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Abstract. Given a (multi)digraph H, a digraph D is H-linked if every injective
function ι : V (H)→ V (D) can be extended to an H-subdivision. In this paper, we
give sharp degree conditions that assure a sufficiently large digraph D is H-linked
for arbitrary H. The notion of an H-linked digraph extends the classes of m-linked,
m-ordered and strongly m-connected digraphs.

First, we give sharp minimum semi-degree conditions for H-linkedness, extending
results of Kühn and Osthus on m-linked and m-ordered digraphs. It is known that
the minimum degree threshold for an undirected graph to be H-linked depends on
a partition of the (undirected) graph H into three parts. Here, we show that the
corresponding semi-degree threshold for H-linked digraphs depends on a partition
of H into as many as nine parts.

We also determine sharp Ore-Woodall-Type degree-sum conditions assuring that
a digraph D is H-linked for general H. As a corollary, we obtain (previously unde-
termined) sharp degree-sum conditions for m-linked and m-ordered digraphs.

All graphs and digraphs in this paper are finite. For notation not defined here we
refer the reader to [1]. We write V (D) and E(D) for the set of vertices and edges of
a digraph D, and will often write |D| as shorthand for |V (D)|. For any two vertices
v, w ∈ V (D), there is at most one edge from v to w and at most one edge from w
to v, denoted by vw and wv, respectively. In multidigraphs, there may be more than
one edge in each direction. An (undirected) graph or multigraph G can be viewed
as a directed (multi)graph D, where for every undirected edge vw in G, both edges
vw and wv in D are present. If X ⊆ V (D) is a vertex set, we will often just write
X for the induced subdigraph D[X] if the context is clear. We write Xc for the
complement V (D)\X. We let Ck and Pk denote the directed cycle and path of order
k, respectively, and let Tk denote the transitive tournament of order k. For a set X of
vertices and a vertex v (possibly in X), let d+

X(v) denote the number of edges from v
to a vertex in X and d−X(v) denote the number of edges from vertices in X to v. For
sets of vertices X and Y in V (D), we let δ+

X(Y ) denote the minimum of d+
X(v) taken

over all v ∈ Y , and we define δ−X(Y ) similarly. If X = V (D), then we will write δ+(Y )
and δ−(Y ) in the interest of concision. The semi-degree of a vertex v, denoted d0(v),
is the minimum of d+(v) and d−(v). We let δ0(D) denote the minimum semi-degree of
a digraph D and let σ2(D) denote the minimum of d+(v) +d−(w) taken over all pairs
of distinct vertices v and w such that vw is not in E(D), a quantity Woodall studied
in [12] to transfer Ore’s condition for hamiltonian cycles in graphs to digraphs. The
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number of isolated vertices in D is denoted by n0(D). In order to emphasize that a
path P is a v−w path, we sometimes write vPw instead of P . Also, when convenient,
we will write u(v)w for a path which may either be uw or uvw.

A digraph D is m-linked if for any ordered set of 2m vertices S = {s1, t1, . . . , sm, tm}
in V (D), there exist disjoint paths P1, . . . , Pm such that for each i, Pi starts at si and
ends at ti. We will refer to this collection of paths as an S-linkage in D and will
frequently call S the terminals of the S-linkage. Similarly, we say that D is m-
ordered if for any ordered list of m vertices v1, . . . , vm in D, there exists a directed
cycle that visits these vertices in the given order. For a fixed digraph H, a digraph D
is H-linked if any injection ι : V (H)→ V (D) can be extended to an H-subdivision in
D. Such a subdivision will often be referred to as an H-linkage in D. We frequently
refer to ι as an H-linkage problem, and to the image of ι as the terminals of the
H-linkage problem. The notion of an H-linked digraph generalizes those of m-linked
and m-ordered digraphs, as D is mT2-linked if and only if D is m-linked and D is
Cm-linked if and only if D is m-ordered.

Kühn and Osthus determined the minimum semi-degree necessary to assure that a
sufficiently large digraph D is m-linked or m-ordered, respectively.

Theorem 1. [9]

(a) Let m ≥ 2, and let D be a digraph with |D| ≥ 1600m3.
If δ0(D) ≥ 1

2
(|D|+ 2m− 2), then D is m-linked.

(b) Let m ≥ 3, and let D be a digraph with |D| ≥ 200m3.
If δ0(D) ≥ 1

2
(|D|+m− 2), then D is m-ordered.

These degree bounds are best possible.

In this paper, we give sharp σ2 conditions that assure a digraph D with modestly
large minimum semi-degree is H-linked for arbitrary H. We then use this result to
determine the δ0-threshold for a digraph to be H-linked, thereby extending Theorem
1. We also obtain a sharp σ2-condition (with no restriction on δ0) for a digraph D to
be H-linked.

Minimum degree conditions that assure an (undirected) graph G is H-linked for
arbitrary connected H were first given (independently) in [2] and [7]. These were
subsequently strengthened in [4] to include arbitrary multigraphs H. In order to
discuss these results, we must first introduce a useful parameter, where we consider
all partitions V (H) = A ·∪B ·∪C of the vertex set of H.

For a (multi-)graph H, let

b(H) = max
A ·∪B ·∪C=V (H)
|E(A,B)|≥1

|E(A,B)|+ |C|.

When H is connected, it is straightforward to see that we may choose C to be empty
in any optimal partition, so that b(H) is equal to the maximum number of edges in a
bipartite subgraph of H. As was noted in [3] and [4], when H is disconnected, b(H)



H-LINKED DIGRAPHS 3

depends not only on the maximum size of a bipartite subgraph of H, but also on the
number of components of H without even cycles.

The following result of Gould, Kostochka and Yu gives the δ-threshold for H-
linkedness and also represents the current best bound on the necessary order of the
target graph G. This result was subsequently obtained as a corollary to results in [3]
and [5], albeit for larger |G| .

