Extremal Graphs for Intersecting Cliques

Guantao Chen^{a,1} Ronald J. Gould^b Florian Pfender^{b,*} Bing Wei^{c,2}

^aGeorgia State University, Atlanta, GA 30303
^bEmory University, Atlanta, GA 30332
^cUniversity of Mississippi, University, MS 38677

Abstract

For any two positive integers $n \ge r \ge 1$, the well-known Turán Theorem states that there exists a least positive integer $ex(n, K_r)$ such that every graph with n vertices and $ex(n, K_r) + 1$ edges contains a subgraph isomorphic to K_r . We determine the minimum number of edges sufficient for the existence of k cliques with r vertices each intersecting in exactly one common vertex.

Key words: Extremal graph, Turán graph, cliques, matchings AMS subject classification 05C78

1 Introduction

With integers $n \ge r \ge 1$, we let $T_{n,r}$ denote the *Turán graph*, i.e., the complete r-partite graph on n vertices where each partite set has either $\lfloor n/r \rfloor$ or $\lceil n/r \rceil$ vertices and the edge set consists of all pairs joining distinct parts. The number of edges in $T_{n,r}$ is denoted by $ex(n, K_{r+1})$, where K_r represents the complete graph on r vertices.

For a graph G and a vertex $x \in V(G)$, the *neighborhood* of x in G is denoted by $N_G(x) = \{y \in V(G) : xy \in E(G)\}$, or when clear, simply N(x), and let $\overline{N_G(x)} = V(G) - N_G(x)$. The *degree* of x in G, denoted by $d_G(x)$, or d(x), is the

* Corresponding Author

Preprint submitted to Journal of Combinatorial Theory Ser. B 29 January 2003

Email address: fpfende@mathcs.emory.edu (Florian Pfender).

¹ Supported by NSF grant No. DMS-0070059

 $^{^2\,}$ Supported by NNSF of China and the innovation funds of Institute of Systems Science, AMSS, CAS

size of $N_G(x)$. We use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degrees, respectively, in G. The order of G is often denoted by |G| = |V(G)|. For a subset $X \subset V(G)$, let G[X] denote the subgraph of G induced by X. A matching in G is a set of edges from E(G), no two of which share a common vertex, and the matching number of G, denoted by $\nu(G)$, is the maximum number of edges in a matching in G.

Suppose that we are given some fixed graph H. What is the maximum number, ex(n, H), of edges in a graph G on n vertices that does not contain a copy of H as a subgraph (often said to *forbid* H)? A graph G on n vertices with ex(n, H) edges and without a copy of H is called an *extremal graph* for H. For $n \geq |V(H)|$, adding one more edge to any one of the extremal graphs will produce a copy of H.

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly one common vertex is called a k-fan and denoted by F_k . For each k, the chromatic number of F_k is three, and so by the Erdős-Stone theorem [4], $ex(n, F_k) = (1 + o(1))n^2/4$. The following result is due to Erdős, Füredi, Gould, and Gunderson [3].

Theorem 1 For every $k \ge 1$, and for every $n \ge 50k^2$, if a graph G on n vertices has more than

$$\lfloor \frac{n^2}{4} \rfloor + \begin{cases} k^2 - k & \text{if } k \text{ is odd,} \\ k^2 - \frac{3}{2}k & \text{if } k \text{ is even} \end{cases}$$

edges, then G contains a copy of a k-fan. Further, the number of edges is best possible.

A graph on (r-1)k + 1 vertices consisting of k cliques each with r vertices, which intersect in exactly one common vertex, is called a K_r -fan and denoted by $F_{k,r}$. The purpose of this article is to generalize Theorem 1, when k and r are fixed and n is large, as follows.

Theorem 2 For every $k \ge 1$ and $r \ge 2$, and for every $n \ge 16k^3r^8$, if a graph G on n vertices has more than

$$ex(n, K_r) + \begin{cases} k^2 - k & \text{if } k \text{ is odd,} \\ k^2 - \frac{3}{2}k & \text{if } k \text{ is even} \end{cases},$$

edges, then G contains a copy of an $F_{k,r}$ -fan. Further, the number of edges is best possible.

