Cycle Spectra of Hamiltonian Graphs

Kevin G. Milans ${ }^{\dagger}$, Florian Pfender ${ }^{\ddagger}$, Dieter Rautenbach ${ }^{\S}$, Friedrich Regen ${ }^{\S}$, and Douglas B. West ${ }^{〔}$

March 23, 2012

Abstract

We prove that every Hamiltonian graph with n vertices and m edges has cycles with more than $\sqrt{p}-\frac{1}{2} \ln p-1$ different lengths, where $p=m-n$. For general m and n, there exist such graphs having at most $2\lceil\sqrt{p+1}\rceil$ different cycle lengths.

Keywords: cycle, cycle spectrum, Hamiltonian graph, Hamiltonian cycle.

1 Introduction

The cycle spectrum of a graph G is the set of lengths of cycles in G. A cycle containing all vertices of a graph is a spanning or Hamiltonian cycle, and a graph having such a cycle is a Hamiltonian graph. An n-vertex graph is pancyclic if its cycle spectrum is $\{3, \ldots, n\}$. Our graphs have no loops or multiple edges. A graph is k-regular if every vertex has degree k (that is, k incident edges).

Interest in cycle spectra arose from Bondy's "Metaconjecture" (based on [3]) that sufficient conditions for the existence of Hamiltonian cycles usually also imply that a graph is pancyclic, with possibly a small family of exceptions. For example, Bondy [3] showed that the sufficient condition on n-vertex graphs due to Ore [16] (the degrees of any two nonadjacent vertices sum to at least n) implies also that G is pancyclic or is the complete bipartite

[^0]graph $K_{\frac{n}{2}, \frac{n}{2}}$. Schmeichel and Hakimi [13] showed that if a spanning cycle in an n-vertex graph G has consecutive vertices with degree-sum at least n, then G is pancyclic or bipartite or omits only $n-1$ from the cycle spectrum, the latter occurring only when the degree-sum is exactly n. Bauer and Schmeichel [1] used this to give unified proofs that the conditions for Hamiltonian cycles due to Bondy [4], Chvátal [5], and Fan [9] also imply that a graph is pancyclic, with small families of exceptions. Further results about the cycle spectrum under degree conditions on selected vertices in a spanning cycle appear in [10] and [14].

At the 1999 conference "Paul Erdo"s and His Mathematics", Jacobson and Lehel proposed the opposite question: When sufficient conditions for spanning cycles are relaxed, how small can the cycle spectrum be if the graph is required to be Hamiltonian? For example, consider regular graphs. Bondy's result [3] implies that $\lceil n / 2\rceil$-regular graphs other than $K_{\frac{n}{2}, \frac{n}{2}}$ are pancyclic. On the other hand, 2-regular Hamiltonian graphs have only one cycle length. For $3 \leq k \leq\lceil n / 2\rceil-1$, Jacobson and Lehel asked for the minimum size of the cycle spectrum of a k-regular n-vertex Hamiltonian graph, particularly when $k=3$.

Let $s(G)$ denote the size of the cycle spectrum of a graph G. At the SIAM Meeting on Discrete Mathematics in 2002, Jacobson announced that he, Gould, and Pfender had proved $s(G) \geq c_{k} n^{1 / 2}$ for k-regular graphs with n vertices. Others later independently obtained similar bounds, without seeking to optimize c_{k}. For an upper bound, Jacobson and Lehel constructed the 3-regular example below with only $n / 6+3$ distinct cycle lengths (when $n \equiv 0$ $\bmod 6$ and $n>6$), and they generalized it to the upper bound $\frac{n}{2} \frac{k-2}{k}+k$ for k-regular graphs.

Example 1 When $k=3$ and 6 divides n (with $n>6$), take $n / 6$ disjoint copies of $K_{3,3}$ in a cyclic order, with vertex sets $V_{1}, \ldots, V_{n / 6}$. Remove one edge from each copy and replace it by an edge to the next copy to restore 3-regularity. A cycle of length different from 4 or 6 must visit each V_{i}, and in each V_{i} it uses 4 or 6 vertices. Hence the cycle lengths are 4, 6, and each even integer from $2 n / 3$ through n. For the generalization, use $K_{k, k}$ instead of $K_{3,3}$.