Theorem 2. [4] Let H be a (multi-)graph with c(H) components that do not contain
even cycles and G be a graph of order n ≥ 9.5(|E(H)|+ c(H) + 1). If

δ(G) ≥ n+ b(H)− 2

2
,

then G is H-linked. The degree bound is sharp.

Depending on the parity of n and m, many of the sharpness examples for Theorem 1
can be obtained from the associated undirected examples for m-linked and m-ordered
graphs from [6] and [8] by replacing edges with directed 2-cycles. This may entice one
to conjecture that the minimum semi-degree threshold for H-linked digraphs depends
on a partition of V (H) that resembles b(H). We show that, in general, there is a much
starker contrast between the minimum semi-degree threshold for H-linked digraphs
and the minimum degree threshold for H-linked graphs, as the δ0-threshold for a
digraph to be H-linked depends on a partition of V (H) into as many as nine parts.

1. Minimum Semi-Degree Conditions for H-Linkage in Digraphs

Let P = (A,B,C, L1, L2, L3, R1, R2, R3) be a partition of the vertices of a (multi)digraph
H, which from here forward we assume to have at least one edge. Let

EL
P(H) :=E(A ∪ L1 ∪ L2, B ∪ L1 ∪ L3),

ER
P (H) :=E(B ∪R1 ∪R2, A ∪R1 ∪R3),

~bP(H) :=|EL
P(H)|+ |ER

P (H)|+ |C|+ min {|R| − |L1|, |L| − |R1|} and
~b1P(H) :=|EL

P(H)|+ |ER
P (H)|+ |C|

+ min {|R| − |L1|, |L| − |R1|, |L2|+ |R2|, |L3|+ |R3|} .

If |E(H)| ≥ 2, let~b(H) and~b1(H) be the maxima of~bP(H) and~b1P(H), respectively,

over all such partitions P . When |E(H)| = 1, we let ~b(H) = ~b1(H) = |V (H)| − 1.
Now we are ready to state the two main results of this section.

Theorem 3. Let H be a (multi-)digraph and D be a digraph. If

δ0(D) ≥ 34|E(H)|+ n0(H), and

σ2(D) ≥ |D|+~b(H)− 2,

then D is H-linked. The bound on σ2 is best possible.
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Figure 1. The sharpness-determining partition of H. Solid edges are
in EL

P(H) and dashed edges are in ER
P (H).

Theorem 4. Let H be a (multi-)digraph and D be a digraph. If

δ0(D) ≥ max
{⌈

1
2
(|D|+~b1(H)− 2)

⌉
, 34|E(H)|+ n0(H)

}
,

then D is H-linked. This result is sharp whenever the first of the two bounds applies.

The bounds in Theorems 3 and 4 are sharp for every H with E(H) 6= ∅. Choose

a partition P of V (H) with ~bP(H) = ~b(H) (or ~b1P(H) = ~b1(H), respectively), and
suppose that this partition represents the intended ground-set of an H-subdivision.
To obtain a graph D on n vertices that demonstrates the sharpness of Theorem 3, we
add |EL

P(H)|+ |ER
P (H)| − 1 vertices to C and distribute the remaining n− |V (H)| −

|EL
P(H)|−|ER

P (H)|+1 vertices arbitrarily between A and B. To construct a sharpness
example D′ for Theorem 4, we will distribute the vertices between A and B in a way
that maximizes δ0(D). The edges of D (resp. D′) are all possible directed edges,
except for

{vw | v ∈ A ∪ L1 ∪ L2, w ∈ B ∪ L1 ∪ L3} ∪ {vw | v ∈ B ∪R1 ∪R2, w ∈ A ∪R1 ∪R3}.

Effectively, this means that D and D′ have structure complementary to the digraph
depicted in Figure 1.

The minimum semi-degree of D′ is achieved either by a vertex a ∈ A or a vertex
b ∈ B, and we may choose the sizes of A and B such that |δ0

V (A) − δ0
V (B)| ≤ 1.

Therefore, the minimum semi-degree of D′ is the minimum of (1) - (4), where R =
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R1 ∪R2 ∪R3 and L = L1 ∪ L2 ∪ L3:⌊
1
2

(
d+(a) + d+(b)

)⌋
=
⌊

1
2

(n+ |EP(H)|+ |C|+ |L2|+ |R2| − 3)
⌋

(1)⌊
1
2

(
d−(a) + d−(b)

)⌋
=
⌊

1
2

(n+ |EP(H)|+ |C|+ |L3|+ |R3| − 3)
⌋

(2)⌊
1
2

(
d+(a) + d−(b)

)⌋
=
⌊

1
2

(n+ |EP(H)|+ |C|+ |R| − |L1| − 3)
⌋

(3)⌊
1
2

(
d−(a) + d+(b)

)⌋
=
⌊

1
2

(n+ |EP(H)|+ |C|+ |L| − |R1| − 3)
⌋

(4)

Similarly, for any distribution of excess vertices to A and B, σ2(D) is determined
by one of (3) or (4).

Therefore, D misses the degree sum condition in Theorem 3 by one, andD′ similarly
has minimum semi-degree one less than that in Theorem 4. However, neither D nor
D′ has an H-linkage through the specified vertices, as every path corresponding to
an edge in EL

P(H) ∪ ER
P (H) needs to use one vertex in C \ V (H).