Note that the number $ex(n, K_r) = |E(T_{n,r-1})|$. To show the lower bound for $ex(n, F_{k,r})$ we present the following graph, $G_{n,k,r}$. For odd k (where $n \ge$ (2k-1)(r-1)+1) $G_{n,k,r}$ is constructed by taking a Turan graph $T_{n,r-1}$ and embedding two vertex disjoint copies of K_k in one partite set. For even k(where now $n \ge (2k-2)(r-1)+1)$ $G_{n,k,r}$ is constructed by taking a Turán graph $T_{n,r-1}$ and embedding a graph with 2k-1 vertices, $k^2 - (3/2)k$ edges with maximum degree k-1 in one partite set.

2 Lemmas

In this section we give preparatory lemmas for the proof of the main theorem.

Define $f(\nu, \Delta) = \max\{|E(G)| : \nu(G) \le \nu, \Delta(G) \le \Delta\}$. Chvátal and Hanson [2] proved the following theorem.

Theorem 3 For every $\nu \geq 1$ and $\Delta \geq 1$,

$$f(\nu, \Delta) = \nu\Delta + \lfloor \frac{\Delta}{2} \rfloor \lfloor \frac{\nu}{\lceil \Delta/2 \rceil} \rfloor \le \nu\Delta + \nu.$$

We will frequently use the following special case proved by Abbott et al. [1].

$$f(k-1, k-1) = \begin{cases} k^2 - k & \text{if } k \text{ is odd,} \\ k^2 - \frac{3}{2}k & \text{if } k \text{ is even.} \end{cases}$$

The extremal graphs are exactly those we embedded into $T_{n,r-1}$ in the previous section to obtain the extremal $F_{k,r}$ -free graph $G_{n,k,r}$.

Let a be a positive integer and let X and Y be two disjoint vertex sets of V(G). We say that X dominates Y with a-deficiency if $d_Y(x) \ge |Y| - a$ for each $x \in X$. Let V_1, V_2, \ldots, V_m be disjoint subsets of V(G). We say that $\{V_1, V_2, \ldots, V_m\}$ is a-deficiency complete if V_i dominates V_j with deficiency a for every pair $i \ne j$ with $i, j = 1, 2, \ldots, m$.

The following lemma will be used very heavily in our proof of the main Theorem.

Lemma 2.1 Let a be a positive integer. Let G be a graph and let $\{X_1, X_2, \ldots, X_m\}$ be an a-deficiency complete partition of V(G) with $|X_i| \ge ma + 2t$ for each i. Suppose that C_1, C_2, \ldots, C_t are t cliques of G with the properties:

- (1) $|C_i \cap X_j| \le 2$ for each pair *i* and *j*,
- (2) $|C_i \cap X_j| = 2$ for at most one j for each i.

Then, there exist t cliques D_1, D_2, \ldots, D_t satisfying:

- (1) $C_i \subseteq D_i$ for each i,
- (2) $D_1 C_1, D_2 C_2, \ldots, D_t C_t$ are mutually disjoint,
- (3) For each *i* we have that $|D_i \cap X_j| = 1$ for all *j* except possibly one at which $|D_i \cap X_j| = |C_i \cap X_j| = 2$.

Proof: We need to show that, if $C_i \cap X_j = \emptyset$, there exists a vertex $v_j \in X_j - \bigcup_{\ell=1}^t C_\ell$ such that v_j is adjacent to all vertices in C_i . Iteration of this argument will then provide the statement. Without loss of generality, we may assume that i = j = 1.

Since $d_{X_1}(v) \ge |X_1| - a$ for each $v \in C_1$,

$$|\bigcap_{v \in C_1} N_{X_1}(v)| \ge |X_1| - |C_1|a \ge ma + 2t - ma \ge 2t.$$

By our assumptions, we have that $|(\bigcup_{i=2}^{t} C_i) \cap X_1| \leq 2(t-1)$, thus $\bigcap_{v \in C_1} N_{X_1}(v) - \bigcup_{i=2}^{k} C_i \neq \emptyset$. Lemma 2.1 now follows. \Box

Lemma 2.2 Let G be a graph and Y_1, Y_2, \ldots, Y_m be m vertex disjoint subsets of V(G) and $Y_0 \subseteq V(G) - \bigcup_{i=1}^m Y_i$ such that $|Y_i| \ge (i-1)a + k$ for each $i = 1, \ldots, m$. If Y_i dominates Y_j with a-deficiency for every $i = 1, 2, \ldots, m$, $j = 0, 1, \ldots, m$, and $i \ne j$, then, there are k vertex disjoint cliques C_1, C_2, \ldots, C_k satisfying $|C_i| = m$ and $|C_i \cap Y_j| = 1$ for each i and $j \ge 1$. Furthermore, if $|Y_0| \ge ma + k$, then there are k vertex disjoint cliques D_1, D_2, \ldots, D_k with the property that $|D_i| = m + 1$ and $|D_i \cap Y_j| = 1$ for each $i = 1, \ldots, k$ and $j = 0, 1, \ldots, m$.

