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Abstract. A stable cutset in a graph is a stable set whose deletion disconnects the
graph. It was conjectured by Caro and proved by Chen and Yu that any graph with
n vertices and at most 2n− 4 edges contains a stable cutset. The bound is tight, as
we will show that all graphs with n vertices and 2n− 3 edges without stable cutset
arise recursively glueing together triangles and triangular prisms along an edge or
triangle. As a by-product, an algorithmic implication of our result will be pointed
out.

1. Introduction

All graphs considered are finite and have no loops or multiple edges. For a graph
G = (V (G), E(G)) with vertex set V (G) and edge set E(G), write |G| = |V (G)|
and ‖G‖ = |E(G)|. A stable set (or an independent set) in G is a set of pairwise
non-adjacent vertices. A cutset (or separator) of G is a set S of vertices such that
G − S is disconnected. A stable cutset in G is a cutset of G which is also a stable
set. It is naturally expected that graphs with few edges would have stable cutsets.
Indeed, the following theorem was conjectured by Caro and proved by Chen and Yu.

Theorem 1 ([4]). Let G be a graph with ‖G‖ ≤ 2|G| − 4. Then G contains a stable
cutset.

Small stable cutsets are discussed in [3], and algorithmic and complexity aspects
of stable cutsets are discussed in [5, 1, 7, 8, 9]. The importance of stable cutsets in
connection to perfect graphs are demonstrated in [6, 11]. In [2] it is noted that graphs
containing stable cutsets play a role in some decomposition algorithms.

Actually, Chen and Yu proved the following stronger result.

Theorem 2 ([4]). Let G be 2-connected a graph with ‖G‖ ≤ 2|G|−4. Then for every
vertex x ∈ V (G), there is a stable cutset not containing x.

This implies immediately the following corollary; a vertex x is a cut vertex if {x}
is a cutset.

Corollary 3. Let G be a graph with ‖G‖ ≤ 2|G| − 4, and x ∈ V (G). Unless x is the
unique cut vertex in G, there is a stable cutset not containing x.
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The bound in Theorem 1 is tight. In the next section we describe all graphs with n
vertices and 2n− 3 edges that have no stable cutset (Theorem 5). In the last section
we will point out an algorithmic implication of our result.

Notation and definitions. Let G be a graph. The complement of G is written G.
The neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices in
G adjacent to v; if the context is clear, we simply write N(v). Set deg(v) = |N(v)|,
the degree of the vertex v. For a subset W ⊆ V (G), N(W ) =

⋃
w∈W N(w) \ W ,

and G[W ] is the subgraph of G induced by W ; write G −W = G[V (G) \W ] and
G−w = G−{w}. Given another graph H, an H-cutset S of G is a cutset such that
G[S] is isomorphic to H, while a k-cutset is a k-element cutset. An edge cut of G is
a set M of edges such that G−M = (V (G), E(G) \M) is disconnected. A matching
cut in G is an edge cut of G that is also a matching.
Pk stands for the path with k vertices and k − 1 edges, Ck is the cycle with k

vertices and k edges. A complete graph with k vertices is denoted Kk; K−k is Kk

minus an edge. The K3 is also called a triangle and the C6 is also called a triangular
prism; see Figure 1.

Figure 1. The triangular prism C6.

We will make use of the following well-known graph operation. A clique in a graph
is a set of pairwise adjacent vertices. Let G1, G2 be disjoint graphs which each have
nonempty cliques Q1, respectively, Q2 of the same size. A graph obtained from G1

and G2 by first choosing a bijection f : Q1 → Q2 and then identifying each x in Q1

with f(x) in Q2 is said to arise from G1 and G2 by clique identification. If the chosen
cliques have two, respectively, three vertices, we also speak of edge identifications,
respectively, triangle identifications. Finally, for convenience, we consider G1 and G2

as induced subgraphs of the graph arising from G1 and G2 by clique identification.
Thus, a graph G arises from two graphs by clique identification if and only if there
exist induced subgraphs G1 and G2 in G such that G = G1 ∪ G2 and G1 ∩ G2 is a
clique.

