Extremal Graphs for Intersecting Cliques

Guantao Chen ${ }^{\mathrm{a}, 1}$ Ronald J. Gould ${ }^{\mathrm{b}}$ Florian Pfender ${ }^{\mathrm{b}, *}$
Bing Wei ${ }^{\mathrm{c}, 2}$
${ }^{\text {a }}$ Georgia State University, Atlanta, GA 30303
${ }^{\mathrm{b}}$ Emory University, Atlanta, GA 30332
${ }^{\text {c }}$ University of Mississippi, University, MS 38677

Abstract

For any two positive integers $n \geq r \geq 1$, the well-known Turán Theorem states that there exists a least positive integer $e x\left(n, K_{r}\right)$ such that every graph with n vertices and $e x\left(n, K_{r}\right)+1$ edges contains a subgraph isomorphic to K_{r}. We determine the minimum number of edges sufficient for the existence of k cliques with r vertices each intersecting in exactly one common vertex.

Key words: Extremal graph, Turán graph, cliques, matchings AMS subject classification 05C78

1 Introduction

With integers $n \geq r \geq 1$, we let $T_{n, r}$ denote the Turán graph, i.e., the complete r-partite graph on n vertices where each partite set has either $\lfloor n / r\rfloor$ or $\lceil n / r\rceil$ vertices and the edge set consists of all pairs joining distinct parts. The number of edges in $T_{n, r}$ is denoted by $e x\left(n, K_{r+1}\right)$, where K_{r} represents the complete graph on r vertices.

For a graph G and a vertex $x \in V(G)$, the neighborhood of x in G is denoted by $N_{G}(x)=\{y \in V(G): x y \in E(G)\}$, or when clear, simply $N(x)$, and let $\overline{N_{G}(x)}=V(G)-N_{G}(x)$. The degree of x in G, denoted by $d_{G}(x)$, or $d(x)$, is the

[^0]size of $N_{G}(x)$. We use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degrees, respectively, in G. The order of G is often denoted by $|G|=|V(G)|$. For a subset $X \subset V(G)$, let $G[X]$ denote the subgraph of G induced by X. A matching in G is a set of edges from $E(G)$, no two of which share a common vertex, and the matching number of G, denoted by $\nu(G)$, is the maximum number of edges in a matching in G.

Suppose that we are given some fixed graph H. What is the maximum number, $e x(n, H)$, of edges in a graph G on n vertices that does not contain a copy of H as a subgraph (often said to forbid H)? A graph G on n vertices with ex (n, H) edges and without a copy of H is called an extremal graph for H. For $n \geq|V(H)|$, adding one more edge to any one of the extremal graphs will produce a copy of H.

A graph on $2 k+1$ vertices consisting of k triangles which intersect in exactly one common vertex is called a k-fan and denoted by F_{k}. For each k, the chromatic number of F_{k} is three, and so by the Erdős-Stone theorem [4], $e x\left(n, F_{k}\right)=(1+o(1)) n^{2} / 4$. The following result is due to Erdős, Füredi, Gould, and Gunderson [3].

Theorem 1 For every $k \geq 1$, and for every $n \geq 50 k^{2}$, if a graph G on n vertices has more than

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor+ \begin{cases}k^{2}-k & \text { if } k \text { is odd } \\ k^{2}-\frac{3}{2} k & \text { if } k \text { is even }\end{cases}
$$

edges, then G contains a copy of a k-fan. Further, the number of edges is best possible.

A graph on $(r-1) k+1$ vertices consisting of k cliques each with r vertices, which intersect in exactly one common vertex, is called a K_{r}-fan and denoted by $F_{k, r}$. The purpose of this article is to generalize Theorem 1 , when k and r are fixed and n is large, as follows.

Theorem 2 For every $k \geq 1$ and $r \geq 2$, and for every $n \geq 16 k^{3} r^{8}$, if a graph G on n vertices has more than

$$
e x\left(n, K_{r}\right)+\left\{\begin{array}{ll}
k^{2}-k & \text { if } k \text { is odd, } \\
k^{2}-\frac{3}{2} k & \text { if } k \text { is even }
\end{array},\right.
$$

edges, then G contains a copy of an $F_{k, r}$-fan. Further, the number of edges is best possible.