Proof: Let $y_{1,1}, y_{1,2}, \ldots, y_{1,k}$ be k arbitrary vertices in Y_1 . Since $|N(y_{1,i}) \cap Y_2| \ge |Y_2| - a \ge k$, there are k vertices $y_{2,1}, y_{2,2}, \ldots, y_{2,k}$ in Y_2 such that $y_{1,i}y_{2,i} \in E$ for all $i = 1, \ldots, k$. Since $|N(y_{1,i}) \cap N(y_{2,i}) \cap Y_3| \ge |Y_3| - 2a \ge k$, there are k vertices $y_{3,1}, y_{3,2}, \ldots, y_{3,k}$ in Y_3 such that $y_{3,i} \in N(y_{1,i}) \cap N(y_{2,i})$ for all $i = 1, \ldots, k$. Continuing in the same fashion, we see that Lemma 2.2 follows. \Box

The case k = 1 of the main theorem is Turan's theorem, the case of r = 2 is trivial, and the case of r = 3 is Theorem 1. We assume that $k \ge 2$ and $r \ge 4$. The aim of this section it to prove the following lemma.

Lemma 2.3 Let G be an extremal graph for $F_{k,r}$ on n vertices with $n \ge 4k^2r^4$, and with minimum degree $\delta \ge (\frac{r-2}{r-1})n - k$. Then there exists a partition $V(G) = V_0 \cup V_1 \cup \ldots \cup V_{r-2}$, so that $V_i \ne \emptyset$ for all $i = 0, \ldots, r-2$ and for every $x \in V_i$, the following hold:

$$\sum_{j \neq i} \nu(G[V_j]) \le k - 1 \quad and \quad \Delta(G[V_i]) \le k - 1; \tag{1}$$

$$d_{G[V_i]}(x) + \sum_{j \neq i} \nu(G[N(x) \cap V_j]) \le k - 1.$$
(2)

Proof: Since G plus any edge contains a copy of $F_{k,r}$, G contains k edge disjoint cliques D_1, D_2, \ldots, D_k sharing one vertex v_0 with $|D_1| = r - 1$ and $|D_j| = r$ for all $j \ge 2$. Let $V(D_1) = \{v_0, v_1, \ldots, v_{r-2}\}$. Denote the graph induced by $\bigcup_{i=1}^k D_i$ by D. Clearly, |D| = k(r-1). For each $i = 0, \ldots, r-2$, we define $X_i = \bigcap_{j \ne i} N(v_j) - V(D)$. Since G does not contain $F_{k,r}$ as a subgraph,

$$X_i \cap X_j = \emptyset$$
 for $i \neq j$.

Since the minimum degree $\delta(G) \ge \frac{r-2}{r-1}n - k$,

$$|X_i \cup V(D)| \ge \frac{n}{r-1} - (r-2)k.$$

Thus,

$$|X_i| \ge \frac{n}{r-1} - (r-2)k - k(r-1) = \frac{n}{r-1} - k(2r-3).$$
(3)

For each $i \geq 1$, if there is an edge $uv \in E(G[X_i])$, replacing v_i by the edge uv in D we obtain a copy of $F_{k,r}$, a contradiction. Thus,

$$E(G[X_i]) = \emptyset$$
, for each $i = 1, 2, \ldots, r - 2$.

For every $x_i \in X_i$ and $i \neq 0$, since $d(x_i) \geq \frac{r-2}{r-1}n - k$, $d_{X_i}(x_i) = 0$, and $|X_i| \geq \frac{n}{r-1} - k(2r-3)$, then

$$\overline{|N_{G-X_i}(x_i)|} = (n - d(x_i)) - |X_i|$$

$$\leq \left(\frac{n}{r-1} + k\right) - \left(\frac{n}{r-1} - k(2r-3)\right)$$

$$= 2k(r-1).$$

Thus,

$$d_{G-X_i}(x_i) \ge |G - X_i| - 2k(r-1),$$

for each $x \in X_i$ where i = 1, 2, ..., r - 2. In particular, we have that

$$d_{X_j}(x) \ge |X_j| - 2k(r-1) \tag{4}$$

for each $x \in X_i$, i.e., X_i dominates X_j with 2k(r-1)-deficiency, where $i = 1, 2, \ldots, r-2, j = 0, 1, \ldots, r-2$ and $j \neq i$.

