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Abstract

For any two positive integers n ≥ r ≥ 1, the well-known Turán Theorem states that
there exists a least positive integer ex(n,Kr) such that every graph with n vertices
and ex(n,Kr) + 1 edges contains a subgraph isomorphic to Kr. We determine the
minimum number of edges sufficient for the existence of k cliques with r vertices
each intersecting in exactly one common vertex.
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1 Introduction

With integers n ≥ r ≥ 1, we let Tn,r denote the Turán graph, i.e., the complete
r-partite graph on n vertices where each partite set has either bn/rc or dn/re
vertices and the edge set consists of all pairs joining distinct parts. The number
of edges in Tn,r is denoted by ex(n,Kr+1), where Kr represents the complete
graph on r vertices.

For a graph G and a vertex x ∈ V (G), the neighborhood of x in G is denoted
by NG(x) = {y ∈ V (G) : xy ∈ E(G)}, or when clear, simply N(x), and let
NG(x) = V (G)−NG(x). The degree of x in G, denoted by dG(x), or d(x), is the
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size of NG(x). We use δ(G) and ∆(G) to denote the minimum and maximum
degrees, respectively, in G. The order of G is often denoted by |G| = |V (G)|.
For a subset X ⊂ V (G), let G[X] denote the subgraph of G induced by X. A
matching in G is a set of edges from E(G), no two of which share a common
vertex, and the matching number of G, denoted by ν(G), is the maximum
number of edges in a matching in G.

Suppose that we are given some fixed graph H. What is the maximum number,
ex(n,H), of edges in a graph G on n vertices that does not contain a copy
of H as a subgraph (often said to forbid H)? A graph G on n vertices with
ex(n,H) edges and without a copy of H is called an extremal graph for H.
For n ≥ |V (H)|, adding one more edge to any one of the extremal graphs will
produce a copy of H.

A graph on 2k + 1 vertices consisting of k triangles which intersect in exactly
one common vertex is called a k-fan and denoted by Fk. For each k, the
chromatic number of Fk is three, and so by the Erdős-Stone theorem [4],
ex(n, Fk) = (1 + o(1))n2/4. The following result is due to Erdős, Füredi,
Gould, and Gunderson [3].

Theorem 1 For every k ≥ 1, and for every n ≥ 50k2, if a graph G on n
vertices has more than

bn
2

4
c+

 k
2 − k if k is odd,

k2 − 3
2
k if k is even

,

edges, then G contains a copy of a k-fan. Further, the number of edges is best
possible.

A graph on (r − 1)k + 1 vertices consisting of k cliques each with r vertices,
which intersect in exactly one common vertex, is called a Kr-fan and denoted
by Fk,r. The purpose of this article is to generalize Theorem 1, when k and r
are fixed and n is large, as follows.

Theorem 2 For every k ≥ 1 and r ≥ 2, and for every n ≥ 16k3r8, if a graph
G on n vertices has more than

ex(n,Kr) +

 k
2 − k if k is odd,

k2 − 3
2
k if k is even

,

edges, then G contains a copy of an Fk,r-fan. Further, the number of edges is
best possible.

Note that the number ex(n,Kr) = |E(Tn,r−1)|. To show the lower bound
for ex(n, Fk,r) we present the following graph, Gn,k,r. For odd k (where n ≥
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(2k − 1)(r − 1) + 1) Gn,k,r is constructed by taking a Turan graph Tn,r−1 and
embedding two vertex disjoint copies of Kk in one partite set. For even k
(where now n ≥ (2k − 2)(r − 1) + 1) Gn,k,r is constructed by taking a Turán
graph Tn,r−1 and embedding a graph with 2k − 1 vertices, k2 − (3/2)k edges
with maximum degree k − 1 in one partite set.

2 Lemmas

In this section we give preparatory lemmas for the proof of the main theorem.

Define f(ν,∆) = max{|E(G)| : ν(G) ≤ ν,∆(G) ≤ ∆}. Chvátal and Hanson
[2] proved the following theorem.

Theorem 3 For every ν ≥ 1 and ∆ ≥ 1,

f(ν,∆) = ν∆ + b∆
2
cb ν

d∆/2e
c ≤ ν∆ + ν.

