TOTAL EDGE IRREGULARITY STRENGTH OF LARGE GRAPHS

FLORIAN PFENDER

ABSTRACT. Let m := |E(G)| sufficiently large and $s := \lceil \frac{m-1}{3} \rceil$. We show that unless the maximum degree $\Delta > 2s$, there is a weighting $\hat{w} : E \cup V \rightarrow \{0, 1, \dots, s\}$ so that $\hat{w}(uv) + \hat{w}(u) + \hat{w}(v) \neq \hat{w}(u'v') + \hat{w}(u') + \hat{w}(v')$ whenever $uv \neq u'v'$ (such a weighting is called *total edge irregular*). This validates a conjecture by Ivančo and Jendrol' for large graphs, extending a result by Brandt, Miškuf and Rautenbach.

1. INTRODUCTION

Let G = (V, E) be a graph. In [1], Bača, Jendrol', Miller and Ryan define the notion of an *edge irregular total s-weighting* as a weighting

$$\hat{w}: E \cup V \to \{1, 2, \dots, s\}$$

so that

$$\hat{w}(uv) + \hat{w}(u) + \hat{w}(v) \neq \hat{w}(u'v') + \hat{w}(u') + \hat{w}(v')$$

whenever $uv \neq u'v'$ are two different edges of G. They also define the *total edge irregularity strength* as the minimum s for which there exists such a weighting, denoted by tes(G). If we denote by Δ the maximum degree of G and by m the number of edges they note that

$$tes(G) \ge \max\left\{\frac{m+2}{3}, \frac{\Delta+1}{2}\right\}$$

After some more study of tes(G), Ivančo and Jendrol' conjecture in [6] that this natural lower bound is sharp for all graphs other than the complete graph on 5 vertices (which has $tes(K^5) = 5$), i.e.,

Conjecture 1 (Ivančo and Jendrol' [6]). For every graph G with |E(G)| = m and maximum degree Δ which is different from K^5 ,

$$tes(G) = \max\left\{\left\lceil \frac{m+2}{3} \right\rceil, \left\lceil \frac{\Delta+1}{2} \right\rceil\right\}.$$

Key words and phrases. total graph labeling, irregularity strength.

Conjecture 1 has been verified for trees in [6], for complete graphs and complete bipartite graphs by Jendrol', Miškuf and Soták in [7], and for graphs with a bound on Δ by Brandt, Miškuf and Rautenbach in [2] and [3]:

Theorem 2 (Brandt et.al [2] and [3]). For every graph G with |E(G)| = m and maximum degree Δ , where $\left\lfloor \frac{\Delta+1}{2} \right\rfloor \geq \frac{m+2}{3}$ or $\Delta \leq \frac{m}{111000}$,

$$tes(G) = \max\left\{ \left\lceil \frac{m+2}{3} \right\rceil, \left\lceil \frac{\Delta+1}{2} \right\rceil \right\}.$$

In this paper, we show the conjecture for all sufficiently large graphs.

Theorem 3. Let G be a graph with $m := |E(G)| \ge 7 \times 10^{10}$ and maximum degree Δ . Then

$$tes(G) = \max\left\{\left\lceil \frac{m+2}{3} \right\rceil, \left\lceil \frac{\Delta+1}{2} \right\rceil\right\}.$$

The proof of this Theorem will be presented in Section 3. With a similar proof, presented in Section 4, we can improve on Theorem 2 as follows.

Theorem 4. Let G be a graph with m := |E(G)|, and $\Delta(G) \leq \frac{m}{4350}$. Then $tes(G) = \left\lfloor \frac{m+2}{3} \right\rfloor$.

For notation not defined here, we refer the reader to Diestel's book [5]. In particular, if X and Y are subsets of the vertex set of a graph G and if $E' \subseteq E$ is a subset of its edges, we write G[X] for the induced subgraph of G on X, and we write short E'(X) for the edge set $E' \cap E(G[X])$, and E'(X,Y) for all edges in E' from X to Y.

2. Preliminary Results

By Theorem 2, we only have to consider the case $\left\lceil \frac{\Delta+1}{2} \right\rceil < \frac{m+2}{3}$. Without loss of generality we may assume in the following that m-1 is divisible by 3, as otherwise we may just add one or two edges (and possibly vertices) and consider the larger graph, only increasing the difficulty of the assignment.

Let $s := \frac{m-1}{3}$ and $w : V \to \{0, 1, \dots, s\}$ be a vertex weighting. For e = xy we set w(e) := w(x) + w(y). We call w well guarded if for all $0 \le i \le 2s$,

$$i + 1 \le |\{e \in E \mid w(e) \le i\}| \le i + s + 1.$$

The following fact is immediate as well guarded weightings are easily extended to total edge irregular weightings and vice versa:

 $\mathbf{2}$

Fact 5. A graph G has a total edge irregular weighting $\hat{w} : E \cup V \rightarrow \{1, 2, \dots, s+1\}$ if and only if G has a well guarded weighting $w : V \rightarrow \{0, 1, \dots, s\}$.