Claim 4 Let $x_1, x_2, \ldots, x_{r-2}$ be r-2 vertices such that $x_i \in X_i$ for each $i = 1, \ldots, r-2$. Then, for any $Y_0 \subseteq X_0$ with $|Y_0| \ge 2k(r-1)^2 \ge 2k(r-1)(r-2)+k$,

we have the following inequality

$$\left|\bigcap_{i=1}^{r-2} N(x_i) \cap Y_0\right| \ge k.$$

Proof: By (4), $d_{X_0}(x_i) \ge |X_0| - 2k(r-1)$, and so

$$\left|\bigcap_{i=1}^{r-2} N(x_i) \cap X_0\right| \ge |X_0| - 2k(r-1)(r-2).$$

Claim 4 follows. \Box

Let X_0^* denote the set of all vertices of X_0 of degree at least $2k(r-1)^2$ in X_0 .

Claim 5 $|X_0^*| \le 2k(r-1)(r-2).$

Proof: Suppose, to the contrary, $|X_0^*| > 2k(r-1)(r-2)$. For each *i*, let

$$X_0^i = \{ x \in X_0^* \mid d_{X_i}(x) \ge |X_i| / (2k(r-1)+1) \}.$$

By (4), $d_{X_0}(x_i) \ge |X_0| - 2k(r-1)$ for every $x_i \in X_i$, thus $N(S) \supseteq X_i$ for every $S \subseteq X_0^*$ with |S| = 2k(r-1) + 1, which implies that $|X_0^i| \ge |X_0^*| - 2k(r-1)$. Therefore,

$$\left|\bigcap_{i=1}^{r-2} X_0^i\right| \ge |X_0^*| - 2k(r-1)(r-2) > 1.$$

There is an $x_0 \in X_0^*$ such that $|N(x_0) \cap X_i| \ge |X_i|/(2k(r-1)+1)$ for each $i = 1, 2, \ldots, r-2$. Recall that by (3) we have $|X_i| \ge n/(r-1) - k(2r-3)$ for each $i = 1, \ldots, r-2$. Since $n \ge 4k^2r^4$, the following inequality holds.

$$|N_{X_i}(x_0)| \ge |X_i|/(2k(r-1)+1) \ge 2k(r-1)(r-2)+k.$$

Applying Lemma 2.2 with $Y_0 = N(x_0) \cap X_0$, $Y_1 = N(x_0) \cap X_1$, ..., $Y_{r-2} = N(x_0) \cap X_{r-2}$, and a = 2k(r-1), we obtain k vertex disjoint cliques C_1, C_2, \ldots, C_k of sizes r-1 in $N(x_0)$. Then, a copy of $F_{k,r}$ is found, a contradiction. \Box

Let $Z_0 = X_0 - X_0^*$ and $Z_i = X_i$ for each $i = 1, 2, \ldots, r-2$. By Claim 5 and (3), we have that

$$|V - \bigcup_{i=0}^{r-2} X_i| \le k(2r-3)(r-1).$$

Thus,

$$|V - \bigcup_{i=0}^{r-2} Z_i| \le k(2r-3)(r-1) + 2k(r-1)(r-2) < 4k(r-1)^2.$$

Further, the following inequality holds.

$$|Z_0| \ge n/(r-1) - k(2r-3) - 2k(r-1)(r-2) = n/(r-1) - k(2r^2 - 4r + 1).$$

Since $\delta(G) \geq \frac{r-2}{r-1}n - k$, the following inequalities hold for every $z_0 \in Z_0$ (recall that $Z_0 = X_0 - X_0^*$ and thus by the definition of X_0^* we have $\Delta(G[Z_0]) \leq 2k(r-1)^2$).

$$\begin{aligned} \overline{|N_{G-Z_0}(z_0)|} &\leq (n-d(z_0)) - (|Z_0| - \Delta(G[Z_0])) \\ &\leq \left(\frac{n}{r-1} + k\right) - \left(\frac{n}{r-1} - k(2r^2 - 4r + 1) - 2k(r-1)^2\right) \\ &\leq 4kr(r-1). \end{aligned}$$

In particular, for each $z_0 \in Z_0$, we have that for i > 0

$$d_{Z_i}(z_0) \ge |Z_i| - 4kr(r-1).$$

That is, Z_0 dominates Z_i with 4kr(r-1)-deficiency.