We will frequently use the following special case proved by Abbott et al. [1].

f(k − 1, k − 1) =

 k
2 − k if k is odd,

k2 − 3
2
k if k is even.

The extremal graphs are exactly those we embedded into Tn,r−1 in the previous
section to obtain the extremal Fk,r-free graph Gn,k,r.

Let a be a positive integer and let X and Y be two disjoint vertex sets of
V (G). We say that X dominates Y with a-deficiency if dY (x) ≥ |Y | − a for
each x ∈ X. Let V1, V2, . . . , Vm be disjoint subsets of V (G). We say that
{V1, V2, . . . , Vm} is a-deficiency complete if Vi dominates Vj with deficiency a
for every pair i 6= j with i, j = 1, 2, . . . , m.

The following lemma will be used very heavily in our proof of the main The-
orem.

Lemma 2.1 Let a be a positive integer. Let G be a graph and let {X1, X2,
. . . , Xm} be an a-deficiency complete partition of V (G) with |Xi| ≥ ma + 2t
for each i. Suppose that C1, C2, . . . , Ct are t cliques of G with the properties:

(1) |Ci ∩Xj| ≤ 2 for each pair i and j,
(2) |Ci ∩Xj| = 2 for at most one j for each i.

Then, there exist t cliques D1, D2, . . . , Dt satisfying:
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(1) Ci ⊆ Di for each i,
(2) D1 − C1, D2 − C2, . . . , Dt − Ct are mutually disjoint,
(3) For each i we have that |Di ∩ Xj| = 1 for all j except possibly one at

which |Di ∩Xj| = |Ci ∩Xj| = 2.

Proof: We need to show that, if Ci ∩ Xj = ∅, there exists a vertex vj ∈
Xj −

⋃t
`=1 C` such that vj is adjacent to all vertices in Ci. Iteration of this

argument will then provide the statement. Without loss of generality, we may
assume that i = j = 1.

Since dX1(v) ≥ |X1| − a for each v ∈ C1,

|
⋂
v∈C1

NX1(v)| ≥ |X1| − |C1|a ≥ ma+ 2t−ma ≥ 2t.

By our assumptions, we have that |(⋃ti=2 Ci)∩X1| ≤ 2(t−1), thus
⋂
v∈C1

NX1(v)−⋃k
i=2 Ci 6= ∅. Lemma 2.1 now follows. 2

Lemma 2.2 Let G be a graph and Y1, Y2, . . . , Ym be m vertex disjoint subsets
of V (G) and Y0 ⊆ V (G) − ⋃m

i=1 Yi such that |Yi| ≥ (i − 1)a + k for each
i = 1, . . . , m. If Yi dominates Yj with a-deficiency for every i = 1, 2, . . . ,m,
j = 0, 1, . . . ,m, and i 6= j, then, there are k vertex disjoint cliques C1, C2, . . . ,
Ck satisfying |Ci| = m and |Ci ∩Yj| = 1 for each i and j ≥ 1. Furthermore, if
|Y0| ≥ ma + k, then there are k vertex disjoint cliques D1, D2, . . . , Dk with
the property that |Di| = m + 1 and |Di ∩ Yj| = 1 for each i = 1, . . . , k and
j = 0, 1, . . . , m.

Proof: Let y1,1, y1,2, . . . , y1,k be k arbitrary vertices in Y1. Since |N(y1,i)∩Y2| ≥
|Y2| − a ≥ k, there are k vertices y2,1, y2,2, . . . , y2,k in Y2 such that y1,iy2,i ∈ E
for all i = 1, . . . , k. Since |N(y1,i) ∩N(y2,i) ∩ Y3| ≥ |Y3| − 2a ≥ k, there are k
vertices y3,1, y3,2, . . . , y3,k in Y3 such that y3,i ∈ N(y1,i)∩N(y2,i) for all i = 1,
2, . . . , k. Continuing in the same fashion, we see that Lemma 2.2 follows. 2

The case k = 1 of the main theorem is Turan’s theorem, the case of r = 2 is
trivial, and the case of r = 3 is Theorem 1. We assume that k ≥ 2 and r ≥ 4.
The aim of this section it to prove the following lemma.