Note that the number ex $\left(n, K_{r}\right)=\left|E\left(T_{n, r-1}\right)\right|$. To show the lower bound for $e x\left(n, F_{k, r}\right)$ we present the following graph, $G_{n, k, r}$. For odd k (where $n \geq$
$(2 k-1)(r-1)+1) G_{n, k, r}$ is constructed by taking a Turan graph $T_{n, r-1}$ and embedding two vertex disjoint copies of K_{k} in one partite set. For even k (where now $n \geq(2 k-2)(r-1)+1) G_{n, k, r}$ is constructed by taking a Turán graph $T_{n, r-1}$ and embedding a graph with $2 k-1$ vertices, $k^{2}-(3 / 2) k$ edges with maximum degree $k-1$ in one partite set.

2 Lemmas

In this section we give preparatory lemmas for the proof of the main theorem.
Define $f(\nu, \Delta)=\max \{|E(G)|: \nu(G) \leq \nu, \Delta(G) \leq \Delta\}$. Chvátal and Hanson [2] proved the following theorem.

Theorem 3 For every $\nu \geq 1$ and $\Delta \geq 1$,

$$
f(\nu, \Delta)=\nu \Delta+\left\lfloor\frac{\Delta}{2}\right\rfloor\left\lfloor\frac{\nu}{\lceil\Delta / 2\rceil}\right\rfloor \leq \nu \Delta+\nu .
$$

We will frequently use the following special case proved by Abbott et al. [1].

$$
f(k-1, k-1)= \begin{cases}k^{2}-k & \text { if } k \text { is odd } \\ k^{2}-\frac{3}{2} k & \text { if } k \text { is even }\end{cases}
$$

The extremal graphs are exactly those we embedded into $T_{n, r-1}$ in the previous section to obtain the extremal $F_{k, r}$-free graph $G_{n, k, r}$.

Let a be a positive integer and let X and Y be two disjoint vertex sets of $V(G)$. We say that X dominates Y with a-deficiency if $d_{Y}(x) \geq|Y|-a$ for each $x \in X$. Let $V_{1}, V_{2}, \ldots, V_{m}$ be disjoint subsets of $V(G)$. We say that $\left\{V_{1}, V_{2}, \ldots, V_{m}\right\}$ is a-deficiency complete if V_{i} dominates V_{j} with deficiency a for every pair $i \neq j$ with $i, j=1,2, \ldots, m$.

The following lemma will be used very heavily in our proof of the main Theorem.

Lemma 2.1 Let a be a positive integer. Let G be a graph and let $\left\{X_{1}, X_{2}\right.$, $\left.\ldots, X_{m}\right\}$ be an a-deficiency complete partition of $V(G)$ with $\left|X_{i}\right| \geq m a+2 t$ for each i. Suppose that $C_{1}, C_{2}, \ldots, C_{t}$ are t cliques of G with the properties:
(1) $\left|C_{i} \cap X_{j}\right| \leq 2$ for each pair i and j,
(2) $\left|C_{i} \cap X_{j}\right|=2$ for at most one j for each i.

Then, there exist t cliques $D_{1}, D_{2}, \ldots, D_{t}$ satisfying:
(1) $C_{i} \subseteq D_{i}$ for each i,
(2) $D_{1}-C_{1}, D_{2}-C_{2}, \ldots, D_{t}-C_{t}$ are mutually disjoint,
(3) For each i we have that $\left|D_{i} \cap X_{j}\right|=1$ for all j except possibly one at which $\left|D_{i} \cap X_{j}\right|=\left|C_{i} \cap X_{j}\right|=2$.

Proof: We need to show that, if $C_{i} \cap X_{j}=\emptyset$, there exists a vertex $v_{j} \in$ $X_{j}-\bigcup_{\ell=1}^{t} C_{\ell}$ such that v_{j} is adjacent to all vertices in C_{i}. Iteration of this argument will then provide the statement. Without loss of generality, we may assume that $i=j=1$.