2. The Result

Let Gsc be the the class of graphs one gets by recursively glueing together triangles
and triangular prisms along an edge or triangle. More precisely,

1. K3 ∈ Gsc and C6 ∈ Gsc.
2. If G1, G2 ∈ Gsc and G is obtained from G1 and G2 by edge identification, then
G ∈ Gsc.
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3. If G1, G2 ∈ Gsc and G is obtained from G1 and G2 by triangle identification,
then G ∈ Gsc.

Notice that we may restrict to G2 ∈ {K3, C6} in the above definition without changing
the class Gsc, which effects the complexity of the algorithm considered in the last
section of the paper.

Proposition 4. Any graph G ∈ Gsc has ‖G‖ = 2|G| − 3 edges and no stable cutset.

Proof. The statement is obvious for triangles and triangular prisms. Let G arise from
G1, G2 ∈ Gsc by edge or triangle identification, and write G = G1 ∪ G2 with clique
Q = G1 ∩G2 of size two or three. Then

|G| = |G1|+ |G2| − |Q| and ‖G‖ = ‖G1‖+ ‖G2‖ − ‖Q‖,
and hence, by induction,

‖G‖ = (2|G1|−3)+(2|G2|−3)−‖Q‖ = (2|G|−3)+(2|Q|−3−‖Q‖) = 2|G|−3.

Note that, as Q is a clique, any stable cutset in G is also a stable cutset in G1 or G2.
Hence, by induction again, G has no stable cutset. �

Theorem 5. Let G be a graph with ‖G‖ ≤ 2|G|− 3. Then G contains a stable cutset
or G ∈ Gsc.

Proof. Our proof starts with a number of claims. For the sake of contradiction, we
assume that G is a minimal counterexample to Theorem 5. Then, by Theorem 1,

Claim 1. ‖G‖ = 2|G| − 3.

Claim 2. Every vertex v lies in a triangle.

Otherwise, N(v) would be a stable cutset in G.

Claim 3. G contains no K2-cutset and no K3-cutset.

Otherwise, let G contain a cutset Q isomorphic to K2 or K3. Write G = G1 ∪ G2

with G1 ∩ G2 = Q. Since G has no stable cutset and Q is a clique, G1 and G2 have
no stable cutset. By Theorem 1, ‖Gi‖ ≥ 2|Gi| − 3, i = 1, 2, hence, by Claim 1,
‖Gi‖ = 2|Gi| − 3. Therefore, by the minimality of G, Gi ∈ Gsc, and thus G ∈ Gsc, a
contradiction.

Claim 4. G is 3-connected.

Otherwise, by Claim 3, G would contain a stable cutset.

Claim 5. G contains no 3-edge matching cut.

Otherwise, let M = {x1y1, x2y2, x3y3} be a matching cut of G. Since G is 2-
connected, G − M has exactly two components, say G1 and G2. Then the set of
all edges between G1 and G2 is exactly M , and we may assume that x1, x2, x3 ∈
V (G1), y1, y2, y3 ∈ V (G2). Now, if {x1, x2, x3} is not a clique, say x1x2 6∈ E(G), then
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{x1, x2, y3} is a stable cutset of G, a contradiction. So, {x1, x2, x3} and, by symmetry,
{y1, y2, y3} are cliques. Since G 6= C6, at least one of these cliques must be a cutset
of G, contradicting Claim 3.

Claim 6. G contains no K−4 .

Otherwise, contract the edge between the two vertices of degree 3 in this (not
necessarily induced) subgraph, resulting in a graph G′. By Claim 4, G′ is 2-connected.
By Claim 1, ‖G′‖ ≤ ‖G‖ − 3 = 2|G| − 6 = 2|G′| − 4. By Theorem 2, G′ contains a
stable cutset not containing the new vertex, which is also a stable cutset in G.

Claim 7. For any two non-adjacent vertices x, y we have |N(x) ∩N(y)| ≤ 2.

Otherwise, contract the two vertices, and get a (2-connected) graph G′ with ‖G′‖ ≤
2|G′| − 4. Then, G′ has a stable cutset by Theorem 1 which yields a stable cutset
in G.

Claim 8. G contains no P3-cutset.