The reader may wonder if the complicated definition of ~b(H) and ~b1(H) is a neces-
sity or if there are simpler definitions. To this end, we can state that these are the
simplest deginitions relying on a partition of V (H), as one can see as follows. Let
H be a digraph with V (H) partitioned into a partition P as above, with each part
containing at least two vertices. Let E(H) be exactly the set of edges depicted in
Figure 1, i.e. the maximal set of edges such that EP(H) = E(H). Then it is easy to
see that P is, up to the obvious two-fold symmetry, the unique partition maximizing
~bP(H), and similarly ~b1P(H). Thus, both ~b(H) and ~b1(H) depend on the sizes of all
parts of P .

2. Technical Lemmas

We now give several facts and technical lemmas that will be utilized to prove our
results.

Lemma 5.

~b1(H) ≥ max
{
|EL
P(H)|+ |C|+ |R| − |L1|, |ER

P (H)|+ |C|+ |L| − |R1|
}
.

Proof. Let P be a partition maximizing |EL
P(H)|+ |C|+ |R| − |L1|. We may assume

that R = ∅ as otherwise we could move all vertices from R to C without lowering the
value of the sum. Then,

|EL
P(H)|+ |C|+ |R| − |L1| = |EL

P(H)|+ |C| − |L1| ≤ ~b1P(H) ≤ ~b1(H).

An identical argument shows that |ER
P (H)|+ |C|+ |L| − |R1| ≤ ~b1(H). �

The next three statements have straightforward proofs, so we omit parts of them
here. The first can be found in [10].

Lemma 6. Let D be a digraph, m ≥ 1 and v ∈ V (D) with d0(v) ≥ 2m− 1. If D− v
is m-linked, then D is m-linked.
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Lemma 7. If H is a multidigraph, and D is an edge maximal non-H-linked digraph,
then for all v, w ∈ V (D) with v 6= w, every m ≥ |E(H)| and every set X is of at least
2m vertices in D such that D[X] is m-linked, the following hold:

(a) D[X] is complete,
(b) d+

X(v) ≥ 2m− 1 ⇐⇒ X ⊆ N+[v],
(c) d−X(v) ≥ 2m− 1 ⇐⇒ X ⊆ N−[v], and
(d) X ⊆ N+[v] ∩N−[w] =⇒ vw ∈ E(D).

Proof. For (a), assume that there are x, y ∈ X with xy /∈ E(D). Then, by the
maximality of D, D + xy is H-linked. Taking a solution F of an H-linkage problem
in D + xy and all paths P in F corresponding to an edge in H, we disregard the
part of P from the first occurrence of a vertex in X ∩ P to the last occurrence of a
vertex in X ∩P . Then, the fact that D[X] is m-linked allows to complete this partial
H-linkage in D, contradicting the assumption that D is not H-linked. The proofs
for (b)-(d) are similar. �

Fact 8. Let D be a digraph and H a (multi-)digraph with |E(H)| = m and n0(H) = 0.
If D is m-linked, then D is H-linked.

Next, we give a straightforward degree sum condition that assures D is m-linked.

Lemma 9. Let D be a digraph and m ≥ 1. If σ2(D) ≥ |D| + 3m − 4, then D is
m-linked.

Proof. Let S = {s1, t1, . . . , sm, tm} be the set of terminals of the linkage problem. If
siti /∈ E(D), then |N+(si) ∩ N−(ti) \ S| ≥ m, so for every such pair we can find a
path of length 2. �

Thomassen [11] demonstrated the existence of non-2-linked digraphs with arbitrar-
ily high strong connectivity. However, sufficient strong connectivity can be used to
lower the bound on σ2 in Lemma 9.

Lemma 10. If D is a strongly 9
2
m-connected digraph with σ2(D) ≥ |D| + 1

2
m − 2.

Then D is m-linked.

Proof. Let S = {s1, t1, . . . , sm, tm} ⊂ V (D) be the terminals of the linkage problem.
Let 1 ≤ i ≤ m and assume that siti /∈ E(D). Then

|N+(si) ∩N−(ti)|+ |N+(si) ∪N−(ti)| = d+(si) + d−(ti) ≥ |D|+ 1
2
m− 2 (5)

by the degree sum condition.
By Menger’s Theorem, there are 9

2
m internally vertex disjoint si − ti paths, and

at least 5
2
m of them intersect S only in si and ti. We choose a smallest system

Pi = (P j
i )1≤j≤d 5

2
me of internally disjoint paths with |P j

i | ≤ |P
j+1
i | such that no path

in Pi intersects S \ {si, ti}. Note that every path contains exactly one vertex in each
of N+(si) and N−(ti). Let

pj
i := |{P ∈ Pi : |P | = j}|.



H-LINKED DIGRAPHS 7

Then we have

p3
i = min

{
d5

2
me, |(N+(si) ∩N−(ti)) \ S|

}
, (6)∑

j

pj
i = d5

2
me, and, (7)∑

j≥4

(j − 4)pj
i ≤ |D| − |S ∪N+(si) ∪N−(ti)| ≤ p3

i +
⌈

3
2
m
⌉
, (8)

where (8) follows from (5) and (6), together with the observation that every path of
order j ≥ 4 uses j − 4 vertices of V (D) \ (N+(si) ∪N−(ti) ∪ S).

Now consider the sum

Σi :=
∑
j≥3

pj
i

j − 2
.

Given (7) and (8), this sum is minimized for p4
i = m, p5

i =
⌈

3
2
m
⌉
, and pj

i = 0 for all
other j by convexity. Thus,

Σi ≥ 1
2
m+ 1

2
m = m.