Lemma 2.3 Let G be an extremal graph for Fk,r on n vertices with n ≥
4k2r4, and with minimum degree δ ≥ ( r−2

r−1
)n−k. Then there exists a partition

V (G) = V0∪̇V1∪̇ . . . ∪̇Vr−2, so that Vi 6= ∅ for all i = 0, . . . , r−2 and for every
x ∈ Vi, the following hold:

∑
j 6=i

ν(G[Vj]) ≤ k − 1 and ∆(G[Vi]) ≤ k − 1; (1)
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dG[Vi](x) +
∑
j 6=i

ν(G[N(x) ∩ Vj]) ≤ k − 1. (2)

Proof: Since G plus any edge contains a copy of Fk,r, G contains k edge disjoint
cliques D1, D2, . . . , Dk sharing one vertex v0 with |D1| = r − 1 and |Dj| = r
for all j ≥ 2. Let V (D1) = {v0, v1, . . . , vr−2}. Denote the graph induced by⋃k
i=1 Di by D. Clearly, |D| = k(r − 1). For each i = 0, . . . , r − 2, we define

Xi =
⋂
j 6=iN(vj)− V (D). Since G does not contain Fk,r as a subgraph,

Xi ∩Xj = ∅ for i 6= j.

Since the minimum degree δ(G) ≥ r−2
r−1

n− k,

|Xi ∪ V (D)| ≥ n

r − 1
− (r − 2)k.

Thus,

|Xi| ≥
n

r − 1
− (r − 2)k − k(r − 1) =

n

r − 1
− k(2r − 3). (3)

For each i ≥ 1, if there is an edge uv ∈ E(G[Xi]), replacing vi by the edge uv
in D we obtain a copy of Fk,r, a contradiction. Thus,

E(G[Xi]) = ∅, for each i = 1, 2, . . . , r − 2.

For every xi ∈ Xi and i 6= 0, since d(xi) ≥ r−2
r−1

n − k, dXi(xi) = 0, and
|Xi| ≥ n

r−1
− k(2r − 3), then

|NG−Xi(xi)|= (n− d(xi))− |Xi|

≤
(

n

r − 1
+ k

)
−
(

n

r − 1
− k(2r − 3)

)
= 2k(r − 1).

Thus,
dG−Xi(xi) ≥ |G−Xi| − 2k(r − 1),

for each x ∈ Xi where i = 1, 2, . . . , r − 2. In particular, we have that

dXj(x) ≥ |Xj| − 2k(r − 1) (4)

for each x ∈ Xi, i.e., Xi dominates Xj with 2k(r − 1)-deficiency, where i =
1, 2, . . . , r − 2, j = 0, 1, . . . , r − 2 and j 6= i.

Claim 4 Let x1, x2, . . . , xr−2 be r−2 vertices such that xi ∈ Xi for each i = 1,
. . . , r−2. Then, for any Y0 ⊆ X0 with |Y0| ≥ 2k(r−1)2 ≥ 2k(r−1)(r−2)+k,
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we have the following inequality

|
r−2⋂
i=1

N(xi) ∩ Y0| ≥ k.

Proof: By (4), dX0(xi) ≥ |X0| − 2k(r − 1), and so

|
r−2⋂
i=1

N(xi) ∩X0| ≥ |X0| − 2k(r − 1)(r − 2).

Claim 4 follows. 2

Let X∗0 denote the set of all vertices of X0 of degree at least 2k(r− 1)2 in X0.

Claim 5 |X∗0 | ≤ 2k(r − 1)(r − 2).

Proof: Suppose, to the contrary, |X∗0 | > 2k(r − 1)(r − 2). For each i, let

X i
0 = {x ∈ X∗0 | dXi(x) ≥ |Xi|/(2k(r − 1) + 1)}.

By (4), dX0(xi) ≥ |X0|−2k(r−1) for every xi ∈ Xi , thus N(S) ⊇ Xi for every
S ⊆ X∗0 with |S| = 2k(r− 1) + 1, which implies that |X i

0| ≥ |X∗0 | − 2k(r− 1).
Therefore,

|
r−2⋂
i=1

X i
0| ≥ |X∗0 | − 2k(r − 1)(r − 2) > 1.