A related problem is the conjecture of Erdős [7] that $s(G) \geq \Omega\left(d^{\lfloor(g-1) / 2\rfloor}\right)$ when G has girth g and average degree d. Erdős, Faudree, Rousseau, and Schelp [8] proved the conjecture for $g=5$. Sudakov and Verstraëte [15] proved the full conjecture in a stronger form, obtaining $\frac{1}{8}\left(d^{\lfloor(g-1) / 2\rfloor}\right)$ consecutive even integers in the cycle spectrum for graphs with fixed girth g and average degree $48(d+1)$. Gould, Haxell, and Scott [11] proved a similar result: for $c>0$, there is a constant k_{c} such that for sufficiently large n, the cycle spectrum of every n-vertex graph G having minimum degree at least $c n$ and longest even cycle length $2 l$ contains all even integers from 4 up to $2 l-k_{c}$ (see also [2]).

Prior arguments for lower bounds on $s(G)$ when G is regular and Hamiltonian used only the number of edges, not regularity. Suppose that G has n vertices and m edges. The
coefficient c in a general lower bound of the form $s(G) \geq \sqrt{c(m-n)}$ cannot exceed 1 , since $s\left(K_{\frac{n}{2}, \frac{n}{2}}\right)=\sqrt{m-n+1}$. We give a construction for $m \leq n^{2} / 4$ that is far from regular.

Example 2 For $t \leq n / 2$, form a graph G by replacing one edge of $K_{t, t}$ with a path having $n-2 t$ internal vertices; G has n vertices and m edges, where $m=t^{2}-2 t+n \leq n^{2} / 4$. The cycle spectrum of G consists of the $t-1$ even numbers in $\{4, \ldots, 2 t\}$ and the $t-1$ numbers from $n-2 t+4$ to n having the same parity as n. Thus $s(G) \leq 2(t-1)=2 \sqrt{m-n+1}$. Equality holds when $t \leq\lceil n / 4\rceil$, but when $\lceil n / 4\rceil<t \leq n / 2$ and n is even the two sets of $t-1$ numbers overlap. They overlap more as m increases, becoming the same set when $m=n^{2} / 4$, and indeed $\left.s\left(K_{\frac{n}{2}, \frac{n}{2}}\right)=\sqrt{m-n+1}\right)$.

Deleting edges cannot enlarge the cycle spectrum. Hence in general we can let $t=$ $\lceil\sqrt{m-n+1}\rceil+1$, apply the construction above for n and t, and discard edges to wind up with m edges and $s(G) \leq 2\lceil\sqrt{m-n+1}\rceil$.

Bondy [3] showed that every Hamiltonian graph with more than $n^{2} / 4$ edges is pancyclic. Thus the lower bound on $s(G)$ jumps to $n-2$ when m exceeds $n^{2} / 4$. At $m=n^{2} / 4$, the size of the spectrum of $K_{n / 2, n / 2}$ is only $n / 2-1$. For n-vertex Hamiltonian bipartite graphs (with $n>6$), Entringer and Schmeichel [6] proved that $m>n^{2} / 8$ suffices to make the graph bipancyclic, meaning that it has cycles of all $n / 2-1$ even lengths.

In the construction of Example 2, the two segments overlap to yield bipancyclic graphs when m exceeds $n^{2} / 16+n / 2$. The result of [6] implies that the construction is optimal among Hamiltonian bipartite graphs when m exceeds $n^{2} / 8$, but whether this also holds for Hamiltonian non-bipartite graphs is unknown. It is also unknown whether there are non-bipancyclic constructions (bipartite or not) when $n^{2} / 16+n / 2<m \leq n^{2} / 8$.

When $m<n^{2} / 4$, the construction of Example 2 remains a candidate for a graph having the smallest cycle spectrum among Hamiltonian graphs with n vertices and m edges. We do know of one exception: when $(n, m)=(14,21)$, the cycle spectrum of the Heawood graph (incidence graph of the projective plane of order 2) is smaller.