Claim 6 For every $v \in V - \bigcup_{i=0}^{r-2} Z_i$, there exists a j = j(v) such that $d_{Z_j}(v) < 2k(r-1)^2 + k < 2kr(r-1)$. Further, such a j(v) is unique.

Proof: Suppose, to the contrary, there is a $v \in V - \bigcup_{i=0}^{r-2} Z_i$ such that $d_{Z_j}(v) \ge 2k(r-1)^2 + k$ for every $j = 0, 1, \ldots, r-2$. Set a = 2k(r-1) and m = r-1, then for all $0 \le j \le r-2$

$$N_{Z_j}(v) = d_{Z_j}(v) \ge ma + k, \text{ and} d_{Z_j}(z_i) \ge |Z_j| - a \text{ for } z_i \in Z_i, i > 0, i \neq j.$$

Applying Lemma 2.2, we see that there are k vertex disjoint cliques of order r-1 whose vertex sets are in N(v), a contradiction.

To show the uniqueness of j(v), suppose there are two distinct j_1 and j_2 such that $d_{Z_{j_i}}(v) < 2k(r-1)^2 + k$ for both i = 1 and 2. Since $n \ge 4k^2r^4 \ge 4kr^2(r-1)^2$, we have that

$$d(v) \leq n - |Z_{j_1} \cup Z_{j_2}| + 4k(r-1)^2 + 2k$$

$$\leq n - \left[\left(\frac{n}{r-1} - 2k(r-1)^2 \right) + \left(\frac{n}{r-1} - k(2r-3) \right) \right] + 4k(r-1)^2 + 2k$$

$$= \frac{r-2}{r-1}n - \frac{n}{r-1} + 2k(r-1)^2 + k(2r-3) + 4k(r-1)^2 + 2k$$

$$< \frac{r-2}{r-1}n - k,$$

a contradiction. \Box

Adding each $v \in V - \bigcup_{i=0}^{r-2} Z_i$ to $Z_{j(v)}$, we obtain a partition of $V = V_0 \dot{\cup} V_1 \dot{\cup} \dots \dot{\cup} V_{r-2}$.

Clearly, for each $i = 0, \ldots, r - 2$,

$$|V_i| \ge |Z_i| \ge \frac{n}{r-1} - 2k(r-1)^2.$$
(5)

For each i and each $v_i \in V_i$, since

$$\Delta(G[V_i]) \le \Delta(G[Z_i]) + |V - \bigcup_{i=0}^{r-2} Z_i| \le 2k(r-1)^2 + 4k(r-1)^2,$$

we have that:

$$\begin{aligned} \overline{|N_{G-V_i}(v_i)|} &\leq (n - d(v_i)) - (|V_i| - \Delta(G[V_i])) \\ &\leq \left(\frac{n}{r-1} + k\right) - \left(\frac{n}{r-1} - 2k(r-1)^2 - 6k(r-1)^2\right) \\ &= k + 2k(r-1)^2 + 6k(r-1)^2 \\ &< 8kr^2 \end{aligned}$$

In particular, we have that:

$$d_{V_i}(v_i) \ge |V_j| - 8kr^2.$$
 (6)

We will show that $V_0, V_1, \ldots, V_{r-2}$ satisfy (1) and (2). Let $a = 8kr^2$. Since $n \ge 4k^2r^4 \ge 8kr^4$, for any j, we have that

$$|V_j| \ge \frac{n}{r-1} - 2k(r-1)^2 \ge (r-1)a + 2k.$$

Proof of (1). Suppose for some $y \in V_i$, $|N(y) \cap V_i| \ge k$, say the neighbors are y_1, y_2, \ldots, y_k in V_i . By Lemma 2.1, there are k cliques D_1, D_2, \ldots, D_k such that $y, y_j \in D_j$ and $|D_j| = r$ for each j. Further, $D_j \cap D_\ell = \{y\}$ for all $j \ne \ell$. Thus, a copy of $F_{k,r}$ is found, a contradiction.