Next, sequentially find two terminals sj and tj of minimal distance in the remaining
digraph, pick a shortest path Pj from sj to tj and delete V (Pj) from D. This may
destroy some paths in Pi for i 6= j, and thus alter Σi. If |Pj| = 2, all the remaining
Σi remain the same as all the paths in Pi stay intact. If |Pj| = t > 2, and thus
all remaining Pi have no remaining paths of shorter length, then Pj can intersect at
most t− 2 paths in Pi for i 6= j, each contributing at most 1

t−2
to Σi, and thus Σi is

reduced by at most 1. Therefore, this process can be continued until the linkage is
completed. �

3. Proof of Theorems 3 and 4

As large parts of the proofs of Theorems 3 and 4 coincide, we will prove them
jointly. Let m := |E(H)|, k := |H|. Let ι : V (H)→ V (D) be an H-linkage problem,
and for the sake of notation we may assume that V (H) ⊆ V (D) and that ι is the
identity. For the sake of contradiction, assume that D satisfies the conditions of
Theorem 3 or 4, and assume that ι has no solution in D, and that D is edge maximal
under this assumption.

Note that b(H) ≥ b1(H) ≥ m
2

, so by Lemma 10, D is not strongly 9
2
m-connected.

Hence, there is a minimal cut set Z in D with |Z| < 9
2
m. The degree conditions

imply that D − Z has exactly two strong components X and Y where, without loss
of generality, there are no edges from Y to X. For x ∈ X and y ∈ Y , we have that

n+ m
2
− 2 ≤ d−(x) + d+(y) ≤ |X|+ |Y |+ 2|Z| − 2 = n+ |Z| − 2,

so

δ−X(X) + δ+
Y (Y ) ≥ |X|+ |Y | − (|Z| − m

2
)− 2. (9)
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Let

X1 := {x ∈ X | d+
X(x) ≥ 18m}, and X2 := X \X1,

Y1 := {y ∈ Y | d−Y (y) ≥ 18m}, and Y2 := Y \ Y1.

Then a double count of the non-edges in X and Y gives

|X2|(|X| − 18m) ≤ |X|(|X| − δ−X(X)− 1), and

|Y2|(|Y | − 18m) ≤ |Y |(|Y | − δ+
Y (Y )− 1),

so by (9),

|X2|+ |Y2| ≤ (|X| − δ−X(X)− 1)
|X|

|X| − 18m
+ (|Y | − δ+

Y (Y )− 1)
|Y |

|Y | − 18m

≤ (|X|+ |Y | − δ−X(X)− δ+
Y (Y )− 2)

δ0(D)− |Z|
δ0(D)− |Z| − 18m

≤ (|Z| − m
2

)
δ0(D)− |Z|

δ0(D)− |Z| − 18m
< 4m

59

23
<

21

2
m.

Every vertex in X1 has at least |X1| − 9
2
m in-neighbors in X1 and at least 15

2
m out-

neighbors in X1, so σ2(X1) ≥ |X1|+ 3m. Thus X1, and by a similar argument Y1, are
m-linked by Lemma 9. Note that since

n− |X1 ∪ Y1| = |Z|+ |X2|+ |Y2| < 15m < δ0(D)− 2m,

we have max{d+
X1

(v), d+
Y1

(v)} > 2m, and max{d−X1
(v), d−Y1

(v)} > 2m for every vertex
v ∈ V (D). Let

X+ := {v ∈ V (D) : X1 ⊆ N+[v]},
X− := {v ∈ V (D) : X1 ⊆ N−[v]},
Y+ := {v ∈ V (D) : Y1 ⊆ N+[v]},
Y− := {v ∈ V (D) : Y1 ⊆ N−[v]}.

Then, by Lemma 7, we can partition V (D) into A,B,C, L1, L2, L3, R1, R2, R3 as
follows:

A := X+ ∩ X− ∩ Y c
+ ∩ Y c

−,
B := Xc

+ ∩ Xc
− ∩ Y+ ∩ Y−,

C := X+ ∩ X− ∩ Y+ ∩ Y−,
L1 := X+ ∩ Xc

− ∩ Y c
+ ∩ Y−,

L2 := X+ ∩ X− ∩ Y c
+ ∩ Y−,

L3 := X+ ∩ Xc
− ∩ Y+ ∩ Y−,

R1 := Xc
+ ∩ X− ∩ Y+ ∩ Y c

−,
R2 := Xc

+ ∩ X− ∩ Y+ ∩ Y−,
R3 := X+ ∩ X− ∩ Y+ ∩ Y c

−.
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It is important to note that Lemma 7 implies that D has structure complementary
to the digraph depicted in Figure 1. Specifically, if (v, w) /∈ (A∪L1∪L2)×(B∪L1∪L3)
and (v, w) /∈ (B ∪ R1 ∪ R2) × (A ∪ R1 ∪ R3), then by Lemma 7, vw is an edge in
D. As an example, consider v in L2 and w in A. As X1 is m-linked, v ∈ X+ and
w ∈ X−, it follows from part (d) of Lemma 7 that vw ∈ E(G). More generally, if
v ∈ X+ (respectively Y+) and w is in X− (resp. Y−), then vw ∈ E(D).

It therefore follows that X+ ∩X− and Y+ ∩ Y−, and thus both D[A∪C ∪L2 ∪R3]
and D[B∪C∪L3∪R2], are complete digraphs. Further, X1 ⊆ A∪R3, as every vertex
in X1 is in X+ ∩X− ∩ Y c

−, and Y1 ⊆ B ∪R2, as every vertex in Y1 is in Y+ ∩ Y− ∩Xc
+.

In particular, |A ∪R3| ≥ 19m and |B ∪R2| ≥ 19m.
For the sake of contradiction we assume that H is a minimal counterexample to

either Theorem 3 or 4. Let P = (AH , BH , CH , LH
1 , L

H
2 , L

H
3 , R

H
1 , R

H
2 , R

H
3 ) be the par-

tition of V (H) induced by the above partition of V (D).
Note that this implies that n0(H) = 0. Otherwise, let v ∈ V (H) with dH(v) = 0.

Then ~b(H−v) = ~b(H)−1 and ~b1(H−v) = ~b1(H)−1. Thus, by the minimality of H,
there is an (H − v)-linkage in D− v. This yields an H-linkage in D, a contradiction.