Thus, we can restrict ourselves to vertex weightings in our quest for total edge irregular weightings. We will call an edge set $E' \subseteq E$ a guarding set, if for all $0 \le i \le 2s$,

$$i + 1 \le |\{e \in E' \mid w(e) \le i\}| \le i + s + 1 - |E \smallsetminus E'|.$$

Clearly, w is well guarded if and only if a guarding set exists. The next lemma describes a set up where we can find a guarding set deterministically. In the proof of Theorem 3, we will encounter this set up several times.

Lemma 6. Let $V(G) = A_1 \cup A_2 \cup C$ be a partition of the vertices of a graph G with 3s + 1 = m = |E(G)|, let $E' = E(G) \setminus E(C)$, and let $\Delta_i := \max_{v \in C} |E(A_i, v)|$ for $i \in \{1, 2\}$. If

(a) $|E(A_1)| \le |E'| - 2s - \Delta_1,$ (b) $|E(A_2)| \le |E'| - 2s - \Delta_2,$ (c) $|E(A_1, V)| \le |E'| - s + 1 - \Delta_2,$ (d) $|E(A_2, V)| \le |E'| - s + 1 - \Delta_1,$ (e) $\Delta_2 + \frac{s}{|E(A_1, C)| - \Delta_1} \Delta_1 \le s - |E \smallsetminus E'|.$

then there exists a weighting such that E' is a guarding set.

Proof. Let $C = \{x_1, x_2, \dots, x_{|C|}\}$, where the exact order will be determined later. Let $C' = C - x_{|C|}$. Let

$$w(v) = \begin{cases} 0, & \text{for } v \in A_1, \\ s, & \text{for } v \in A_2, \\ \left\lceil \frac{s \cdot |E(A_1, \{x_1, \dots, x_{i-1}\})|}{|E(A_1, C')|} \right\rceil, & \text{for } v = x_i \in C. \end{cases}$$

Then for $0 \le i < s$, we have

$$|E(A_{1})| + \left[i \cdot \frac{|E(A_{1},C')|}{s}\right] + 1$$

$$\leq |\{e \in E' \mid w(e) \leq i\}|$$

$$\leq |E(A_{1})| + i \cdot \frac{|E(A_{1},C')|}{s} + \Delta_{1},$$

and therefore

$$i + 1 \leq_{(d)} |\{e \in E' \mid w(e) \leq i\}| \leq_{(a),(c)} i + 1 + s - |E \smallsetminus E'|,$$

regardless of the order of the vertices in C.

For $s \leq i \leq 2s$, we can now find a suitable ordering of C greedily to show the lemma. Pick $x_{|C|}$ first, so that $|E(A_2, x_{|C|})|$ is minimized under the condition that

$$|E(A_2)| + |E(A_2, x_{|C|})| \ge \Delta_2.$$

Now choose the other x_j , starting with an arbitrary x_1 , such that for every j,

$$s + w(x_j) \le |E(A_1, V)| + |E(A_2, \{x_1, \dots, x_{j-1}\})| \le 2s + 1 - |E \smallsetminus E'| + w(x_j) - \Delta_2.$$
(1)

This is always possible, as this inequality is true for x_1 (by (a) and (c)) and $x_{|C|}$ (by (b)), and at no point in the process there can be remaining $x, x' \in C$ such that setting $x_j = x$ violates the lower inequality, and setting $x_j = x'$ violates the upper inequality by (e). As

$$|\{e \in E' \mid w(e) \le i\}| = |E(A_1, V)| + |E(A_2, \{x_1, \dots, x_j\})|,$$

for $j \leq |C|$ maximized such that $w(x_j) \leq i - s$, this shows that E' is a guarding set. \Box

3. Proof of Theorem 3

Let $\varepsilon = 2.7 \times 10^{-5}$, and define the set of large degree vertices

$$B \coloneqq \{v \in V \mid d(v) > \varepsilon m\}$$

Then $m \ge |B|\varepsilon m - \frac{|B|^2}{2}$, and therefore $|E(B)| < \frac{|B|^2}{2} < 0.01m$. Let $V' = V \smallsetminus B$ and $m' = |E \smallsetminus E(B)| > 0.99m$. Further, we partition

Let $V' = V \setminus B$ and $m' = |E \setminus E(B)| > 0.99m$. Further, we partition B into B_0 and B_S as follows: Order the vertices in B by degree from large to small, and assign them in order to the set with fewer edges to V'. Let $e_0 := \frac{1}{m'} |E(B_0, V')|$ and $e_S := \frac{1}{m'} |E(B_S, V')|$. Observe the following fact.

Fact 7. If $v \in B_0$, then $e_0 - e_S \leq \frac{1}{m'}d(v)$.

We will divide the proof into four cases. For the first three, we assume that $e_0 \ge e_s$.

Case 1. $e_0 \ge 0.52$ and $|B_0| = 1$.