Otherwise, let {x, y, z} be a cutset of G such that xy, yz ∈ E(G), and let G1 and
G2 be induced subgraphs of G with G = G1 ∪G2 and G1 ∩G2 = {x, y, z}. Then

‖G1‖+ ‖G2‖ = ‖G‖+ 2 = 2|G| − 1 = 2|G1|+ 2|G2| − 7.

Thus, by symmetry ‖G1‖ ≤ 2|G1|−4, and note that, by Claim 4, y is not a cut vertex
of G1. Therefore, by Corollary 3, G1 contains a stable cutset not containing y. But
this is then also a stable cutset in G.

Claim 9. In every triangle, at least two vertices belong to other triangles as well.

Proof of Claim 9: Assume that xyz is a triangle and y and z are in no other
triangles. Then there is an edge y′z′ with y′ ∈ N(y) and z′ ∈ N(z) as otherwise, by
Claim 6, (N(y)∪N(z))\{y, z} is a stable cutset. Contracting {y, z′} to a new vertex
v yields a graph G′ with ‖G′‖ ≤ 2|G′| − 3. Since every stable cutset in G′ yields a
stable cutset in G, G′ has no stable cutset. So G′ ∈ Gsc by the minimality of G.

Now assume that G′ contains a 3-edge matching cut M . Then by Claim 5, v is in
one of the edges in M , say M = {au, bv, cw}, and further, we have by′, bz ∈ E(G).
Let the two triangles in G′ enclosing M be abc and uvw, where b ∈ {y′, z} by Claim 7.

Let G1 be the component of G − {au, by′, bz, cw} containing abc. By Claim 3,
G1 = abc. Let G2 = G − G1, and note that ‖G2‖ = 2|G2| − 4. Further, G2 is 2-
connected as any 1-cutset in G2 would yield a 2-cutset in G if we add b to it. We may
assume by symmetry that z′w ∈ E(G) (we will not use the fact that y lies in only
one triangle, so y and z′ are symmetric in the following argument). Further assume
that yu ∈ E(G). By Theorem 2, G2 contains a stable cutset X not containing w. As
X is not a stable cutset of G, y is in a different component of G2−X than w. Thus,
u ∈ X and X ∪ {b} is a cutset of G, and as this is not a stable cutset, z′ ∈ X. But
then X ∪ {c} is a stable cutset in G, a contradiction. So yu /∈ E(G) and therefore
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z′u ∈ E(G). By Theorem 2, G2 contains a stable cutset X not containing z′, with y
and z′ in different components of G2 −X. But then X ∪ {b} is a stable cutset in G,
a contradiction. Therefore, G′ contains no 3-edge matching cut.

As a result, G′ can be built by starting with a triangle and recursively glueing on
triangles along an edge (G′ is a so-called 2-tree). As G is 3-connected, every such
2-cutset in G′ has the form uv, and u is connected to exactly one of y and z′ by
Claim 8. Further, every vertex of degree at least 3 in G′ lies in such a cutset.

On the other hand, there are at least two vertices of degree 2 in G′. As G is 3-
connected, such vertices must lie in NG(y)∩NG(z′), but by Claim 7, NG(y)∩NG(z′) =
{y′, z}. Thus, exactly the two vertices y′ and z have degree 2 in G′, and NG(z) =
{x, y, z′}. By a symmetric argument using a contraction of {y′, z} instead of {y, z′} in
the beginning, NG(y) = {x, y′, z}. But this implies that NG(z′) = V (G) \ {y, z′}, as
every vertex in V (G)\{y, z′} is in NG′(v) = NG(y)∪NG(z′). In particular, xz′ ∈ E(G).
This contradicts Claim 6, as G[{x, y, z, z′}] is then a K−4 , hence Claim 9 follows.

Consider the vertex-triangle incidence graph H of G, i.e., the bipartite graph with
partite sets V (G) and the set of all triangles T (G) in G, with an edge between a
vertex v ∈ V (G) and a triangle T ∈ T (G) if v ∈ V (T ). By Claim 9, H is not a tree.