Since $d_{X_{1}}(v) \geq\left|X_{1}\right|-a$ for each $v \in C_{1}$,

$$
\left|\bigcap_{v \in C_{1}} N_{X_{1}}(v)\right| \geq\left|X_{1}\right|-\left|C_{1}\right| a \geq m a+2 t-m a \geq 2 t
$$

By our assumptions, we have that $\left|\left(\bigcup_{i=2}^{t} C_{i}\right) \cap X_{1}\right| \leq 2(t-1)$, thus $\bigcap_{v \in C_{1}} N_{X_{1}}(v)-$ $\bigcup_{i=2}^{k} C_{i} \neq \emptyset$. Lemma 2.1 now follows.

Lemma 2.2 Let G be a graph and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be m vertex disjoint subsets of $V(G)$ and $Y_{0} \subseteq V(G)-\bigcup_{i=1}^{m} Y_{i}$ such that $\left|Y_{i}\right| \geq(i-1) a+k$ for each $i=1, \ldots, m$. If Y_{i} dominates Y_{j} with a-deficiency for every $i=1,2, \ldots, m$, $j=0,1, \ldots, m$, and $i \neq j$, then, there are k vertex disjoint cliques C_{1}, C_{2}, \ldots, C_{k} satisfying $\left|C_{i}\right|=m$ and $\left|C_{i} \cap Y_{j}\right|=1$ for each i and $j \geq 1$. Furthermore, if $\left|Y_{0}\right| \geq m a+k$, then there are k vertex disjoint cliques $D_{1}, D_{2}, \ldots, D_{k}$ with the property that $\left|D_{i}\right|=m+1$ and $\left|D_{i} \cap Y_{j}\right|=1$ for each $i=1, \ldots, k$ and $j=0,1, \ldots, m$.

Proof: Let $y_{1,1}, y_{1,2}, \ldots, y_{1, k}$ be k arbitrary vertices in Y_{1}. Since $\left|N\left(y_{1, i}\right) \cap Y_{2}\right| \geq$ $\left|Y_{2}\right|-a \geq k$, there are k vertices $y_{2,1}, y_{2,2}, \ldots, y_{2, k}$ in Y_{2} such that $y_{1, i} y_{2, i} \in E$ for all $i=1, \ldots, k$. Since $\left|N\left(y_{1, i}\right) \cap N\left(y_{2, i}\right) \cap Y_{3}\right| \geq\left|Y_{3}\right|-2 a \geq k$, there are k vertices $y_{3,1}, y_{3,2}, \ldots, y_{3, k}$ in Y_{3} such that $y_{3, i} \in N\left(y_{1, i}\right) \cap N\left(y_{2, i}\right)$ for all $i=1$, $2, \ldots, k$. Continuing in the same fashion, we see that Lemma 2.2 follows.

The case $k=1$ of the main theorem is Turan's theorem, the case of $r=2$ is trivial, and the case of $r=3$ is Theorem 1 . We assume that $k \geq 2$ and $r \geq 4$. The aim of this section it to prove the following lemma.

Lemma 2.3 Let G be an extremal graph for $F_{k, r}$ on n vertices with $n \geq$ $4 k^{2} r^{4}$, and with minimum degree $\delta \geq\left(\frac{r-2}{r-1}\right) n-k$. Then there exists a partition $V(G)=V_{0} \dot{U} V_{1} \dot{\cup} \ldots \dot{\cup} V_{r-2}$, so that $V_{i} \neq \emptyset$ for all $i=0, \ldots, r-2$ and for every $x \in V_{i}$, the following hold:

$$
\begin{equation*}
\sum_{j \neq i} \nu\left(G\left[V_{j}\right]\right) \leq k-1 \text { and } \Delta\left(G\left[V_{i}\right]\right) \leq k-1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d_{G\left[V_{i}\right]}(x)+\sum_{j \neq i} \nu\left(G\left[N(x) \cap V_{j}\right]\right) \leq k-1 . \tag{2}
\end{equation*}
$$

