-|C|$ vertices to B and then add all edges in $A \cup C, B^{*} \cup C$, and all edges between A and B except for the edges in H. This graph is not H-linked, as there is not a sufficient number of vertices in C to create paths representing the edges in $E(A, B)$, and has $\sigma_{2}=n+a(H)-3$.

As in the proof of Theorem 5, we may assume that $n_{0}(H)=0$ as isolated vertices in H contribute 2 to $|G|+a(H)$ and at most 2 to $\sigma_{2}(G)$.

For the sake of contradiction, we assume that G is not H-linked, and furthermore that G is edge maximal with this property. Let $m=|E(H)|$ and $n=|G|$.

If $\delta(G) \geq 4 m$, we are done by Theorem 5 (as $b(H) \leq a(H)$), so there is a vertex v with $d(v)<4 m$. Let $Y:=V(G) \backslash N[v]$. Then $|Y|>16 m$ and

$$
\delta_{Y}(Y)>|Y|-4 m>\frac{1}{2}|Y|+m
$$

and therefore Y is m-linked by Theorem 1. Let $B \supseteq Y$ be maximal such that B is m-linked, and $A:=V(G) \backslash B \subseteq N[v]$. If $A=\emptyset$, we are done so we assume that $A \neq \emptyset$. By Lemma 7 no vertex in A has $2 m$ neighbors in B, so $\Delta_{G}(A)<6 m$ and therefore A is complete by the degree sum condition. We now continue in a manner similar to the proof of Theorem 5 .

We may assume that G is H^{\prime}-linked for every proper subgraph $H^{\prime} \subsetneq H$, as otherwise we could continue with a minimal subgraph H^{\prime} of H for which G is not H^{\prime}-linked and observe that $a\left(H^{\prime}\right) \leq a(H)$. Let $A^{H} \cup B^{H}$ be the partition of $V(H)$ induced by A and B. Note that B is complete by Lemma 11. If there is an edge $e \in E(H) \cap E(G)$, we can extend any solution of the $(H-e)$-linkage problem trivially to a solution of the H-linkage problem, so we conclude that $E(H) \cap E(G)=\emptyset$, and in particular, $E(H)=E_{H}(A, B)$.

Let $a \in A^{H}$ maximize $\left|E_{H}(a, B)\right|$, and let $a b \in E(H)$. Let $H^{\prime}=H-a b$ and let $F \subseteq G$ be a solution of the H^{\prime}-linkage problem of minimum order, so in particular $\left|E_{F}(A, B)\right|=\left|E\left(H^{\prime}\right)\right|$.

Let $w \in B \backslash F$. If $a w \in E(G)$, then we can extend F to a solution of the H-linkage problem using the path $a w b$, so we conclude that $a w \notin E(G)$. Similarly, if there exists an $x \in(N(a) \cap N(w)) \backslash F$, we can extend F to a solution of the H-linkage problem using $a x w b$, so $N(a) \cap N(w) \subseteq F$. Now let $x y \in E(F)$ with $x \in A$ and $y \in B \backslash B^{H}$. If $x \in N(w)$ and $y \in N(a)$, then we can replace $x y$ by $x w$ and $a y$ in F and solve the H-linkage problem. Thus, all edges $x y \in E(F)$ with $\{x, y\} \subset N(a) \cap N(w)$ have $y \in B^{H} \backslash N_{H}(a)$. But this yields a contradiction, as then

$$
\begin{aligned}
a(H) \leq|N(a) \cap N(w)| \leq|E(F)| & +\left|B^{H} \backslash N_{H}(a)\right| \\
& =|E(H)|-1+\left|B^{H}\right|-\Delta_{B^{H}}\left(A^{H}\right) \leq a(H)-1
\end{aligned}
$$

We note here that Theorem 6 does not extend to arbitrary multigraphs H. To see this, let $k \geq 6, r=2(k-1)$, and let H be the disjoint union of a star having center c and leaves $\ell_{1}, \ldots, \ell_{r}$ with an edge $u v$ of multiplicity k. As defined above, $a(H)=3 k-1$ (let B consist of u and all of the ℓ_{i}). However, consider the following example. Let $A=\{c, u, v\}$ be a triangle and X be a clique of order $n-3$ containing disjoint subsets L, X_{u} and X_{v} of X with $\left|X_{v}\right|=r,\left|X_{u}\right|=r-1$ and $L=\left\{\ell_{1}, \ldots, \ell_{r}\right\}$.