Let v_1 be the vertex in B_0 , then $d(v_1) = \Delta := \Delta(G) > 0.51m$, and let $H = G[V \setminus v_1]$. Note that in this case, we may assume that $V = \{v_1\} \cup N(v_1)$ (so $|V(H)| = \Delta$ and $|E(H)| = m - \Delta$). Otherwise, as Hdoes not have enough edges to be connected, a vertex $u \in V(H) \setminus N(v_1)$ has distance at least 3 in G to a vertex v in another component of H. We can identify these two vertices and proceed with the smaller graph G', where |E(G')| = |E(G)| and $tes(G') \ge tes(G)$.

4

Claim 1.1. There exists $X' \subseteq V'$ with

 $|X'| = \left\lfloor \frac{2}{3}(2|V(H)| - |E(H)|) \right\rfloor$ and $|E(X')| \le \frac{1}{2}|X'|$.

Let $X' \subseteq V'$ with $|X'| = \lfloor \frac{2}{3}(2|V(H)| - |E(H)|) \rfloor$ and |E(X')| minimal, and let $Y' = V' \smallsetminus X'$. If $|E(X')| > \frac{1}{2}|X'|$, then $|E(y, X')| \ge 2$ for all $y \in Y'$, as otherwise we could reduce |E(X')| by a vertex switch. Thus,

$$|E(H)| \ge |E(X')| + |E(X',Y')| + |E(B,V)| - \Delta$$

> $\frac{1}{2}|X'| + 2|Y'| + \frac{1}{2}(|B| - 1)\varepsilon m$
 $\ge 2|V(H)| - \frac{3}{2}|X'| \ge |E(H)|,$

a contradiction showing the claim.

Claim 1.2. There exists $X \subseteq V'$ with $|X| \ge s+1$ and $|E(X)| \le 2s - \Delta + 1$.

Use Claim 1.1 to find a vertex set $X' \subseteq V'$. Successively delete vertices of maximum degree in X' until we have a vertex set $X \subseteq X'$ with |X| = s + 1. Then either |E(X)| = 0 or

$$|E(X)| \le |E(X')| - (|X'| - |X|)$$

$$\le |X| - \left\lceil \frac{1}{2} |X'| \right\rceil \le s + 1 - \frac{1}{3} (2|V(H)| - |E(H)|) + \frac{1}{2}$$

$$\le s + 1 - (\Delta - s - \frac{1}{3}) + \frac{1}{2} = 2s - \Delta + \frac{11}{6},$$

showing the claim.

Now choose X according to Claim 1.2, maximizing |X|, and let $Y := V(H) \setminus X$. We want to use Lemma 6 to show that $E' = E \setminus E(X)$ is a guarding set: Let $A_1 = \{v_1\}$, $A_2 = Y$ and C = X. Then $\Delta_1 = 1$ and $\Delta_2 \leq \varepsilon m$. Conditions (a), (d) and (e) are easily verified.

If (c) fails, say $|E(A_2)| + |E(A_2, C)| = s - 1 + \Delta_2 - \gamma$, note that X contains at least $|X| - s + \gamma$ vertices with no neighbors in Y. If (b) holds, we can use these vertices first in the proof of Lemma 6 until (1) is satisfied, and see that E' is a guarding set.

Finally, assume that (b) fails, i.e.,

$$|E(Y)| > |E'| - 2s - \Delta_2 \ge |E'| - 2s - \varepsilon m.$$

As every vertex in $Y \setminus B$ has at least one neighbor in X by the maximality of |X|, we have

$$|Y| \le |E'| - \Delta - |E(Y)| + |B| < 2s - \Delta + \varepsilon m + \frac{2}{\varepsilon} \le 2s - \Delta + 3\varepsilon m.$$

Let $Y_1 := \{y \in Y : d(y) \ge 0.01s\}$. Then $0.48m \ge 0.01s|Y_1| - 0.5|Y_1|^2$, so $|Y_1| \le 160$ and $|E(Y_1)| < 0.02s$ as $s > 10^6$. Let $Y_2 = Y \times Y_1$. Then more

than $s - |E(X,Y)| - |E(Y_1)| > 0.47s > 2s - \Delta$ edges in $E(X \cup Y)$ are incident to Y_2 , so we can greedily find some $Y_3 \subseteq Y_2$ with

$$2s - \Delta \le |E(Y_3, X \cup Y)| < 2s - \Delta + 0.01s.$$

Let $a := |E(Y_3)|$, and $b := |E(Y_3, X \cup Y)| - a$.

Let $X = \{x_0, \ldots, x_{|X|-1}\}$ with $|E(Y, x_i)| \leq |E(Y, x_j)|$ for $i \leq j$ and let $w(v_1) = 0$, $w(v) = s - c := \min\{s - b, \lceil \Delta/2 \rceil\}$ for $v \in Y_3$, w(v) = s for $v \in Y \setminus Y_3$, and $w(x_i) = \min\{s, i\}$. We claim that E' is a guarding set for w, settling Case 1.