Proof: Since G plus any edge contains a copy of $F_{k, r}, G$ contains k edge disjoint cliques $D_{1}, D_{2}, \ldots, D_{k}$ sharing one vertex v_{0} with $\left|D_{1}\right|=r-1$ and $\left|D_{j}\right|=r$ for all $j \geq 2$. Let $V\left(D_{1}\right)=\left\{v_{0}, v_{1}, \ldots, v_{r-2}\right\}$. Denote the graph induced by $\bigcup_{i=1}^{k} D_{i}$ by D. Clearly, $|D|=k(r-1)$. For each $i=0, \ldots, r-2$, we define $X_{i}=\bigcap_{j \neq i} N\left(v_{j}\right)-V(D)$. Since G does not contain $F_{k, r}$ as a subgraph,

$$
X_{i} \cap X_{j}=\emptyset \text { for } i \neq j .
$$

Since the minimum degree $\delta(G) \geq \frac{r-2}{r-1} n-k$,

$$
\left|X_{i} \cup V(D)\right| \geq \frac{n}{r-1}-(r-2) k
$$

Thus,

$$
\begin{equation*}
\left|X_{i}\right| \geq \frac{n}{r-1}-(r-2) k-k(r-1)=\frac{n}{r-1}-k(2 r-3) . \tag{3}
\end{equation*}
$$

For each $i \geq 1$, if there is an edge $u v \in E\left(G\left[X_{i}\right]\right)$, replacing v_{i} by the edge $u v$ in D we obtain a copy of $F_{k, r}$, a contradiction. Thus,

$$
E\left(G\left[X_{i}\right]\right)=\emptyset, \text { for each } i=1,2, \ldots, r-2 .
$$

For every $x_{i} \in X_{i}$ and $i \neq 0$, since $d\left(x_{i}\right) \geq \frac{r-2}{r-1} n-k, d_{X_{i}}\left(x_{i}\right)=0$, and $\left|X_{i}\right| \geq \frac{n}{r-1}-k(2 r-3)$, then

$$
\begin{aligned}
\left|\overline{N_{G-X}\left(x_{i}\right)}\right| & =\left(n-d\left(x_{i}\right)\right)-\left|X_{i}\right| \\
& \leq\left(\frac{n}{r-1}+k\right)-\left(\frac{n}{r-1}-k(2 r-3)\right) \\
& =2 k(r-1)
\end{aligned}
$$

Thus,

$$
d_{G-X_{i}}\left(x_{i}\right) \geq\left|G-X_{i}\right|-2 k(r-1)
$$

for each $x \in X_{i}$ where $i=1,2, \ldots, r-2$. In particular, we have that

$$
\begin{equation*}
d_{X_{j}}(x) \geq\left|X_{j}\right|-2 k(r-1) \tag{4}
\end{equation*}
$$

for each $x \in X_{i}$, i.e., X_{i} dominates X_{j} with $2 k(r-1)$-deficiency, where $i=$ $1,2, \ldots, r-2, j=0,1, \ldots, r-2$ and $j \neq i$.

Claim 4 Let $x_{1}, x_{2}, \ldots, x_{r-2}$ be $r-2$ vertices such that $x_{i} \in X_{i}$ for each $i=1$, $\ldots, r-2$. Then, for any $Y_{0} \subseteq X_{0}$ with $\left|Y_{0}\right| \geq 2 k(r-1)^{2} \geq 2 k(r-1)(r-2)+k$,
we have the following inequality

$$
\left|\bigcap_{i=1}^{r-2} N\left(x_{i}\right) \cap Y_{0}\right| \geq k
$$

Proof: By (4), $d_{X_{0}}\left(x_{i}\right) \geq\left|X_{0}\right|-2 k(r-1)$, and so

$$
\left|\bigcap_{i=1}^{r-2} N\left(x_{i}\right) \cap X_{0}\right| \geq\left|X_{0}\right|-2 k(r-1)(r-2)
$$

Claim 4 follows.
Let X_{0}^{*} denote the set of all vertices of X_{0} of degree at least $2 k(r-1)^{2}$ in X_{0}.
Claim $5\left|X_{0}^{*}\right| \leq 2 k(r-1)(r-2)$.
Proof: Suppose, to the contrary, $\left|X_{0}^{*}\right|>2 k(r-1)(r-2)$. For each i, let

$$
X_{0}^{i}=\left\{x \in X_{0}^{*}\left|d_{X_{i}}(x) \geq\left|X_{i}\right| /(2 k(r-1)+1)\right\} .\right.
$$