Construct G from A and X by adding all edges from u to $X_{u} \cup L, v$ to $X_{v} \cup L$ and c to $X_{u} \cup X_{v}$ and note that $\sigma_{2}(G)=n+(4 k-4)-2>n+a(H)-2$. If we let the vertex labels in G define an H-linkage problem ρ, then we require at least one vertex from $X_{u} \cup X_{v}$ to construct the r desired paths from c to L and at least two vertices from $X_{u} \cup X_{v}$ to construct each of the remaining $k-1$ paths from u to v. This is a total of at least $2 k-4$ additional vertices, which exceeds the $2 k-5$ vertices in $X_{u} \cup X_{v}$. Hence G is not H-linked.

Theorems 5 and 6 also allow us to obtain a number of interesting results on k-linked and k-ordered graphs as corollaries. In particular, we obtain the degree conditions for sufficiently large k-linked, k-ordered and H-linked graphs found in Theorems 2, 3 and 4 , respectively. In most cases, our bounds on $|G|$ are reasonable, but slightly larger than those in the original theorems due to the more general nature of our results.

References

1. R. Diestel, "Graph Theory," Springer Verlag, Heidelberg, 2005.
2. J. Faudree, R. Faudree, R. Gould, M. Jacobson and L. Lesniak, On k-ordered graphs, J. Graph Theory 35 (2000), 69-82.
3. M. Ferrara, R.J. Gould, G. Tansey and T. Whalen, On H-linked graphs, Graphs. Combin. 22 (2006), 217-224.
4. M. Ferrara, R.J. Gould, G. Tansey and T. Whalen, On H-immersions, J. Graph Theory 57 (2008), 245-254.
5. R. Gould, A. Kostochka, G. Yu, On minimum degree implying that a graph is H-linked, SIAM J. Discrete Math. 20 (2006), 829-840.
6. R. Gould and T. Whalen, Distance between two k-sets and path-systems extendibility, Ars Combin. 79 (2006), 211-228.
7. H. A. Jung, Eine verallgemeinrung des n-fachen zusammenhangs fur graphen, Math. Ann. 187 (1970), 95-103.
8. K. Karawabayashi, A. Kostochka and G. Yu, On sufficient degree conditions for a graph to be k-linked, Combin. Probab. Comput. 15 (2006), 685-694.
9. H. Kierstead, G. Sárközy and S. Selkow, On k-ordered Hamiltonian graphs, J. Graph Theory 32, 17-25.
10. A. Kostochka and G. Yu, Minimum degree conditions for H-linked graphs, Discrete Appl. Math. 156 (2008), 1542-1548.
11. A. Kostochka and G. Yu, Ore-type degree conditions for H-linked graphs, J. Graph Theory 58 (2008), 14-26.
12. Y. Manoussakis, k-linked and k-cyclic digraphs, J. Comb. Theory Ser. B 48 (1990), 216-226.
13. O. Ore, A Note on Hamilton Circuits, Amer. Math. Monthly 67 (1960), 55.
14. R. Thomas and P. Wollan, An improved linear edge bound for graph linkage. European J. Combin. 26 (2005), 309-324.

[^0]: 1991 Mathematics Subject Classification. 05C38, 05C83.
 Key words and phrases. H-linked Graph, k-linked Graph, Degree Conditions.
 ${ }^{1}$ University of Colorado Denver, Denver CO, michael.ferrara@ucdenver.edu
 ${ }^{2}$ Emory University, Atlanta GA, rg@mathcs. emory . edu
 ${ }^{3}$ University of Colorado Denver, Denver CO, michael. jacobson@ucdenver.edu
 ${ }^{4}$ Universität Rostock, Rostock, Germany, Florian.Pfender@uni-Rostock.de
 ${ }^{5}$ Samford University, Birmingham, AL, jspowel1@samford.edu
 ${ }^{6}$ Methodic Solutions, Inc., thorwhalen@gmail.com