Next suppose that $\sum_{j\neq i} \nu(V_j) \geq k$. Let $y_1 z_1, y_2 z_2, \ldots, y_k z_k$ be a k-matching with the property that y_j and z_j are in the same V_ℓ for some $\ell \neq i$. Now, since $n \geq 4k^2r^4 \geq 16k^2r^3$,

$$\left|\bigcap_{j=1}^{k} (N_{V_i}(y_j) \cap N_{V_i}(z_j))\right| > |V_i| - 2k(8kr^2) \ge \left(\frac{n}{r-1} - 2k(r-1)^2\right) - 16k^2r^2 \ge 1$$

Therefore, there exists a vertex $y \in V_i$, such that $\bigcup_{j=1}^k \{y_j, z_j\} \subseteq N(y)$. By Lemma 2.1, there are k cliques D_1, D_2, \ldots, D_k such that $y, y_j, z_j \in D_j$ and $|D_j| = r$ for each j. Further, $D_j \cap D_\ell = \{y\}$ for all $j \neq \ell$. Thus, a copy of $F_{k,r}$ is found, a contradiction. \Box

Proof of (2). Let $v \in V_i$ have neighbors x_1, x_2, \ldots, x_s in V_i and neighbors $y_1, z_1, y_2, z_2, \ldots, y_t$, and z_t in $V - V_i$ where, for each $j = 1, \ldots, t, y_j$ and z_j in the

same V_{ℓ} for some $\ell \neq i$ and $y_j z_j \in E(G)$. By (1), both s and t are less than k. Suppose for the moment that $s + t \geq k$. Consider k of the cliques $\{v, x_1\}$, \ldots , $\{v, x_s\}$, $\{v, y_1, z_1\}$, \ldots , $\{v, y_t, z_t\}$. Applying Lemma 2.1 again, we obtain k cliques D_1, D_2, \ldots, D_k which induce a copy of $F_{k,r}$, a contradiction, which completes the proof of Lemma 2.3. \Box

3 Proof of the Main Lemma

The following lemma was obtained in [3].

Lemma 3.1 Let H be a graph and b a nonnegative integer such that $b \leq \Delta(H) - 2$, and let $\nu = \nu(H)$, $\Delta = \Delta(H)$. Then

$$\sum_{x \in V(H)} \min\{d_H(x), b\} \le \nu(b + \Delta).$$
(7)

Let G be a graph with a partition of the vertices into r-1 non-empty parts

$$V(G) = V_0 \dot{\cup} V_1 \dot{\cup} \dots \dot{\cup} V_{r-2}.$$

Let $G_i = G[V_i]$ for each i = 0, 1, ..., r - 2, and define

$$G_{cr} = (V(G), \{v_i v_j : v_i \in V_i, v_j \in V_j, i \neq j\}),\$$

where "cr" denotes "crossing". For each $i \in \{0, 1, \ldots, r-2, cr\}$ let $d_i(x) = d_{G_i}(x)$ and $\nu_i = \nu(G_i)$. We generalized Lemma 6.2. in [3] to the following lemma.

Lemma 3.2 Suppose G is partitioned as above so that (1) and (2) are satisfied. If G is $F_{k,r}$ -free, then

$$\sum_{i=0}^{r-2} |E(G_i)| - \left(\sum_{0 \le i < j \le r-2} |V_i| |V_j| - |E(G_{cr})|\right) \le f(k-1, k-1).$$
(8)

Proof: Observe that G_{cr} is an (r-1)-partite graph, and $\sum_{0 \le i < j \le r-2} |V_i| |V_j| - |E(G_{cr})|$ is the number of edges missing from the complete (r-1)-partite graph. By (1) and the definition of f, we see that $|E(G_i)| \le f(k-1, k-1)$, so the left hand side of (8) is bounded above by (r-1)f(k-1, k-1). Delete vertices of G so that the left hand side of (8) is maximal, let G be minimal in this case.