Further, note that E(H) = EL
P(H) ∪ ER

P (H). Otherwise, if e = st ∈ E(H) \
(EL
P(H) ∪ ER

P (H)), let F be a minimal (H − e)-linkage. Then F contains at most
2m vertices in each of A ∪ C ∪ L2 ∪ R3 and B ∪ C ∪ L3 ∪ R2, so there are a ∈
(A ∪C ∪ L2 ∪R3) \ V (F ) and b ∈ (B ∪C ∪ L3 ∪R2) \ V (F ). But then, either sat or
sbt completes the H-linkage.

Choose a 4-tuple (e, F, p, q) consisting of an edge e = st ∈ E(H), an (H−e)-linkage
F in D, and two vertices p ∈ (A ∪R3) \ V (F ) and q ∈ (B ∪R2) \ V (F ) such that

(a) Every path in F corresponding to an edge in E(H) has at most one internal
vertex in A ∪ L2 ∪R3 and at most one internal vertex in B ∪ L3 ∪R2,

(b) given (a), |E(D[{p, q}]))|+ |(C ∪ L ∪R) \ V (F )| is maximized, and
(c) given (a) and (b), |V (F )| is maximized.

By symmetry, we may assume that e ∈ EL
P(H). Let a ∈ (A ∪ R3) \ (V (F ) ∪ {p}),

b ∈ (B ∪R2) \ (V (F )∪ {q}). Then ab, pq /∈ E(D) as otherwise we can complete F to
an H-linkage via sabt or spqt. In particular, {a, p} ⊂ A and {b, q} ⊂ B. Similarly,
N+(a) ∩N−(b) ⊆ V (F ), as otherwise we can use saxbt for some x ∈ V (D) \ V (F ).

In the following, let u, v ∈ V (H), x ∈ (A∪L3∪R2)\V (H), y ∈ (B∪L2∪R3)\V (H),
c ∈ C \ V (H), l ∈ L1 \ V (H), and r ∈ R1 \ V (H) if such vertices exist. First suppose
that uv ∈ EL

P(H). Keeping in mind that D has structure complementary to that
pictured in 1, the following assertions hold.

• There is not r′ in R\V (F ) = ∅ as otherwise sr′t would complete an H-linkage.
• If uxyv ⊆ F , then ub, av /∈ E(D), as otherwise we can replace uxyv by uav

(or ubv) and add sxyt to F to complete the H-linkage. Similarly, xb /∈ E(D)
or ay /∈ E(D), as otherwise we can replace uxyv by uayv and add sxbt to
complete the H-linkage.
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• If uxv ⊆ F , then xb /∈ E(D) as otherwise replacing uxv by uxbv would
contradict (c). Similarly, if uyv ⊆ F , then ay /∈ E(D).
• If uxcyv ⊆ F or uxryv ⊆ F , then ub, xb, ay, av /∈ E(D) as otherwise replacing
uxcyv (or uxryv) by u(x)bv (or ua(y)v, respectively) and adding sct (or srt)
would create an H-linkage from F .
• If u(x)l(y)v ⊆ F , then ub, xb, ay, av /∈ E(D) by (c). If u(x)l(l1 . . . li)l

′(y)v ⊆ F ,
then N+(a)∩{(l1, . . . , li), l′, (y), v} = N−(b)∩{u, (x), l, (l1, . . . , li)} = ∅ by (c).

Now suppose that for all vu ∈ ER
P (H) and vPu ⊆ F , N+(a)∩N−(b)∩V (P ) ⊆ {u, v}.

In particular, this is the case if |E(q, p)|+ |L \ V (F )| ≥ 1. Otherwise, we could use a
vertex in N+(a)∩N−(b)∩V (P ) to connect s and t and use qp or a vertex in L\V (F )
to connect v and u, completing an H-linkage. Let

E∗ := {uv ∈ EL
P(H) : ub, av /∈ E(D)},

A∗ := V (H) ∩N+(a) ∩N−(b)c,

B∗ := V (H) ∩N+(a)c ∩N−(b),

C∗ := V (H) ∩N+(a) ∩N−(b), and

L∗1 := V (H) ∩N+(a)c ∩N−(b)c.

Note that e ∈ E∗. Then

n− 2 +~b1(H) ≤ d+(a) + d−(b) ≤ n− 2 + |E∗| − 1 + |C∗| − |L∗1|,

so that ~b1 ≤ E∗| + |C∗| − |L∗1| − 1. On the other hand, the partition V (H) = A∗ ∪
B∗ ∪ C∗ ∪ L∗1 shows that

~b(H) ≥ ~b1(H) ≥ |E∗|+ |C∗| − |L∗1|,
a contradiction.

Therefore, ba, qp /∈ E(D), L ⊆ V (F ), and ER
P (H) 6= ∅. In particular, there is an

edge e′ = t′s′ ∈ ER
P (H), t′Ps′ ⊆ F and a vertex z ∈ (N+(a)∩N−(b)∩V (P ))\{s′, t′}.

Replacing t′Ps′ by s(a)z(b)t gives an (H − e′)-linkage F ′ satisfying (a)-(c).

Claim 1. If uPv ⊆ F for some uv ∈ E(H), then

n+− := |(N+(p) ∩N−(q) ∩ V (P )) \ {u, v}| ≤ 1,

n−+ := |(N−(p) ∩N+(q) ∩ V (P )) \ {u, v}| ≤ 1,

n++ := |(N+(p) ∩N+(q) ∩ V (P )) \ {u, v}| ≤ 1, and

n−+ := |(N−(p) ∩N−(q) ∩ V (P )) \ {u, v}| ≤ 1.