There is an x0 ∈ X∗0 such that |N(x0) ∩ Xi| ≥ |Xi|/(2k(r − 1) + 1) for each
i = 1, 2, . . . , r − 2. Recall that by (3) we have |Xi| ≥ n/(r − 1) − k(2r − 3)
for each i = 1, . . . , r − 2. Since n ≥ 4k2r4, the following inequality holds.

|NXi(x0)| ≥ |Xi|/(2k(r − 1) + 1) ≥ 2k(r − 1)(r − 2) + k.

Applying Lemma 2.2 with Y0 = N(x0) ∩ X0, Y1 = N(x0) ∩ X1, . . . , Yr−2 =
N(x0)∩Xr−2, and a = 2k(r−1), we obtain k vertex disjoint cliques C1, C2, . . . ,
Ck of sizes r − 1 in N(x0). Then, a copy of Fk,r is found, a contradiction. 2

Let Z0 = X0 −X∗0 and Zi = Xi for each i = 1, 2, . . . , r − 2. By Claim 5 and
(3), we have that

|V −
r−2⋃
i=0

Xi| ≤ k(2r − 3)(r − 1).

Thus,

|V −
r−2⋃
i=0

Zi| ≤ k(2r − 3)(r − 1) + 2k(r − 1)(r − 2) < 4k(r − 1)2.

Further, the following inequality holds.

|Z0| ≥ n/(r− 1)− k(2r− 3)− 2k(r− 1)(r− 2) = n/(r− 1)− k(2r2− 4r+ 1).
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Since δ(G) ≥ r−2
r−1

n−k, the following inequalities hold for every z0 ∈ Z0 (recall
that Z0 = X0 − X∗0 and thus by the definition of X∗0 we have ∆(G[Z0]) ≤
2k(r − 1)2).

|NG−Z0(z0)| ≤ (n− d(z0))− (|Z0| −∆(G[Z0]))

≤
(

n

r − 1
+ k

)
−
(

n

r − 1
− k(2r2 − 4r + 1)− 2k(r − 1)2

)
≤ 4kr(r − 1).

In particular, for each z0 ∈ Z0, we have that for i > 0

dZi(z0) ≥ |Zi| − 4kr(r − 1).

That is, Z0 dominates Zi with 4kr(r − 1)-deficiency.

Claim 6 For every v ∈ V −⋃r−2
i=0 Zi, there exists a j = j(v) such that dZj(v) <

2k(r − 1)2 + k < 2kr(r − 1). Further, such a j(v) is unique.

Proof: Suppose, to the contrary, there is a v ∈ V −⋃r−2
i=0 Zi such that dZj(v) ≥

2k(r− 1)2 + k for every j = 0, 1, . . . , r− 2. Set a = 2k(r− 1) and m = r− 1,
then for all 0 ≤ j ≤ r − 2

|NZj(v)|= dZj(v) ≥ ma+ k, and

dZj(zi)≥ |Zj| − a for zi ∈ Zi, i > 0, i 6= j.

Applying Lemma 2.2, we see that there are k vertex disjoint cliques of order
r − 1 whose vertex sets are in N(v), a contradiction.

To show the uniqueness of j(v), suppose there are two distinct j1 and j2 such
that dZji (v) < 2k(r − 1)2 + k for both i = 1 and 2. Since n ≥ 4k2r4 ≥
4kr2(r − 1)2, we have that

d(v)≤n− |Zj1 ∪ Zj2|+ 4k(r − 1)2 + 2k

≤n−
[(

n

r − 1
− 2k(r − 1)2

)
+
(

n

r − 1
− k(2r − 3)

)]
+ 4k(r − 1)2 + 2k

=
r − 2

r − 1
n− n

r − 1
+ 2k(r − 1)2 + k(2r − 3) + 4k(r − 1)2 + 2k

<
r − 2

r − 1
n− k,

a contradiction. 2

Adding each v ∈ V−⋃r−2
i=0 Zi to Zj(v), we obtain a partition of V = V0∪̇V1∪̇ . . . ∪̇Vr−2.
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Clearly, for each i = 0, . . . , r − 2,

|Vi| ≥ |Zi| ≥
n

r − 1
− 2k(r − 1)2. (5)