For $0 \le i \le s - 1$, we have

$$i + 1 \le |\{e \in E' \mid w(e) \le i\}| \le i + 1 + |Y_3|$$

$$< i + 1 + 2s - \Delta < i - s + \Delta = i + s + 1 - |E \setminus E'|.$$

For i = 2s, we have

$$2s + 1 < \{e \in E' \mid w(e) \le 2s\} = |E'| = 3s + 1 - |E \setminus E'|.$$

For $s \leq i \leq 2s - 1$, consider first the lower bound. We have

$$|\{e \in E' \mid w(e) \le i\}| \ge \begin{cases} \Delta, & \text{for } s \le i < 2s - 2c, \\ \Delta + a, & \text{for } 2s - 2c \le i < 2s - c, \\ \Delta + a + b, & \text{for } 2s - c \le i < 2s, \end{cases} \ge s + i + 1.$$

For the sake of analysis of the upper bound, define another weighting w', where w'(v) = s for $v \in Y_3$ and w' = w on all other vertices. Then for $s \leq i < 2s$,

$$\Delta \leq |\{e \in E' \mid w'(e) \leq i\}| \leq \max\{\Delta, i + s - |X| - 1\}$$
$$\leq \max\{\Delta, i + 3s - 2\Delta - 2\} < \max\{\Delta, i - 0.06s\}$$

since $|\{e \in E' \mid w'(e) \le i\}|$ is maximized if $\max_{x \in X} |E(x, Y)| = 1$.

Any edge $e \in E(X \cup Y)$ with w'(e) < 2s has weight $w(e) \ge w'(e) - c$. Therefore, we have

$$\begin{split} |\{e \in E' \mid w(e) \leq i\}| \\ &\leq \begin{cases} |\{e \in E' \mid w'(e) \leq i+c\}|, & \text{for } s \leq i < 2s - 2c, \\ |\{e \in E' \mid w'(e) \leq i+c\}| + a, & \text{for } 2s - 2c \leq i < 2s - c, \\ |\{e \in E' \mid w'(e) \leq 2s - 1\}| + a + b, & \text{for } 2s - c \leq i < 2s, \end{cases} \\ &\leq \begin{cases} \max\{\Delta, i - 0.06s\}, & \text{for } s \leq i < 2s - 2c, \\ \max\{\Delta, i - 0.06s\} + a, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s, \end{cases} \\ &= \begin{cases} \Delta, & \text{for } s \leq i < 2s - 2c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s, \end{cases} \\ &= \begin{cases} \Delta, & \text{for } s \leq i < 2s - 2c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - 2c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b, & \text{for } 2s - c \leq i < 2s - c, \\ \max\{\Delta, i - 0.06s\} + a + b + d = 0, \\ \max\{\Delta, i - 0.06s\} + a + d = 0, \\ \max\{\Delta, i - 0.06s\} + a + d = 0, \\ \max\{\Delta, i - 0.06s\} + a + d = 0, \\ \max\{\Delta, i - 0.06s\} + d = 0, \\ \max\{\Delta, i - 0.06s\} + d = 0, \\ \max\{\Delta, i - 0.06s\} + d = 0, \\ \max\{\Delta, i - 0.06s\} + d = 0, \\ \max\{\Delta, i - 0.06s$$

To see the last inequality, note that it is enough to check it for $i \in \{s, 2s - 2c, 2s - c\}$. For i = 1, the inequality is trivially true. For i = 2s - 2c, we have

$$\Delta + a < 2.01s - b < \min\{2\Delta - 1.01s - b, 2\Delta - s\}$$
$$\leq \min\{\Delta + s - 2b, 2\Delta - s\} \le \Delta + i - s.$$

For i = 2s - c, we have

$$\begin{split} \Delta + a + b < 2.01s < \min\{2\Delta - 1.01s, \left\lceil \frac{3}{2}\Delta \right\rceil\} \\ \leq \min\{\Delta + s - b, \left\lceil \frac{3}{2}\Delta \right\rceil\} = \Delta + i - s, \end{split}$$

and

$$i - 0.06s + a + b = 1.94s - c + a + b < 3.95s - \Delta - c \le \Delta + s - c = \Delta + i - s.$$

This shows that E' is a guarding set, establishing Case 1.

Case 2. $e_0 \ge 0.52$ and $|B_0| = 2$.

Let $B_0 = \{v_2, v_3\}$ and $v_1 \in B_S$ with $d(v_1) = \Delta(G)$. Let $H = G[V \setminus \{v_1, v_2, v_3\}]$. Let $d_i := |E(v_i, V(H))|$ for $1 \le i \le 3$, and we may assume that $d_1 \ge d_2 \ge d_3$. Note that $d_2 + d_3 > 0.51m$. Then $|H| \ge d_1$, and $|E(H)| \le m - d_1 - d_2 - d_3 < 0.24m$.