Further, if P = uxv or P = uyv, then N(p) ∩N(q) ∩ V (P ) ⊆ {u, v}.

Proof. Supose first that uv 6= e′, and note that uPv ⊆ F ∩ F ′. If n+− ≥ 2, then
we can replace P in F ′ with some s − t path through p and leave either an extra
A − B (or B − A) edge incident to q outside F or a vertex in (C ∪ L ∪ R) \ V (F ),
contradicting (b). If one of the other sets contains two vertices, we can replace P in F ′
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by some t′−s′ path through p or q, and leave an extra A−B (or B−A) edge outside
F or a vertex in (C ∪ L ∪ R) \ V (F ), contradicting (b) again. If uv = e′, note that
uPv = t′(y)z(x)s′. If x ∈ V (P ), then note that x /∈ V (F ′) and thus qx, xq /∈ E(D)
by (b). Similarly, py, yp /∈ E(D) if y ∈ V (P ).

Now, if P = uxv and xq ∈ E(D) (or qx ∈ E(D)), we can use xq (or qx) in F−P (or
F ′ − P ) to create an (H − uv)-linkage F ′′ with |V (F ′′)| > |V (F )|, contradicting (c).
Similar arguments apply when P = uyv. �

Let P∗ be the following partition of V (H) depending on the neighborhoods of p
and q in D.

A∗ := V (H) ∩ N+(p) ∩ N−(p) ∩ N+(q)c ∩ N−(q)c,
B∗ := V (H) ∩ N+(p)c ∩ N−(p)c ∩ N+(q) ∩ N−(q),
C∗ := V (H) ∩ N+(p) ∩ N−(p) ∩ N+(q) ∩ N−(q),
L∗1 := V (H) ∩ N+(p)c ∩ N−(p) ∩ N+(q) ∩ N−(q)c,
L∗2 := V (H) ∩ N+(p) ∩ N−(p) ∩ N+(q) ∩ N−(q)c,
L∗3 := V (H) ∩ N+(p)c ∩ N−(p) ∩ N+(q) ∩ N−(q),
R∗1 := V (H) ∩ N+(p) ∩ N−(p)c ∩ N+(q)c ∩ N−(q),
R∗2 := V (H) ∩ N+(p) ∩ N−(p)c ∩ N+(q) ∩ N−(q),
R∗3 := V (H) ∩ N+(p) ∩ N−(p) ∩ N+(q)c ∩ N−(q).

Also, let

E∗1 := {uv ∈ E(H) : uPv ⊆ F, (N+(p) ∩N−(q) ∩ V (P )) \ {u, v} 6= ∅},
E∗2 := {uv ∈ E(H) : uPv ⊆ F, (N−(p) ∩N+(q) ∩ V (P )) \ {u, v} 6= ∅},
E∗3 := {uv ∈ E(H) : uPv ⊆ F, (N+(p) ∩N+(q) ∩ V (P )) \ {u, v} 6= ∅},
E∗4 := {uv ∈ E(H) : uPv ⊆ F, (N−(p) ∩N−(q) ∩ V (P )) \ {u, v} 6= ∅},
E∗ := E∗1 ∪ E∗2 ∪ E∗3 ∪ E∗4 .

Claim 2.

E∗ ∪ e ⊆ EL
P∗(H) ∪ ER

P∗(H).

Proof. First consider e′ = t′s′ and t′(y)z(x)s′ ⊆ F with z ∈ N+(a) ∩ N−(b). If
t′p ∈ E(D) or qs′ ∈ E(D), we can use this edge to connect t′ and s′, and complete
the H-linkage via sazbt. Thus, t′p, qs′ /∈ E(D) and e′ ∈ ER

P∗(H).
Now let uv ∈ EL

P(H)\e and uPv ⊆ F . Then up, qv ∈ E(D) as A∪L1∪L2 ⊆ N−[p]
and B∪L1∪L3 ⊆ N+[q] by Lemma 7. If uq ∈ E(D), then uPv = uxv or uPv = uyv,
so N(p) ∩ N(q) ∩ V (P ) ⊆ {u, v} by Claim 1, so uv /∈ E∗. On the other hand, if
uq /∈ E(D), then u ∈ A∗ ∪ L∗1 ∪ L∗2. Similarly, if v /∈ B∗ ∪ L∗1 ∪ L∗3, then uv /∈ E∗.
Thus, (EL

P(H) \ e) ∩ E∗ ⊆ EL
P∗(H).

Symmetric arguments using F ′ show that e ∈ EL
P∗(H) and (ER

P (H) \ e′) ∩ E∗ ⊆
ER
P∗(H). �
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Claim 2 implies that |E∗| ≤ |EL
P∗(H)|+ |ER

P∗(H)| − 1. This yields

d+(p) + d−(q) ≤ n− 2 + |E∗1 |+ |C∗|+ |R∗| − |L∗1|
≤ n− 2 + |EL

P∗(H)|+ |ER
P∗(H)| − 1 + |C∗|+ |R∗| − |L∗1|, (10)

d−(p) + d+(q) ≤ n− 2 + |E∗2 |+ |C∗|+ |L∗| − |R∗1|
≤ n− 2 + |EL

P∗(H)|+ |ER
P∗(H)| − 1 + |C∗|+ |L∗| − |R∗1|, (11)

d+(p) + d+(q) ≤ n− 2 + |E∗3 |+ |C∗|+ |L∗2|+ |R∗2|
≤ n− 2 + |EL

P∗(H)|+ |ER
P∗(H)| − 1 + |C∗|+ |L∗2|+ |R∗2|, (12)

d−(p) + d−(q) ≤ n− 2 + |E∗1 |+ |C∗|+ |L∗3|+ |R∗3|
≤ n− 2 + |EL

P∗(H)|+ |ER
P∗(H)| − 1 + |C∗|+ |L∗3|+ |R∗3|. (13)

Inequalities (10) and (11) now yield Theorem 3, and inequalities (10)-(13) yield The-
orem 4. �

4. Ore-Woodall-Type Conditions for H-Linkage in Directed Graphs

In [5], sharp Ore-type degree conditions were given that assure an undirected graph
G is H-linked for an arbitrary simple graph H. Let

a(H) := max
A∪B=V (H)

(|E(A,B)|+ |B| −∆B(A)) .