Let x1T1x2T2 . . . xkTkx1 be a shortest cycle in H. By Claim 6, H has no cycles
of length less or equal to 6, so k ≥ 4. Then C = x1x2 . . . xkx1 is a cycle in G, and
V (Ti) \ V (C) consists of a distinct vertex for every 1 ≤ i ≤ k.

If we contract P = x1x2 . . . xk−1 to a new vertex v, we get a graph G′ with ‖G′‖ ≤
2|G′| − 4. If v is not the unique cut vertex of G′, then we can use Corollary 3 to
find a stable cutset of G′ not containing v, which is then also a stable cutset of G,
a contradiction. Thus, v is the unique cut vertex of G′. Let Y be a component of
G \ V (P ) and 1 ≤ r ≤ s ≤ k − 1, such that

{xr, xs} ⊆ N(Y ) ∩ V (P ) ⊆ {xr, . . . , xs},
and

N(Z) ∩ V (P ) \ {xr+1, . . . , xs−1} 6= ∅
for all components Z of G \ V (P ). Note that s ≥ r + 2 as G is 3-connected. Now
contract xr+1 . . . xs−1 to a new vertex x and call the resulting graph G′′. Then ‖G′′‖ ≤
2|G′′|−3, and let G1 := G′′[Y ∪{xr, x, xs}] and G2 := G′′ \Y . As in Claim 8, we have

‖G1‖+ ‖G2‖ = ‖G′′‖+ 2 ≤ 2|G′′| − 1 = 2|G1|+ 2|G2| − 7.

Further, x is neither a cut vertex of G1 nor of G2. Thus, by Corollary 3, either G1

or G2 has a stable cutset not containing x. But this is also a stable cutset of G, a
contradiction. �

3. Complexity Issues

With stable cutset we mean the following decision problem: ‘Does a given
graph admit a stable cutset?’ The computational complexity of stable cutset has
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been addressed in a number research papers, e.g., [5, 1, 7, 8, 9]. To sum up, stable
cutset is NP-complete for graphs of maximum degree five (even for K4-free planar
graphs with maximum degree five [8] and for 5-regular line graphs of bipartite graphs
[9]), and is trivial for graphs of maximum degree three (by Theorem 1, such graphs
with more than seven vertices always have a stable cutset). The complexity status of
stable cutset is still open for graphs with maximum degree four.

By Theorem 1, stable cutset for graphs with maximum degree four remains open
only in four cases, namely for graphs with n vertices and m edges where 2n − 3 ≤
m ≤ 2n.

Thus, the following problem is of interest and has been addressed in [9, 10]:

stable cutset(n,m). Given a graph G with n vertices and m edges. Does G have
a stable cutset?

It was shown in [9] that, for any given ε > 0, stable cutset(n,m) is NP-complete
for m ≥ (2 + ε)n. By Theorem 1, stable cutset(n,m) is trivial for m ≤ 2n − 4.
By Theorem 5, we obtain the following:

Corollary 6. stable cutset(n, 2n− 3) is solvable in polynomial time.

Proof. Let G be a graph with n vertices and m = 2n− 3 edges. Then, by Theorem 5,
G has a stable cutset, or else G must belong to Gsc. Since the members of Gsc can be
recognized in time O(n4) in an obvious way, Corollary 6 follows.

In fact, the recognition of G ∈ Gsc can be performed in quadratic time, based on
the following observations. For every edge xy, we can in linear time test if {x, y} is a
cutset and determine the components of G−{x, y}. If G ∈ Gsc, performing this for all
2n− 3 edges, this process yields in quadratic time a set of at most n− 2 components
with at most a total of 3n−6 vertices, where each component is obtained from copies
of K3 and C6 via triangle identification. In particular, every vertex is in exactly one
K3. Further, every vertex of degree 2 is in a K3-component, and the non-separating
K3 in other components consist exactly of the vertices of degree 3. This way, we
can easily recover the building blocks, the C6, used to build up the components in
quadratic time, by cutting off one C6 which includes a non-separating K3 at a time
(linear time for each step, linear number of steps).

With a bit more effort, one can show that one can decide if G ∈ Gsc in time
O(n log n), but for the sake of exposition we do not present the argument here. �
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