Our main result for the cycle spectra of n-vertex Hamiltonian graphs with m edges is that $s(G)>\sqrt{p}-\frac{1}{2} \ln p-1$, where $p=m-n$.

2 The Lower Bound

A path with endpoints x and y is an x, y-path. A chord of a path (or cycle) P in a graph is an edge of the graph not in P whose endpoints are in P, and the length of the chord is the distance in P between its endpoints. In a path with vertices v_{1}, \ldots, v_{n} in order, two chords $v_{a} v_{c}$ and $v_{b} v_{d}$ overlap if $a<b<c<d$.

Lemma 3 If a graph G consists of an x, y-path P and h pairwise-overlapping chords of length l, then G contains x, y-paths having at least $h-1$ distinct lengths. Having only $h-1$ lengths requires l odd, $h \geq(l+3) / 2$, and chords starting at h consecutive vertices along P.

Proof. The claim is trivial for $h=1$; assume $h \geq 2$. Let n be the length of P. Let e_{1}, \ldots, e_{h} be the chords in order of appearance along P from x to y. Let d_{i} be the distance along P from the first endpoint of e_{i-1} to the first endpoint of e_{i}, for $2 \leq i \leq h$.

Let $P_{i, j}$ be the unique x, y-path using exactly two chords e_{i} and e_{j}, along with edges of P. Let p_{j} be the length of $P_{1, j}$, for $2 \leq j \leq h$. Note that $p_{j}=p_{j-1}-2 d_{j}$ for $3 \leq j \leq h$. The $h-1$ paths $P_{1,2}, \ldots, P_{1, h}$ have distinct lengths, which proves the first statement.

The length of $P_{1,2}$ is $n-2 d_{2}+2$. Thus the full path P provides an additional length unless $d_{2}=1$. If $d_{j}>1$ for any larger j, then the length of $P_{2, j}$ is strictly between p_{j-1} and p_{j}. Hence an extra length arises unless the chords start at consecutive vertices along P.

In the remaining case, the $h-1$ lengths we have found are $n, n-2, \ldots, n-2 h+4$. The length of any x, y-path that uses exactly one chord is $n-l+1$. To avoid generating a new length, it must be that l is odd and $2 h-4 \geq l-1$.

Definition 4 Let G be a graph consisting of an n-cycle C plus q chords of length l, where $l<n / 2$. Specify a forward direction along C. Let $C[u, v]$ denote the subpath of C traversed by moving forward from u to v along C. When $u v$ is a chord of length l and $C[u, v]$ has length l, we say that u is its start, v is its end, and $u v$ covers the edges and internal vertices of $C[u, v]$. For a chord e, let $F(e)$ consist of e and all chords covering the end of e.

Select a chord e_{1} so that $\left|F\left(e_{1}\right)\right| \geq|F(e)|$ for every chord e. For $j>1$, let e_{j} be the first chord encountered moving forward from e_{j-1} that does not overlap e_{j-1} or e_{1}; if no such chord exists, then stop and set $\alpha=j-1$. Note that $F\left(e_{i}\right) \cap\left\{e_{1}, \ldots, e_{\alpha}\right\}=\left\{e_{i}\right\}$ for each i and that the sets $F\left(e_{1}\right), \ldots, F\left(e_{\alpha}\right)$ are pairwise disjoint. The selected edges $\left\{e_{1}, \ldots, e_{\alpha}\right\}$ form a greedy chord system for G (see Figure 1, which also includes notation used in Theorem 5). Given a greedy chord system beginning with e_{1}, let v_{1} be the start of e_{1}, and let the vertices of C be v_{1}, \ldots, v_{n} in forward order.

Figure 1: A greedy chord system
From a greedy chord system, we will build a large family of cycles with distinct lengths by using short cycles, long cycles, and cycles of intermediate lengths. The intermediate-length cycles are formed from the long cycles by replacing portions of C with chords.

Theorem 5 Let G be a graph consisting of an n-cycle C plus q chords of length l, where $l<n / 2$. The size $s(G)$ of the cycle spectrum of G is at least $(q-1) / 2$ when l is even and at least $\left(q-1-\frac{q}{l}\right) / 2$ when l is odd.