We now claim that for each $i = 0, \ldots, r - 2$ and every $x \in V_i$,

$$d_i(x) - (|V - V_i| - d_{cr}(x)) > 0.$$
(9)

In fact, if for some $x \in V_i$, $d_i(x) - (|V - V_i| - d_{cr}(x)) \leq 0$ holds, then

$$|E(G_i - x)| + \sum_{j \neq i} |E(G_j)| - \left(\sum_{j \neq i} |V_i - x||V_j| + \sum_{i \neq j < \ell \neq i} |V_j||V_\ell| - |E(G_{cr} - x)|\right)$$

$$= \sum_{j=0}^{r-2} |E(G_j)| - \left(\sum_{0 \le j < \ell \le r-2} |V_j||V_\ell| - |E(G_{cr})|\right) - (d_i(x) - |V - V_i| + d_{cr}(x))$$

$$\ge \sum_{j=0}^{r-2} |E(G_j)| - \left(\sum_{0 \le j < \ell \le r-2} |V_j||V_\ell| - |E(G_{cr})|\right),$$

contradicting the minimality of G. Hence (9) holds.

We also claim that for each $i = 0, \ldots, r - 2$,

$$d_i(x) - (|V - V_i| - d_{cr}(x)) \le k - 1 - \sum_{j \ne i} \nu_j.$$
(10)

To see (10), we need only observe that,

$$d_{i}(x) - (|V - V_{i}| - d_{cr}(x))$$

$$\leq k - 1 - \sum_{j \neq i} [\nu(G_{j}[N(x) \cap V_{j}]) + |V_{j}| - d_{j}(x)] \quad \text{by (2)}$$

$$\leq k - 1 - \sum_{j \neq i} \nu_{j},$$

where the last inequality holds since any matching in G_j has at most $|V_j| - d_j(x)$ edges with one or both endpoints outside $N(x) \cap V_j$. This proves (10).

We can also assume that for each i = 0, 1, ..., r - 2

$$1 \le \sum_{j \ne i} \nu_j \le k - 2,\tag{11}$$

by the following arguments. If $\sum_{j \neq i} \nu_j = 0$, then G_j is empty for every $j \neq i$, and in this case by (1),

$$|E(G_i)| - \left(\sum_{j < \ell} |V_j| \ |V_\ell| - E(G_{cr})|\right) \le |E(G_i)| \le f(k - 1, k - 1);$$

thus (8) holds trivially, verifying the lemma. If $\sum_{j \neq i} \nu_j = k - 1$, then by (9) and (10), we would have

$$0 < d_i(x) - (|V - V_i| - d_{cr}(x)) \le 0,$$

a contradiction.

We may further suppose that

$$2 \le \nu_i \text{ for each } i = 0, \dots, r - 2. \tag{12}$$

To the contrary, without loss of generality, assume that $\nu_0 \leq 1$, then (11) implies that $\sum_{i=0}^{r-2} \nu_i \leq k-1$. As

$$\sum_{i=0}^{r-2} f(\nu_i, \Delta) \le f\left(\sum_{i=0}^{r-2} \nu_i , \Delta\right)$$

always holds, we get that $\sum_{i=0}^{r-2} |E(G_i)| \le f(k-1, k-1)$ and (8) follows.

Now apply Lemma 3.1 for the graph G_i (i = 0, ..., r - 1) with $\Delta = k - 1$ and $b = k - 1 - \sum_{j \neq i} \nu_j \leq \Delta - 2$ (by (12)). Using (10) and (7) we get

$$\sum_{x \in V_i} \left[d_i(x) - \left(\sum_{j \neq i} |V_j| - d_{cr}(x) \right) \right]$$

$$\leq \sum_{x \in V_i} \min \left\{ d_i(x) , \ k - 1 - \sum_{j \neq i} \nu_j \right\}$$

$$\leq \nu_i \left(2(k-1) - \sum_{j \neq i} \nu_j \right). \quad (13)$$

The left side in (13) equals

$$2|E(G_i)| + \sum_{j \neq i} |E(V_i, V_j)| - \sum_{j \neq i} |V_i||V_j|,$$

so adding these r-1 sums (for i = 0, ..., r-2) gives

$$\begin{aligned} 2|E(G)| &= 2\sum_{i=0}^{r-2} |E(G_i)| + 2|E(G_{cr})| \\ &= \sum_{i=0}^{r-2} \left(2|E(G_i)| + \sum_{i\neq j} |E(V_i, V_j)| - \sum_{j\neq i} |V_i||V_j| \right) + 2\sum_{i< j} |V_i||V_j| \\ &\leq \sum_{i=0}^{r-2} \nu_i \left(2(k-1) - \sum_{j\neq i} \nu_j \right) + 2\sum_{i< j} |V_i||V_j| \\ &= 2 \left[k^2 - 2k + 1 - (k-1-\nu_0) \left(k - 1 - \sum_{j>0} \nu_j \right) - \sum_{0\neq j\neq \ell\neq 0} \nu_j \nu_\ell \right] \\ &+ 2\sum_{i< j} |V_i||V_j|. \end{aligned}$$