Theorem 11. [5] Let H be a simple graph and G be a graph of order n > 20|E(H)|.
If

σ2(G) ≥ n+ a(H)− 2,

then G is H-linked. This degree bound is sharp.

For directed graphs, we achieve a similar, yet more complicated, bound. As it is
the case for undirected graphs, multiedges yield complications to such a degree that
a bound depending mostly on a partition of the vertex set appears infeasible. Thus,
the results in this section apply only to digraphs. Let P = (A,B,L,R) be a partition
of V (H) with B 6= V (H), and let

EP(H) := E(A ∪ L,B ∪ L) ∪ E(B ∪R,A ∪R).

Let

~aP(H) := |EP(H)|+ |B|+ min
{
|R| −∆+

B∪L(A ∪ L), |L| −∆−B∪R(A ∪R)
}
,

and let
~a(H) := max

P
~aP(H).

Note that for all H, ~a(H) ≥ ~b(H), as for a 9-part partition P maximizing ~bP(H), you
can take P ′ with A′ = A, B′ = B ∪ C ∪ L3 ∪ R2, L

′ = L1 ∪ L2 and R′ = R1 ∪ R3

and observe that ~aP ′(H) ≥ ~bP(H). Further, note that ~a(H ′) ≤ ~a(H) whenever H ′ is
a subdigraph of H. The proof of these simple facts is left to the reader.
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Figure 2. The sharpness-determining partition of H.

Theorem 12. Let H and D be digraphs with |D| > n0(H) + 222|E(H)|2. If

σ2(D) ≥ |D|+ ~a(H)− 2,

then D is H-linked. This degree bound is sharp.

Proof. We begin by showing that the degree sum condition is sharp. Let P =
(A,B,L,R) be a partition of V (H) with ~aP(H) = ~a(H). For n ≥ |H|+ |EP(H)| − 1,
let B′ be a set of n− |H| − |EP(H)|+ 1 new vertices, let C be a set of |EP(H)| − 1
new vertices, and let D be the directed graph with

V (D) = V (H) ∪B′ ∪ C, and

E(D) = (V (D)× V (D)) \ (EP(H) ∪ ((A ∪ L)×B′) ∪ (B′ × (A ∪R))).

Then, every path corresponding to an edge in EP(H) in an H-linkage must use a
vertex in C, but C contains too few vertices, so D is not H-linked. Yet, the degree
bound from Theorem 12 is missed by 1.

We now come to the proof of the positive statement. For the sake of contradiction,
we assume that H is a minimal counterexample and that D is edge maximal without
containing an H-linkage. This implies that H does not contain isolated vertices.
Further, if e ∈ E(H)∩E(D), an (H − e)-linkage in D can trivially be extended to an
H-linkage, so E(H) ∩ E(D) = ∅.

Let m := |E(H)|, and we may assume that m ≥ 2 as the statement is trivial for
m ≤ 1. If δ0(D) ≥ 34m, we are done by Theorem 3, thus we may assume that there
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is a vertex v with d0(v) < 34m, we may assume by symmetry that d+(v) < 34m. Let
Y = V (D) \N+[v] and y ∈ Y . Then

d+(v) + d−(y) ≥ |N+[v||+ |Y |+ ~a(H)− 2,

and thus
δ−Y (Y ) > |Y | − 34m.

So at most 34m|Y | edges are missing inside Y . Setting

Y1 := {y ∈ Y : d+
Y (y) ≥ 80m}, and Y2 := Y \ Y1,

we get

|Y2| <
34m|Y |
|Y | − 80m

≤ 43m,

as |Y | ≥ 222m2 − 34m ≥ 410m. Thus, for any pair y1, y2 ∈ Y1, we have d+
Y1

(y1) +

d−Y1
(y2) > |Y1| + 3m, and therefore Y1 is m-linked by Lemma 9. Let B ⊇ Y1 be a

maximal m-linked set. If B = V (D) we are done, so we may assume that B 6= V (D).
By Lemma 6 , all vertices x ∈ V (D) \B have d0

B(x) < 2m. Let

A :={v ∈ V (D) \B : d+
B(v) < 2m, d−B(v) < 2m},

L :={v ∈ V (D) \B : d+
B(v) < 2m, d−B(v) ≥ 2m},

R :={v ∈ V (D) \B : d+
B(v) ≥ 2m, d−B(v) < 2m}.

Then A ∪R ⊆ N+[v] and L ⊆ N+[v] ∪ Y2. We have

((A ∪ L)× (A ∪R)) ∪ ((B ∪R)× (B ∪ L)) ⊆ E(D)

by the degree sum condition and by Lemma 7, respectively. Let P = (AH , BH , LH , RH)
be the partition induced on H. Then E(H) = EP(H) since E(H) ∩ E(D) = ∅. We
have

|B \ (N+(A) ∪N−(A) ∪N+(L) ∪N−(R))| > |D| − 2m(2|A|+ |L|+ |R|)
≥ |D| − 2m(2|N+[v]|+ |Y2|)
≥ |D| − 222m2 ≥ 0,

so there is a vertex b ∈ B \ (N+(A) ∪N−(A) ∪N+(L) ∪N−(R)).
We will show that D not only contains an H-linkage (which would suffice for the

desired contradiction), but it contains an H-linkage F , where every path in F cor-
responding to an edge in E(H) has length exactly 2. We will consider partitions
P∗ = (A∗, B∗, L∗, R∗) of V (H) with A∗ ⊆ AH , L∗ ⊆ AH ∪ LH and R∗ ⊆ AH ∪ RH

and use induction on 2|A∗| + |L∗| + |R∗| to show that D contains internally disjoint
paths of length 2 corresponding to all edges in EP∗(H) ⊆ EP(H) = E(H).