Proof. Consider a greedy chord system $e_{1}, \ldots, e_{\alpha}$. Let $F^{\prime}=F\left(e_{1}\right)$. Let w be the end of the last chord in F^{\prime} (see Figure 1). Let F^{*} be the set of chords not in $\bigcup_{i=1}^{\alpha} F\left(e_{i}\right)$; since none of these chords overlaps e_{α}, each overlaps e_{1}. If $F^{*} \neq \varnothing$, then let e^{*} be the first chord of F^{*} following e_{α} (see Figure 1).

When $\alpha=1$, we have $\left|F^{\prime}\right|+\left|F^{*}\right|=q$. If also $F^{*}=\varnothing$, then $\left|F^{\prime}\right|=q$. Otherwise, $F^{*} \subseteq F\left(e^{*}\right)-\left\{e_{1}\right\}$, so $\left|F^{*}\right| \leq\left|F\left(e^{*}\right)\right|-1 \leq\left|F^{\prime}\right|-1$. Hence $\left|F^{\prime}\right|-1 \geq(q-1) / 2$. Lemma 3 now yields v_{1}, w-paths of at least $(q-1) / 2$ lengths that combine with $C\left[w, v_{1}\right]$ to form cycles of at least $(q-1) / 2$ lengths. Hence we may assume $\alpha \geq 2$.

For $\alpha \geq 2$, we begin by using F^{*} to obtain at least $\left(\left|F^{*}\right|-1\right) / 2$ short cycle lengths. We may assume $\left|F^{*}\right| \geq 2$. Define j by $e^{*}=v_{j} v_{j+l-n}$. Through each chord $v_{k} v_{k+l-n}$ in $F^{*}-\left\{e^{*}\right\}$, consider two cycles. One uses $v_{k} v_{k+l-n}$ and e^{*} and the two paths $C\left[v_{j}, v_{k}\right]$ and $C\left[v_{j+l-n}, v_{k+l-n}\right]$ that each have length $k-j$ (see Figure 1). The other uses $v_{k} v_{k+l-n}$ and e_{1} and the two paths $C\left[v_{k}, v_{1}\right]$ and $C\left[v_{k+l-n}, v_{1+l}\right]$ that each have length $n-k+1$. The lengths of these cycles are $2(k-j+1)$ and $2(n-k+2)$; their minimum is at most $n-j+3$.

Taking the shorter for each k, we obtain $\left|F^{*}\right|-1$ cycles having length at most $n-j+3$, with each length occurring at most twice. This yields a set Q of $\left(\left|F^{*}\right|-1\right) / 2$ values bounded by $n-j+3$. Since v_{j} is between the end of e_{α} and v_{n}, we have $j \geq 1+\alpha l$, and values in Q are bounded by $n-\alpha l+2$. Since $\alpha \geq 2$, these values are at most $n-\alpha(l-1)$.

With $\alpha \geq 2$, let z be the end of e_{2} (see Figure 1), and say that a cycle in G is long if it contains $C\left[z, v_{1}\right]$ and has length at least $n-2(l-1)+1$. Let R be the set of lengths of long cycles, and let $\rho=|R|$.

From the long cycles in G, we construct shorter cycles. Since long cycles contain $C\left[z, v_{1}\right]$, they contain all edges of C covered by any of $e_{3}, \ldots, e_{\alpha}$. These chords are pairwise nonoverlapping and can replace parts of long cycles. Each such replacement yields ρ distinct lengths (within an interval of $2(l-1)$ values), shorter by $l-1$ than the previous set of lengths.

The set R and the $\alpha-2$ sets of size ρ produced by using $e_{3}, \ldots, e_{\alpha}$ successively to reduce lengths together form $\alpha-1$ sets of size ρ. Since each set lies in an interval of length $2(l-1)$, each value appears in at most two of the sets. Also, the top part of R (values exceeding $n-(l-1))$ and the bottom part of the last translation (values at most $n-(\alpha-1)(l-1))$ appear only once. Let R^{\prime} be the union of those two sets. Since every value in R is above $n-(l-1)$ or at most $n-(l-1)$, we have $\left|R^{\prime}\right|=\rho$. Including also R^{\prime}, we now have α sets of size ρ, with each value appearing in at most two of them.