This yields $|E(G)| \leq k^2 - 2k + \sum_{i < j} |V_i| |V_j|$ (by (11), $k - 1 - \nu_0 \geq 1$ and $k - 1 - \sum_{i \neq 0} \nu_i \geq 1$), and since $f(k - 1, k - 1) > k^2 - 2k$, this implies (8),

finishing the proof of Lemma 3.2. \Box

4 Proof of The Theorem

We can summarize Lemma 3.2 and Lemma 2.3 as follows.

Lemma 4.1 Suppose that G is an $F_{k,r}$ -free graph on n vertices with $n \geq 4k^2r^4$, and with minimum degree $\delta \geq \frac{r-2}{r-1}n - k$, then $|E(G)| \leq ex(n, K_r) + f(k-1, k-1)$.

Proof: We can assume that G has the maximum number of edges under the conditions of Lemma 4.1 and apply Lemma 2.3 to get a decomposition of G into $G_0, G_1, \ldots, G_{r-2}, G_{cr}$. The graph G_{cr} consists of the edges between V_i and V_j for all distinct pairs i and j. Lemma 3.2 implies that

$$|E(G)| = \sum_{i=0}^{r-2} |E(G_i)| + |E(G_{cr})|$$

$$\leq \sum_{i

$$\leq ex(n, K_r) + f(k-1, k-1),$$$$

and we are done. \Box

Since $ex(n, K_r) - ex(n-1, K_r) = \left\lfloor \frac{r-2}{r-1}n \right\rfloor$, we see that the following lemma holds.

Lemma 4.2 Let G be a graph of order n, let k be an integer and c some constant independent from n. If $|E(G)| \ge ex(n, K_r) + c$ and $d(x) \le \frac{r-2}{r-1}n - k$, then $|E(G-x)| \ge ex(n-1, K_r) + c + k$.

Proof of Theorem 2. Suppose that $n \ge 16k^3r^8$, and that G is an $F_{k,r}$ -free graph on n vertices. We need to show that G has at most $ex(n, K_r) + f(k-1, k-1)$ edges. Suppose, to the contrary, that $|E(G)| > ex(n, K_r) + f(k-1, k-1)$. By Lemma 4.1, there exists a vertex $x = x_n$ with degree $d_G(x_n) < \frac{r-2}{r-1}n - k$.

Denote G by G^n , and let $G^{n-1} = G^n - x_n$. By Lemma 4.2,

$$|E(G^{n-1})| \ge ex(n-1, K_r) + f(k-1, k-1) + k.$$

If there exists a vertex $x_{n-1} \in V(G^{n-1})$ with degree $d_{G^{n-1}}(x_{n-1}) < \frac{r-2}{r-1}(n-1) - k$, then delete it to obtain $G^{n-2} = G^{n-1} - x_{n-1}$. Continue this process as long as $\delta(G^i) < \frac{r-2}{r-1}i - k$, and after $n - \ell$ steps we get a subgraph G^{ℓ} with $\delta(G^{\ell}) \geq \frac{r-2}{r-1}\ell - k$. Note that

$$\ell(\ell - 1)/2 \ge |E(G_\ell)| \ge ex(\ell, K_r) + k(n - \ell) + f(k - 1, k - 1) \ge k(n - \ell).$$

We have that $\ell > \sqrt{kn} \ge 4k^2r^4$, a contradiction to Lemma 4.1. \Box

5 Remark

To avoid tedious calculations, we did not attempt to lower the bound $n \geq 16k^3r^8$ in the proof, although we strongly believe the bound can be lowered substantially.

References

- H. L. Abbott, D. Hanson, and H. Sauer, Intersection theorems for systems of sets, J. Combin. Theory Ser. A 12 (1972), 381-289.
- [2] V. Chvátal and D. Hanson, Degrees and matchings, J. Combin. Theory Ser. B 20 (1976), 128-138.
- [3] P. Erdős, Z. Füredi, R. J. Gould, and D. S. Gunderson, Extremal Graphs for Intersecting Triangles, J. Combin. Theory Ser. B 64, No. 1 (1995), 89-100.
- [4] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. 52 (1946), 1089-1091.