The statement is trivially true for 2|A∗| + |L∗| + |R∗| = 0 as then EP∗(H) = ∅.
Next consider a partition P∗ with 2|A∗| + |L∗| + |R∗| ≥ 1 and assume that the
statement is true for all partitions with smaller values. Let a ∈ A∗ ∪ L∗ maximizing
d+
P∗(a) := |EP∗(a, L∗∪B∗)|, and a′ ∈ A∗∪R∗ maximizing d−P∗(a

′) := |EP∗(B∗∪R∗, a′)|.
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We may assume that d+
P∗(a) + |L∗| ≥ d−P∗(a

′) + |R∗|, as the other case can be handled
with a symmetric argument. If a ∈ A∗ ⊆ AH , let P∗∗ be the partition of V (H) with

A∗∗ = A∗ − a, B∗∗ = B∗, L∗∗ = L∗, and R∗∗ = R∗ + a.

If a ∈ L∗ ⊆ AH ∪ LH , let P∗∗ be the partition of V (H) with

A∗∗ = A∗, B∗∗ = B∗ + a, L∗∗ = L∗ − a, and R∗∗ = R∗.

Note that in either case, A∗∗ ⊆ AH , L∗∗ ⊆ AH ∪ LH and R∗∗ ⊆ AH ∪ RH . Then
2|A∗∗| + |L∗∗| + |R∗∗| = 2|A∗| + |L∗| + |R∗| − 1, and by induction D contains a
subgraph F consisting of internally disjoint paths of length 2 corresponding to all
edges in EP∗∗(H) = EP∗(H) \ EP∗(a, V (H)). Then

|D| − 2 + |EP∗(H)|+ |B∗|+ |R∗| − d+
P∗(a)

≤ d+(a) + d−(b)

≤(∗) |D| − 2− |EH(a, LH)|+ |N+(a) ∩N−(b)|
≤ |D| − 2− d+

P∗(a) + |N+(a) ∩N−(b)|,
where (∗) is true since E(H) ∩ E(D) = ∅ and thus N+

H (a) ∩ (N+(a) ∪ N−(b)) = ∅.
So, as N−(b) ∩ (A∗ ∪ L∗) = ∅,

|(N+(a) ∩N−(b)) \ V (H)| ≥ |(N+(a) ∩N−(b))| − |B∗| − |R∗|
≥ |EP∗(H)| = |EP∗∗(H)|+ d+

P∗(a).

Thus, there are at least d+
P∗(a) vertices in N+(a) ∩ ((B∗ ∪ R∗) \ V (F )), and we

can use these as internal vertices in paths of length 2 corresponding to all edges in
EP∗(a, V (H)).

�

Remark: The bound on |D| in Theorem 12 can be lowered some, but we have elected
not to make the necessary modifications to the proof in the interest of concision.

5. m-Linked and m-Ordered Digraphs

We now turn our attention tom-linked andm-ordered graphs, and demonstrate how
we may obtain Theorem 1 from Theorem 4. To do so, we explain how the partition

P is constructed for mT2 and Cm, respectively. We get ~b1P(mT 2) = ~bP(mT 2) = 2k
by setting L2 = {s1}, L3 = {t1}, R2 = {s2}, R3 = {t2}, and C = {s3, t3, . . . , sm, tm},
where siti are the i edges of the matching. We get ~b1P(Cm) = ~bP(Cm) = m by setting
L2 = {v1}, B = {v2}, R3 = {v3}, and C = {v4, . . . , vm}, where Ck = v1v2 . . . vmv1.
In both cases it is fairly straightforward to check that the given partition is optimal.
Thus we obtain the following corollaries which improve significantly upon the order
bounds in Theorem 1.

Corollary 13. Let D be a digraph, and m ≥ 2.

(a) If δ0(D) ≥ 40m and σ2(D) ≥ |D|+ 2m− 2, then D is m-linked.
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(b) If |D| ≥ 80m and δ0(D) ≥ 1
2
(|D|+ 2m− 2), then D is m-linked.

Corollary 14. Let D be a digraph, and m ≥ 3.

(a) If δ0(D) ≥ 40m and σ2(D) ≥ |D|+m− 2, then D is m-ordered.
(b) If |D| ≥ 80m and δ0(D) ≥ 1

2
(|D|+m− 2), then D is m-ordered.

In a similar way, we obtain previously unknown tight Ore-Woodall-type bounds
for m-linked and m-ordered digraphs. First, ~aP(mT2) =

⌊
5
2
m
⌋
− 1 by setting A = ∅,

L = {s1, s2, . . . , sbm
2
c}, R = {tbm

2
c+1, . . . , tm}, and B = V (mT2) \ (L ∪ R). Similarly,

~aP(Cm) =
⌊

3
2
m
⌋
− 1 by setting A = {v2, v4, . . .}, B = {v1, v3, . . .}, and L = R = ∅.

In both cases it is fairly straightforward to check that the given partition is optimal
(but not unique). Thus we obtain the following corollaries.

Corollary 15. If |D| ≥ 222m2 and σ2(D) ≥ |D|+
⌊

5
2
m
⌋
− 3, then D is m-linked.

Corollary 16. If |D| ≥ 222m2 and σ2(D) ≥ |D|+
⌊

3
2
m
⌋
− 3, then D is m-ordered.
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