Hence the union contains at least $\alpha \rho / 2$ cycle lengths, all at least $n-\alpha(l-1)+1$ (which exceeds max Q). Thus $s(G) \geq\left(\alpha \rho+\left|F^{*}\right|-1\right) / 2$. It remains to study this quantity.

The greedy choice of e_{1} yields $\left|F^{\prime}\right| \geq\left\lceil\frac{q-\left|F^{*}\right|}{\alpha}\right\rceil$. To obtain a lower bound on $\alpha \rho$, we compare ρ to $\left|F^{\prime}\right|$. Let G^{\prime} be the induced subgraph of G consisting of $C\left[v_{1}, w\right]$ and the chords in F^{\prime}. Since these chords are pairwise overlapping, Lemma 3 yields v_{1}, w-paths in G^{\prime} with $\left|F^{\prime}\right|-1$ distinct lengths. Furthermore, there are at least $\left|F^{\prime}\right|$ distinct lengths unless l is odd, $\left|F^{\prime}\right| \geq(l+3) / 2$, and the starts of the chords in F^{\prime} are consecutive along C.

If $\left|F^{\prime}\right|=1$, then the greedy choice of e_{1} implies that the chords are pairwise noncrossing and $s(G)=q+1$. We may thus assume $\left|F^{\prime}\right|>1$ and $w \neq v_{l+1}$, so every v_{1}, w-path in G^{\prime} has length at least 2. Adding $C\left[w, v_{1}\right]$ to v_{1}, w-paths of distinct lengths in G^{\prime} creates cycles of distinct lengths in G. Since each such cycle contains $C\left[w, v_{1}\right]$, which has at least $n-2 l+1$ edges, these cycles are long.

Thus when l is even, we have shown that $\rho \geq\left|F^{\prime}\right|$. In this case

$$
s(G) \geq \frac{\alpha \rho}{2}+\frac{\left|F^{*}\right|-1}{2} \geq \frac{q-\left|F^{*}\right|}{2}+\frac{\left|F^{*}\right|-1}{2}=\frac{q-1}{2} .
$$

If l is odd, then $\frac{\alpha \rho}{2} \geq\left\lceil\frac{q-\left|F^{*}\right|}{\alpha}\right\rceil$ still holds if $\left|F^{\prime}\right|>\left\lceil\frac{q-\left|F^{*}\right|}{\alpha}\right\rceil$, since $\rho \geq\left|F^{\prime}\right|-1$. Hence we may assume $\left|F^{\prime}\right| \geq\left\lceil\frac{q-\left|F^{*}\right|}{\alpha}\right\rceil$. If $\rho \geq\left|F^{\prime}\right|$ fails, then Lemma 3 implies that $\left|F^{\prime}\right| \geq(l+3) / 2$ and that the chords in F^{\prime} are consecutive. Now R consists of the $\left|F^{\prime}\right|-1$ values from n through $n-2\left|F^{\prime}\right|+4$ whose difference from n is even. We consider two cases, depending on whether e_{2} overlaps some chord in F^{\prime}.

Case 1: e_{2} overlaps no chord in F^{\prime}. Here e_{2}, like $e_{3}, \ldots, e_{\alpha}$, can be used to reduce cycle lengths by $l-1$. Since $\left|F^{\prime}\right| \geq(l+3) / 2$, the long cycle lengths include $n, n-2, \ldots, n-(l-1)$; there are $(l+1) / 2$ of them. After using each of $e_{2}, \ldots, e_{\alpha}$ to reduce the lengths by $l-1$, we obtain all values with the same parity as n down to $n-\alpha(l-1)$. The smallest may equal $\max Q$. We keep $\frac{1}{2} \alpha(l-1)$ cycle lengths, each at least $n-\alpha(l-1)+2$.