Claim 2.1. There is a set $X' \subseteq V'$ such that

 $|E(X', \{v_2, v_3\})| \ge \min\{d_2 + d_3 - |B|, \frac{4}{3}(d_1 + 2d_2 + 2d_3 - m) - 2\},$ and $|E(X')| \le 0.25|E(X', \{v_2, v_3\})|.$ Let $X' \subseteq V' \cap (N(v_2), N(v_3))$ with

$$\min\{d_2 + d_3 - |B|, \frac{4}{3}(d_1 + 2d_2 + 2d_3 - m - 2)\} \le |E(X', \{v_2, v_3\})| < \frac{4}{3}(d(v_1) + 2d(v_2) + 2d(v_3) - m),$$

such that |E(X')| is minimal. Let $Y' = V' \setminus X'$. If $|E(X')| > 0.25|E(X', \{v_2, v_3\})|$, then $|E(y, X')| \ge |E(y, \{v_2, v_3\})|$ for all $y \in Y'$, as otherwise we could reduce |E(X')| by a vertex switch. Thus,

$$m - d_1 - d_2 - d_3 \ge |E(H)| \ge |E(X')| + |E(X', Y')| + \frac{1}{2}(|B| - 3)\varepsilon m$$

> 0.25|E(X', {v₂, v₃})| + |E(Y', {v₂, v₃})| + $\frac{1}{2}(|B| - 3)\varepsilon m$
 $\ge d_2 + d_3 - 0.75|E(X', {v_2, v_3})|$
> $m - d_1 - d_2 - d_3$

a contradiction showing the claim.

Claim 2.2. There is a set $X \subseteq V'$ such that $|E(X, \{v_2, v_3\})| \ge s + 2$, and

$$|E(X)| \le \max\{0.5s - \frac{1}{4}(d_2 + d_3 - |B|) + 1.5, 1.5s - \frac{1}{3}(d_1 + 2d_2 + 2d_3) + 2.5\}.$$

Start with a set X' from Claim 2.1, and successively delete vertices maximizing $\frac{|E(v,X)|}{|E(v,\{v_2,v_3\})|}$ until $|E(X,\{v_2,v_3\})| \le s+3$. Then either |E(X)| = 0 or

$$|E(X)| \le |E(X')| - 0.5(|E(X', \{v_2, v_3\})| - s - 3)$$

$$\le -0.25|E(X', \{v_2, v_3\})| + 0.5(s + 3)$$

$$\le 0.5s + 1.5 - \min\{\frac{1}{4}(d_2 + d_3 - |B|), \frac{1}{3}(d_1 + 2d_2 + 2d_3 - m - 2)\}$$

$$\le \max\{0.5s - \frac{1}{4}(d_2 + d_3 - |B|) + 1.5, 1.5s - \frac{1}{3}(d_1 + 2d_2 + 2d_3) + 2.5\},\$$

showing the claim.

We want to apply Lemma 6 to this situation with $A_1 = \{v_2, v_3\}$, C = X for a maximal X, and $A_2 = V \smallsetminus (A_1 \cup C)$. Conditions (a), (d) and (e) are clearly satisfied. For condition (b) note that by the maximality of |X|, every vertex in $A_2 \smallsetminus B$ has a neighbor in X, so in particular, $|E(A_2, C)| \ge d_1 - |B| \ge d_1 - 2\varepsilon m$, and so

$$|E(A_1, V)| + |E(A_2, C)| \ge d_1 + d_2 + d_3 - 2 - 2\varepsilon m > 0.7m > 2s + \Delta_2.$$

If condition (c) holds, we are done by Lemma 6. Finally, if condition (c) fails, we have

$$d_{2} + d_{3} \ge |E(A_{1}, V)|$$

$$> |E'| - s + 1 - \Delta_{2}$$

$$= 2s + 2 - |E(X)| - \Delta_{2}$$

$$\ge \min\{1.49s + \frac{1}{4}(d_{2} + d_{3}), 0.49s + \frac{5}{6}(d_{2} + d_{3})\},\$$

and therefore

$$d_2 + d_3 > 1.98s$$
, $d_1 + d_2 + d_3 > 2.97s$, and $d_3 > 0.96s$.

Now it is easy to construct a weighting with guarding set $E(\{v_1, v_2, v_3\}, V)$, starting with $w(v_1) = 0$, $w(v_2) = s$ and $w(v_3) = [0.5s]$.

Case 3. $|B_0| \ge 3$ and $e_0 + e_S \ge 0.86$.

Since $|B_0| \ge 3$, we have $e_S \ge \frac{2}{3}e_0$. Thus, this case covers all remaining situations with $e_0 \ge 0.52$. Let $A_1 = B_0$, $A_2 = B_S$, and $C = V \setminus (A_1 \cup A_2)$. Then $|E'| \ge (e_0 + e_S)m' > 2.52s$ and $\Delta_i < \varepsilon m$. All conditions of Lemma 6 apply but possibly (c). If (c) fails, we have

$$|s - 1 + \Delta_2 > |E(B_S)| + |E(B_S, C)| \ge e_s m' > 0.344m' > s + \Delta_2,$$

a contradiction finishing the case.