For each i and each vi ∈ Vi, since

∆(G[Vi]) ≤ ∆(G[Zi]) + |V −
r−2⋃
i=0

Zi| ≤ 2k(r − 1)2 + 4k(r − 1)2,

we have that:

|NG−Vi(vi)| ≤ (n− d(vi))− (|Vi| −∆(G[Vi]))

≤
(

n

r − 1
+ k

)
−
(

n

r − 1
− 2k(r − 1)2 − 6k(r − 1)2

)
= k + 2k(r − 1)2 + 6k(r − 1)2

< 8kr2

In particular, we have that:

dVj(vi) ≥ |Vj| − 8kr2. (6)

We will show that V0, V1, . . . , Vr−2 satisfy (1) and (2). Let a = 8kr2. Since
n ≥ 4k2r4 ≥ 8kr4, for any j, we have that

|Vj| ≥
n

r − 1
− 2k(r − 1)2 ≥ (r − 1)a+ 2k.

Proof of (1). Suppose for some y ∈ Vi, |N(y) ∩ Vi| ≥ k, say the neighbors are
y1, y2, . . . , yk in Vi. By Lemma 2.1, there are k cliques D1, D2, . . . , Dk such
that y, yj ∈ Dj and |Dj| = r for each j. Further, Dj ∩D` = {y} for all j 6= `.
Thus, a copy of Fk,r is found, a contradiction.

Next suppose that
∑
j 6=i ν(Vj) ≥ k. Let y1z1, y2z2, . . . , ykzk be a k-matching

with the property that yj and zj are in the same V` for some ` 6= i. Now, since
n ≥ 4k2r4 ≥ 16k2r3,

|
k⋂
j=1

(NVi(yj)∩NVi(zj))| > |Vi|−2k(8kr2) ≥
(

n

r − 1
− 2k(r − 1)2

)
−16k2r2 ≥ 1.

Therefore, there exists a vertex y ∈ Vi, such that
⋃k
j=1{yj, zj} ⊆ N(y). By

Lemma 2.1, there are k cliques D1, D2, . . . , Dk such that y, yj, zj ∈ Dj and
|Dj| = r for each j. Further, Dj ∩D` = {y} for all j 6= `. Thus, a copy of Fk,r
is found, a contradiction. 2

Proof of (2). Let v ∈ Vi have neighbors x1, x2, . . . , xs in Vi and neighbors y1,
z1, y2, z2, . . . , yt, and zt in V −Vi where, for each j = 1, . . . , t, yj and zj in the
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same V` for some ` 6= i and yjzj ∈ E(G). By (1), both s and t are less than
k. Suppose for the moment that s + t ≥ k. Consider k of the cliques {v, x1},
. . . , {v, xs}, {v, y1, z1}, . . . , {v, yt, zt}. Applying Lemma 2.1 again, we obtain
k cliques D1, D2, . . . , Dk which induce a copy of Fk,r, a contradiction, which
completes the proof of Lemma 2.3. 2

3 Proof of the Main Lemma

The following lemma was obtained in [3].

Lemma 3.1 Let H be a graph and b a nonnegative integer such that b ≤
∆(H)− 2, and let ν = ν(H), ∆ = ∆(H). Then∑

x∈V (H)

min{dH(x), b} ≤ ν(b+ ∆). (7)

Let G be a graph with a partition of the vertices into r − 1 non-empty parts

V (G) = V0∪̇V1∪̇ . . . ∪̇Vr−2.

Let Gi = G[Vi] for each i = 0, 1, . . . , r − 2, and define

Gcr = (V (G), {vivj : vi ∈ Vi, vj ∈ Vj, i 6= j}),

where ”cr” denotes ”crossing”. For each i ∈ {0, 1, . . . , r − 2, cr} let di(x) =
dGi(x) and νi = ν(Gi). We generalized Lemma 6.2. in [3] to the following
lemma.