If $\alpha \geq q / l$, then $\frac{1}{2} \alpha(l-1) \geq \frac{1}{2} q\left(1-\frac{1}{l}\right) \geq \frac{1}{2}\left(q-\left|F^{*}\right|-\frac{q}{l}\right)$. If $\alpha<q / l$, then we use $l \geq\left|F^{\prime}\right|=\left\lceil\frac{q-\left|F^{*}\right|}{\alpha}\right\rceil$ to compute

$$
\frac{1}{2} \alpha(l-1) \geq \frac{1}{2}\left(\left|F^{\prime}\right|-1\right) \alpha \geq \frac{1}{2}\left(q-\left|F^{*}\right|-\alpha\right)>\frac{1}{2}\left(q-\left|F^{*}\right|-\frac{q}{l}\right) .
$$

Adding the $\left(\left|F^{*}\right|-1\right) / 2$ short lengths yields at least the desired number of lengths.
Case 2: e_{2} overlaps some chord in F^{\prime}. Since the chords in F^{\prime} are consecutive, this case requires that e_{2} starts just before the end of some chord e^{\prime} in F^{\prime}. Let v^{\prime} be the start of e^{\prime}. The cycle consisting of e_{2} and e^{\prime}, the edge they both cover, and the path $C\left[z, v^{\prime}\right]$ (see Figure 1) has length $n-2(l-1)+2$; hence it is a long cycle. We obtain $\rho \geq\left|F^{\prime}\right|$ unless this length already appears among those generated from Lemma 3 , which requires $2\left|F^{\prime}\right|-4 \geq 2(l-1)-2$, so $\left|F^{\prime}\right| \geq l$. Since $\left|F^{\prime}\right| \leq l$, equality holds.

As noted above, already $n, n-2, \ldots, n-2(l-2) \in R$. Lowering the bottom half of them by $l-1$ exactly $\alpha-2$ times yields $\frac{1}{2} \alpha(l-1)$ distinct cycle lengths. The least of them is $n-\alpha(l-1)+2$. This is exactly the situation we obtained in Case 1 , so the same computation completes the proof.

Theorem 6 If G is an n-vertex Hamiltonian graph with m edges, then $s(G)>\sqrt{p}-\frac{1}{2} \ln p-1$, where $p=m-n$.

Proof. Let C be a spanning cycle in G. Let L be the set of lengths of chords of C in G, and let $t=|L|$. For each $l \in L$, we obtain two lengths of cycles in G; they are $l+1$ and $n-l+1$ if $l<n / 2$ (using one chord of length l), and they are $n / 2+1$ and n if $l=n / 2$. Hence $s(G) \geq 2 t$, which suffices if $t \geq \frac{1}{2} \sqrt{p}$. We may therefore assume that $2 t<\sqrt{p}$.

For $l \in L$, let q_{l} be the number of chords of length l. By Theorem 5, when $l<n / 2$ there are at least $\frac{l-1}{2 l} q_{l}-\frac{1}{2}$ lengths of cycles using only edges of C and chords of length l. The lower bound also holds when $l=n / 2$, since then the chords are pairwise overlapping and Lemma 3 applies, and always $q_{l}-1>\frac{l-1}{2 l} q_{l}-\frac{1}{2}$.

We may assume that $\frac{l-1}{2 l} q_{l}-\frac{1}{2} \leq \sqrt{p}-\frac{1}{2} \ln p-1$ for odd $l \in L$, and $\frac{1}{2} q_{l}-\frac{1}{2} \leq \sqrt{p}-\frac{1}{2} \ln p-1$ for even $l \in L$. Thus $q_{l} \leq\left(\sqrt{p}-\frac{1}{2} \ln p-\frac{1}{2}\right) c_{l}$, where $c_{l}=2$ when l is even and $c_{l}=2+\frac{2}{l-1}$ when l is odd. We obtain a contradiction by showing that these bounds on q_{l} sum to less than p. In light of the form of c_{l}, it suffices to prove this when all values in L are odd. The bound is now the worst when L consists of the first t positive odd numbers. We compute