For the last case, we will drop the assumption of $e_0 \ge e_S$ to be able to use symmetry in a different place.

Case 4. $\max\{e_0, e_S\} \le 0.52$.

Let w(v) = 0 for $v \in B_0$, w(v) = s for $v \in B_S$, and determine w(v) for all other vertices independently at random with

$$P_i := \mathbb{P}\left(w(v) = s\frac{i}{20}\right) = \begin{cases} (19 - 30e_0)\beta^{-1} & i = 0\\ \beta^{-1} & 0 < i < 20\\ (19 - 30e_S)\beta^{-1} & i = 20\\ 0 & \text{otherwise} \end{cases},$$

where $\beta = 57 - 30(e_0 + e_S)$ and $i \in \mathbb{Z}$.

The set $E' = E \setminus E(B)$ is guarding for the resulting weighting, if for $0 \le i \le 39$,

$$\frac{i+1}{20}s \le |\{e \in E' \mid w(e) \le s\frac{i}{20}\}| \le \frac{i}{20}s + s + 1 - |E(B)|.$$

To show that E' has a positive probability of being a guarding set, we will use Azuma's inequality. For this, let us first consider the expected number of edges of the particular weights

$$X_i \coloneqq \left| \{ e \in E' \mid w(e) \le s \frac{i}{20} \} \right|$$

and find values $\delta_i, \hat{\delta}_i \in (0, 0.01)$ such that for $0 \le i \le 39$,

$$\mathbb{E}(X_i) \ge \begin{cases} \frac{i+1}{20}s + \delta_i m', & \text{if } e_0 \ge e_S, \\ \frac{i+1}{20}s + \hat{\delta}_i m', & \text{if } e_0 \le e_S, \\ \frac{i+1}{20}s + 0.2m', & \text{if } 20 \le i \le 39, \end{cases}$$
(2)

and

$$\mathbb{E}(X_i) \leq \begin{cases} \frac{i}{20}s + s + 1 - |E(B)| - \delta_i m', & \text{if } e_0 \ge e_S, \\ \frac{i}{20}s + s + 1 - |E(B)| - \hat{\delta}_i m', & \text{if } e_0 \le e_S, \\ \frac{i}{20}s + s + 1 - |E(B)| - 0.2m', & \text{if } 0 \le i \le 19. \end{cases}$$
(3)

By symmetry (change the sets B_0 and B_S), we can set $\delta_i = \hat{\delta}_{39-i}$, so we only have to treat the cases $0 \leq i \leq 19$. For every edge $uv \in E'$, we get

$$\mathbb{P}(w(uv) = s_{\frac{i}{20}}) = \sum P_k P_{i-k} = 2P_0 P_i + (i-1)P_i^2$$

For $uv \in E'(B_0, V)$, we get $\mathbb{P}(w(uv) = s\frac{i}{20}) = P_i$, and for $uv \in E'(B_S, V)$, we get $\mathbb{P}(w(uv) = s\frac{i}{20}) = P_{i-20} = 0$. Thus,

$$\frac{1}{m'}\mathbb{E}(X_i) = \sum_{j=0}^i (e_0 P_j + (1 - e_0 - e_S)(2P_0 P_j + (j - 1)P_j^2))$$
$$= e_0(P_0 + iP_1) + (1 - e_0 - e_S)(P_0^2 + 2iP_0 P_1 + \frac{i^2 - i}{2}P_1^2).$$

Fixing *i* and taking the partial derivatives, your favorite computer algebra program tells you that $\frac{d}{de_0}\mathbb{E}(X_i) = 0$ if and only if

$$e_0 = f_1(e_S) \coloneqq -\frac{p_0 + p_1 e_S + p_2 e_S^2}{p_3 + p_4 e_S}$$

and $\frac{d}{de_S}\mathbb{E}(X_i) = 0$ if and only if

$$e_0 = f_2(e_S) \coloneqq \frac{p_5 + p_6 e_S - \sqrt{p_7 + p_8 e_S + p_9 e_S^2}}{p_{10}}$$

where the p_j are polynomials in *i* (see Appendix B).