Lemma 3.2 Suppose G is partitioned as above so that (1) and (2) are satis-
fied. If G is Fk,r-free, then

r−2∑
i=0

|E(Gi)| −

 ∑
0≤i<j≤r−2

|Vi||Vj| − |E(Gcr)|

 ≤ f(k − 1, k − 1). (8)

Proof: Observe that Gcr is an (r− 1)-partite graph, and
∑

0≤i<j≤r−2 |Vi||Vj| −
|E(Gcr)| is the number of edges missing from the complete (r − 1)-partite
graph. By (1) and the definition of f , we see that |E(Gi)| ≤ f(k − 1, k − 1),
so the left hand side of (8) is bounded above by (r− 1)f(k− 1, k− 1). Delete
vertices of G so that the left hand side of (8) is maximal, let G be minimal in
this case.

We now claim that for each i = 0, . . . , r − 2 and every x ∈ Vi,

di(x)− (|V − Vi| − dcr(x)) > 0. (9)
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In fact, if for some x ∈ Vi, di(x)− (|V − Vi| − dcr(x)) ≤ 0 holds, then

|E(Gi−x)|+
∑
j 6=i
|E(Gj)|−

∑
j 6=i
|Vi − x||Vj|+

∑
i6=j<` 6=i

|Vj||V`| − |E(Gcr − x)|


=

r−2∑
j=0

|E(Gj)| −

 ∑
0≤j<`≤r−2

|Vj||V`| − |E(Gcr)|

− (di(x)− |V − Vi|+ dcr(x))

≥
r−2∑
j=0

|E(Gj)| −

 ∑
0≤j<`≤r−2

|Vj||V`| − |E(Gcr)|

 ,
contradicting the minimality of G. Hence (9) holds.

We also claim that for each i = 0, . . . , r − 2,

di(x)− (|V − Vi| − dcr(x)) ≤ k − 1−
∑
j 6=i

νj. (10)

To see (10), we need only observe that,

di(x)− (|V − Vi| − dcr(x))

≤ k − 1−
∑
j 6=i

[ν(Gj[N(x) ∩ Vj]) + |Vj| − dj(x)] by (2)

≤ k − 1−
∑
j 6=i

νj,

where the last inequality holds since any matching inGj has at most |Vj|−dj(x)
edges with one or both endpoints outside N(x) ∩ Vj. This proves (10).

We can also assume that for each i = 0, 1, . . . , r − 2

1 ≤
∑
j 6=i

νj ≤ k − 2, (11)

by the following arguments. If
∑
j 6=i νj = 0, then Gj is empty for every j 6= i,

and in this case by (1),

|E(Gi)| −

∑
j<`

|Vj| |V`| − E(Gcr)|

 ≤ |E(Gi)| ≤ f(k − 1, k − 1);

thus (8) holds trivially, verifying the lemma. If
∑
j 6=i νj = k − 1, then by (9)

and (10), we would have

0 < di(x)− (|V − Vi| − dcr(x)) ≤ 0,

a contradiction.
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We may further suppose that

2 ≤ νi for each i = 0, . . . , r − 2. (12)

To the contrary, without loss of generality, assume that ν0 ≤ 1, then (11)
implies that

∑r−2
i=0 νi ≤ k − 1. As

r−2∑
i=0

f(νi,∆) ≤ f

(
r−2∑
i=0

νi , ∆

)

always holds, we get that
∑r−2
i=0 |E(Gi)| ≤ f(k − 1, k − 1) and (8) follows.

Now apply Lemma 3.1 for the graph Gi (i = 0, . . . , r − 1) with ∆ = k − 1
and b = k − 1−∑j 6=i νj ≤ ∆− 2 (by (12)). Using (10) and (7) we get

∑
x∈Vi

di(x)−

∑
j 6=i
|Vj| − dcr(x)


≤
∑
x∈Vi

min

di(x) , k − 1−
∑
j 6=i

νj


≤ νi

2(k − 1)−
∑
j 6=i

νj

 . (13)

The left side in (13) equals

2|E(Gi)|+
∑
j 6=i
|E(Vi, Vj)| −

∑
j 6=i
|Vi||Vj|,

so adding these r − 1 sums (for i = 0, . . . , r − 2) gives

2|E(G)|= 2
r−2∑
i=0

|E(Gi)|+ 2|E(Gcr)|

=
r−2∑
i=0

2|E(Gi)|+
∑
i6=j
|E(Vi, Vj)| −

∑
j 6=i
|Vi||Vj|

+ 2
∑
i<j

|Vi||Vj|

≤
r−2∑
i=0

νi

2(k − 1)−
∑
j 6=i

νj

+ 2
∑
i<j

|Vi||Vj|

= 2

k2 − 2k + 1− (k − 1− ν0)

k − 1−
∑
j>0

νj

− ∑
0 6=j 6=`6=0

νjν`


+2

∑
i<j

|Vi||Vj|.