$$
\begin{aligned}
p=\sum_{l \in L} q_{l} & \leq \sum_{l \in L}\left(\sqrt{p}-\frac{1}{2} \ln p-\frac{1}{2}\right)\left(2+\frac{2}{l-1}\right) \leq\left(\sqrt{p}-\frac{1}{2} \ln p-\frac{1}{2}\right)\left[2 t+\sum_{i=1}^{t} \frac{1}{i}\right] \\
& <\left(\sqrt{p}-\frac{1}{2} \ln p-\frac{1}{2}\right)[\sqrt{p}+(1+\ln t)]<\left(\sqrt{p}-\frac{1}{2} \ln p-\frac{1}{2}\right)\left[\sqrt{p}+\frac{1}{2} \ln p+(1-\ln 2)\right] \\
& =p-\frac{1}{4}(\ln p)^{2}-\left(\ln 2-\frac{1}{2}\right) \sqrt{p}-\frac{1}{4}(3-\ln 4) \ln p-\frac{1}{2}(1-\ln 2)<p
\end{aligned}
$$

The contradiction completes the proof.

References

[1] D. Bauer and E. F. Schmeichel, Hamiltonian degree conditions which imply a graph is pancyclic. J. Combin. Theory (B) 48 (1990), 111-116.
[2] B. Bollobás and A. Thomason, Weakly pancyclic graphs. J. Comb. Th. (B) 77 (1999), 121-137.
[3] J.A. Bondy, Pancyclic Graphs. J. Combin. Theory (B) 11 (1971), 80-84.
[4] J.A. Bondy, Longest paths and cycles in graphs of high degree. Res. Rep. No. CORR 80-16, Univ. Waterloo, Waterloo, ON, 1980.
[5] V. Chvátal, On Hamilton's ideals. J. Combin. Theory (B) 12 (1972), 163-168.
[6] R.C. Entringer and E.F. Schmeichel, Edge conditions and cycle structure in bipartite graphs. Ars Combinatoria 26 (1988), 229-232.
[7] P. Erdős, Some of my favourite problems in various branches of combinatorics. Matematiche (Catania) 47 (1992), 231-240.
[8] P. Erdős, R. Faudree, C. Rousseau, and R. Schelp, The number of cycle lengths in graphs of given minimum degree and girth. Discrete Math. 200 (1999), 55-60.
[9] G. Fan, New sufficient conditions for cycles in graphs. J. Combin. Th. (B) 37 (1984), 221-227.
[10] M. Ferrara, A. Harris, and M. Jacobson, Cycle lengths in Hamiltonian graphs with a pair of vertices having large degree sum. Graphs and Combinatorics 26 (2010), 215-223.
[11] R. Gould, P. Haxell, and A. Scott, A note on cycle lengths in graphs. Graphs and Combinatorics 18 (2002), 491-498.
[12] A. Pnueli, A. Lempel, and S. Even, Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math. 23 (1971), 160-175.
[13] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for Hamiltonian graphs. J. Combin. Theory (B) 45 (1988), 99-107.
[14] E.F. Schmeichel and J. Mitchem, Bipartite graphs with cycles of all even lengths. J. Graph Theory 6 (1982), 429-439.
[15] B. Sudakov and J. Verstraëte, Cycle lengths in sparse graphs, Combinator. 28 (2008), 357-372.
[16] O. Ore, Note on Hamilton circuits. Amer. Math. Monthly 67 (1960), 55.

[^0]: ${ }^{\dagger}$ Mathematics Dept., University of South Carolina, milans@math.sc.edu.
 ${ }^{\ddagger}$ Institut für Mathematik, Universität Rostock, Rostock, Germany, florian.pfender@uni-rostock.de.
 ${ }^{\S}$ Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany, dieter.rautenbach@uni-ulm.de and friedrich.regen@uni-ulm.de; supported in part by the Deutsche Forschungsgemeinschaft DFG within the project "Cycle Spectra of Graphs".
 ${ }^{\text {© Department of Mathematics, University of Illinois, Urbana, IL 61801, USA, west@math.uiuc.edu; sup- }}$ ported in part by the National Security Agency under Awards H98230-06-1-0065 and H98230-10-1-0065.