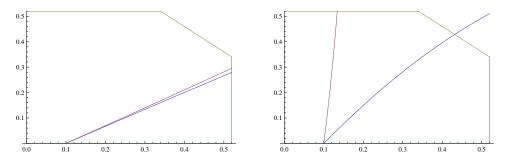


FIGURE 1. Plots of f_1 and f_2 for i = 3 and i = 19

We have $f_1 \ge f_2$ and

$$\left(\frac{d}{de_0}, \frac{d}{de_S}\right) \mathbb{E}(X_i) = \begin{cases} (<0, >0), & \text{for } e_0 > f_1(e_S), \\ (>0, >0), & \text{for } f_2(e_S) < e_0 < f_1(e_S), \\ (>0, <0), & \text{for } e_0 < f_2(e_S). \end{cases}$$

We conclude that the minimum of $\mathbb{E}(X_i)$ in the considered area with $e_0 \leq e_S$ occurs in $(e_0, e_S) = (0, 0.52)$ or on the line $e_0 = e_S$, and similarly, the minimum of $\mathbb{E}(X_i)$ in the considered area with $e_0 \geq e_S$ occurs in $(e_0, e_S) = (0.52, 0)$ or on the line $e_0 = e_S$. On this line, i.e., $0 \leq e_0 = e_S \leq 0.43$, the minimum is attained at

$$e_0 = e_S = \begin{cases} 0.43, & \text{for } 0 \le i \le 6, \\ 0, & \text{for } 7 \le i \le 19 \end{cases}$$

Similarly, the maximum on the line $e_0 = 0.86 - e_S$ is an upper bound for the maximum in the considered area, and this maximum is attained at

$$(e_0, e_S) = \left(\frac{361+19i}{1350}, \frac{800-19i}{1350}\right).$$

Computing the four values for each i with $0 \le i \le 19$, we find that (see Appendix A) we can choose δ_i and $\hat{\delta}_i$ as follows:

			2							
1000 δ_i	29	26	24	22	21	20	19	18	17	17
1000 δ_{i+10}	18	18	19	20	21	22	24	26	29	31
1000 $\hat{\delta}_i$	72	71	70	66	61	56	51	46	42	38
1000 $\hat{\delta}_{i+10}$	34	31	28	25	23	20	18	17	15	14

satisfying (2) and (3). For this, note that (see Appendix A)

$$\mathbb{E}(X_i) \le \frac{i}{20}s + s - 0.22m' < \frac{i}{20}s + s - |E(B)| - 0.2m'.$$

Now we are ready to use Azuma's inequality (cf. [8]):

Theorem 8. (Azuma's inequality) Let X be a random variable determined by n trials T_1, \ldots, T_n , such that for each j, and any two possible sequences of outcomes t_1, \ldots, t_j and $t_1, \ldots, t_{j-1}, t'_j$:

$$|\mathbb{E}(X|T_1=t_1,\ldots,T_j=t_j)-\mathbb{E}(X|T_1=t_1,\ldots,T_j=t'_j)|\leq c_j,$$

then for all $\bar{t}, \underline{t} > 0$

$$\mathbb{P}(X - \mathbb{E}(X) \ge \overline{t}) + \mathbb{P}(\mathbb{E}(X) - X \ge \underline{t}) \le e^{-\overline{t}^2/(2\sum c_j^2)} + e^{-\underline{t}^2/(2\sum c_j^2)}$$

In our application, T_j is the weight of the j^{th} vertex in V', and $X = X_i$. As the weight of one vertex in $v \in V'$ changes the value (and thus the expectation) of an X_i by at most $d(v) \leq \varepsilon m$, we have

$$\mathbb{P}(X_{i} - \mathbb{E}(X_{i}) \geq 0.2m') + \mathbb{P}(\mathbb{E}(X_{i}) - X_{i} \geq tm') \\
\leq e^{-(0.2m')^{2}/(2\sum_{v \in V'} d(v)^{2})} + e^{-(tm')^{2}/(2\sum_{v \in V'} d(v)^{2})} \\
\leq e^{-(0.2m')^{2}/(2\varepsilon m \sum_{v \in V'} d(v))} + e^{-(tm')^{2}/(2\varepsilon m \sum_{v \in V'} d(v))} \\
\leq e^{-(0.04m')(0.99m)/4\varepsilon mm'} + e^{-(t^{2}m')(0.99m)/4\varepsilon mm'} \\
= e^{-0.0099/\varepsilon} + e^{-0.99t^{2}/4\varepsilon}.$$

Thus, as $\varepsilon = 2.7 \times 10^{-5}$,

 $\mathbb{P}(\text{inequality } (2) \text{ or } (3) \text{ fails for some } i)$

$$\leq 40e^{-0.0099/\varepsilon} + \sum_{i=0}^{19} \left(e^{-0.99\delta_i^2/4\varepsilon} + e^{-0.99\hat{\delta}_i^2/4\varepsilon} \right) < 1.$$

Therefore, there is a choice of the T_j such that none of the X_i falls out of the given range. This yields a well guarded vertex weighting.

4. Graphs with small maximum degree

With the same methods as above we can improve on the bound in Theorem 2 as stated in Theorem 4. Here we give only a proof sketch.