This yields |E(G)| ≤ k2 − 2k +
∑
i<j |Vi||Vj| (by (11), k − 1 − ν0 ≥ 1 and

k − 1 − ∑i6=0 νi ≥ 1), and since f(k − 1, k − 1) > k2 − 2k, this implies (8),
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finishing the proof of Lemma 3.2. 2

4 Proof of The Theorem

We can summarize Lemma 3.2 and Lemma 2.3 as follows.

Lemma 4.1 Suppose that G is an Fk,r-free graph on n vertices with n ≥
4k2r4, and with minimum degree δ ≥ r−2

r−1
n − k, then |E(G)| ≤ ex(n,Kr) +

f(k − 1, k − 1).

Proof: We can assume that G has the maximum number of edges under the
conditions of Lemma 4.1 and apply Lemma 2.3 to get a decomposition of G
into G0, G1, . . . , Gr−2, Gcr. The graph Gcr consists of the edges between Vi
and Vj for all distinct pairs i and j. Lemma 3.2 implies that

|E(G)| =
r−2∑
i=0

|E(Gi)|+ |E(Gcr)|

≤
∑
i<j

|Vi||Vj|+ f(k − 1, k − 1)

≤ ex(n,Kr) + f(k − 1, k − 1),

and we are done. 2

Since ex(n,Kr) − ex(n − 1, Kr) =
⌊
r−2
r−1

n
⌋
, we see that the following lemma

holds.

Lemma 4.2 Let G be a graph of order n, let k be an integer and c some
constant independent from n. If |E(G)| ≥ ex(n,Kr) + c and d(x) ≤ r−2

r−1
n− k,

then |E(G− x)| ≥ ex(n− 1, Kr) + c+ k.

Proof of Theorem 2. Suppose that n ≥ 16k3r8, and that G is an Fk,r-free graph
on n vertices. We need to show that G has at most ex(n,Kr) + f(k− 1, k− 1)
edges. Suppose, to the contrary, that |E(G)| > ex(n,Kr) + f(k− 1, k− 1). By
Lemma 4.1, there exists a vertex x = xn with degree dG(xn) < r−2

r−1
n− k.

Denote G by Gn, and let Gn−1 = Gn − xn. By Lemma 4.2,

|E(Gn−1)| ≥ ex(n− 1, Kr) + f(k − 1, k − 1) + k.

If there exists a vertex xn−1 ∈ V (Gn−1) with degree dGn−1(xn−1) < r−2
r−1

(n −
1) − k, then delete it to obtain Gn−2 = Gn−1 − xn−1. Continue this process
as long as δ(Gi) < r−2

r−1
i− k, and after n− ` steps we get a subgraph G` with

δ(G`) ≥ r−2
r−1

`− k. Note that

`(`− 1)/2 ≥ |E(G`)| ≥ ex(`,Kr) + k(n− `) + f(k − 1, k − 1) ≥ k(n− `).

12



We have that ` >
√
kn ≥ 4k2r4, a contradiction to Lemma 4.1. 2

5 Remark

To avoid tedious calculations, we did not attempt to lower the bound n ≥
16k3r8 in the proof, although we strongly believe the bound can be lowered
substantially.

References

[1] H. L. Abbott, D. Hanson, and H. Sauer, Intersection theorems for systems of
sets, J. Combin. Theory Ser. A 12 (1972), 381-289.
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[3] P. Erdős, Z. Füredi, R. J. Gould, and D. S. Gunderson, Extremal Graphs for
Intersecting Triangles, J. Combin. Theory Ser. B 64, No. 1 (1995), 89-100.
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