Proof. Let $\varepsilon = 2.3 \times 10^{-4} > \frac{1}{4350}$. We proceed as in Case 4 of the proof of Theorem 3 and note that we have $B = \emptyset$, $e_0 = e_S = 0$ and m = m'. This yields with the same calculations as above, that we can choose $\delta_i = \hat{\delta}_i$ as follows:

i	0	1	2	3	4	5	6	7	8	9
$1000 \delta_i$	94	89	84	80	76	72	69	66	63	60
$1000 \delta_{i+10}$	58	56	55	53	52	52	51	51	52	52

satisfying (2) and (3). The same calculation as above involving Azuma's inequality yields the theorem. $\hfill \Box$

References

- M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labelings, Discrete Math. 307 (2007), 1378–1388.
- S. Brandt, J. Miškuf and D. Rautenbach, On a Conjecture about Edge Irregular Total Labellings, J. Graph Theory 58 (2008), 333–343.
- S. Brandt, J. Miškuf and D. Rautenbach, Edge Irregular Total Labellings for Graphs of Linear Size, *Discrete Math.* **309** (2009), 3786–3792.
- S. Brandt, D. Rautenbach and M. Stiebitz, Edge colouring by total labellings, Discrete Math. 310 (2010), 199–205.

12

- 5. R. Diestel, Graph Theory, Springer 1997.
- J. Ivančo and S. Jendrol', Total edge irregulrity strength of trees, *Discuss. Math. Graph Theory* 26 (2006), 449–456.
- S. Jendrol', J. Miškuf and R. Soták, Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs, *Electronic Notes in Discrete Math.* 28 (2007), 281–285.
- 8. M. Molloy and B. Reed, Graph Colouring and the Probabilistic Method, Springer 2002.

Appendix A. Expected numbers of edges with certain weights

Let $e^* = \frac{-361+18i+i^2}{20(152-36i+i^2)}$ and $\bar{e} = \frac{361+19i}{1350}$. For given (e_0, e_S) , let $Y_i := \frac{1}{m'} X_i$. Then we calculate the following values for $Y_i - \frac{i+1}{60\times 0.99}$ (and in the last column for $\frac{i+20}{60} - Y_i$):

	(e_0,e_S)									
i	(0, 0.52)	(0, 0)	(e^*,e^*)	(0.43, 0.43)	(0.52, 0)	$(\bar{e}, 0.86 - \bar{e})$				
0	0.0842642	0.0942761	0.0945847	0.072 5870	0.029 1077	0.221914				
1	0.0780712	0.0891370	0.0894879	0.0712887	0.026 7374	0.226687				
2	0.0721583	0.0843057	0.0847193	0.070 1341	0.024 6472	0.230987				
3	0.0665254	0.0797821	0.0803057	0.0691234	0.022 8371	0.234814				
4	0.061 1725	0.0755664	0.0763530	0.0682565	0.021 3070	0.238167				
5	0.056 0997	0.0716584	0.0741222	0.0675334	0.020 0569	0.241046				
6	0.051 3070	0.0680582	0.0669080	0.0669542	0.019 0869	0.243452				
7	0.046 7943	0.0647658	0.0644259	0.0665187	0.018 3969	0.245385				
8	0.042 5617	0.0617812	0.0616330	0.0662271	0.017 9871	0.246844				
9	0.038 6092	0.0591044	0.0590379	0.0660793	0.017 8572	0.247830				
10	0.034 9366	0.0567354	0.0567098	0.0660753	0.018 0074	0.248342				
11	0.031 5442	0.0546742	0.0546683	0.0662151	0.018 4377	0.248381				
12	0.028 4318	0.0529207	0.0529207	0.0664988	0.019 1480	0.247946				
13	0.025 5994	0.0514750	0.0514703	0.0669263	0.020 1384	0.247038				
14	0.023 0471	0.0503372	0.0503181	0.0674976	0.021 4088	0.245657				
15	0.020 7749	0.0495071	0.0494643	0.0682127	0.022 9593	0.243802				
16	0.018 7827	0.0489848	0.0489084	0.0690716	0.024 7898	0.241473				
17	0.017 0705	0.0487703	0.0486493	0.0700744	0.026 9004	0.238671				
18	0.015 6384	0.0488635	0.0486852	0.0712209	0.029 2910	0.235396				
19	0.014 4864	0.0492646	0.0490139	0.0725113	0.031 9617	0.231647				

Appendix B. Polynomials used in Case 4 of the proof

$$p_{0}(i) = 1444 + 39i + i^{2}$$

$$p_{1}(i) = 10 (-1558 - 45i + i^{2})$$

$$p_{2}(i) = 600 (19 + i)$$

$$p_{3}(i) = 10 (2660 - 147i + i^{2})$$

$$p_{4}(i) = 600 (-35 + i)$$

$$p_{5}(i) = 10 (1216 + 27i - i^{2})$$

$$p_{6}(i) = 600 (19 + i)$$

$$p_{7}(i) = 100 (2085136 + 111336i - 2663i^{2} - 78i^{3} + i^{4})$$

$$p_{8}(i) = 12000 (-27436 - 2077i + 88i^{2} + i^{3})$$

$$p_{9}(i) = 360000 (361 + 38i + i^{2})$$

$$p_{10}(i) = 1200 (35 - i)$$