By (4), $d_{X_{0}}\left(x_{i}\right) \geq\left|X_{0}\right|-2 k(r-1)$ for every $x_{i} \in X_{i}$, thus $N(S) \supseteq X_{i}$ for every $S \subseteq X_{0}^{*}$ with $|S|=2 k(r-1)+1$, which implies that $\left|X_{0}^{i}\right| \geq\left|X_{0}^{*}\right|-2 k(r-1)$. Therefore,

$$
\left|\bigcap_{i=1}^{r-2} X_{0}^{i}\right| \geq\left|X_{0}^{*}\right|-2 k(r-1)(r-2)>1
$$

There is an $x_{0} \in X_{0}^{*}$ such that $\left|N\left(x_{0}\right) \cap X_{i}\right| \geq\left|X_{i}\right| /(2 k(r-1)+1)$ for each $i=1,2, \ldots, r-2$. Recall that by (3) we have $\left|X_{i}\right| \geq n /(r-1)-k(2 r-3)$ for each $i=1, \ldots, r-2$. Since $n \geq 4 k^{2} r^{4}$, the following inequality holds.

$$
\left|N_{X_{i}}\left(x_{0}\right)\right| \geq\left|X_{i}\right| /(2 k(r-1)+1) \geq 2 k(r-1)(r-2)+k .
$$

Applying Lemma 2.2 with $Y_{0}=N\left(x_{0}\right) \cap X_{0}, Y_{1}=N\left(x_{0}\right) \cap X_{1}, \ldots, Y_{r-2}=$ $N\left(x_{0}\right) \cap X_{r-2}$, and $a=2 k(r-1)$, we obtain k vertex disjoint cliques C_{1}, C_{2}, \ldots, C_{k} of sizes $r-1$ in $N\left(x_{0}\right)$. Then, a copy of $F_{k, r}$ is found, a contradiction.

Let $Z_{0}=X_{0}-X_{0}^{*}$ and $Z_{i}=X_{i}$ for each $i=1,2, \ldots, r-2$. By Claim 5 and (3), we have that

$$
\left|V-\bigcup_{i=0}^{r-2} X_{i}\right| \leq k(2 r-3)(r-1)
$$

Thus,

$$
\left|V-\bigcup_{i=0}^{r-2} Z_{i}\right| \leq k(2 r-3)(r-1)+2 k(r-1)(r-2)<4 k(r-1)^{2} .
$$

Further, the following inequality holds.
$\left|Z_{0}\right| \geq n /(r-1)-k(2 r-3)-2 k(r-1)(r-2)=n /(r-1)-k\left(2 r^{2}-4 r+1\right)$.

Since $\delta(G) \geq \frac{r-2}{r-1} n-k$, the following inequalities hold for every $z_{0} \in Z_{0}$ (recall that $Z_{0}=X_{0}-X_{0}^{*}$ and thus by the definition of X_{0}^{*} we have $\Delta\left(G\left[Z_{0}\right]\right) \leq$ $\left.2 k(r-1)^{2}\right)$.

$$
\begin{aligned}
\left|\overline{N_{G-Z_{0}}\left(z_{0}\right)}\right| & \leq\left(n-d\left(z_{0}\right)\right)-\left(\left|Z_{0}\right|-\Delta\left(G\left[Z_{0}\right]\right)\right) \\
& \leq\left(\frac{n}{r-1}+k\right)-\left(\frac{n}{r-1}-k\left(2 r^{2}-4 r+1\right)-2 k(r-1)^{2}\right) \\
& \leq 4 k r(r-1) .
\end{aligned}
$$

In particular, for each $z_{0} \in Z_{0}$, we have that for $i>0$

$$
d_{Z_{i}}\left(z_{0}\right) \geq\left|Z_{i}\right|-4 k r(r-1) .
$$

That is, Z_{0} dominates Z_{i} with $4 k r(r-1)$-deficiency.
Claim 6 For every $v \in V-\bigcup_{i=0}^{r-2} Z_{i}$, there exists a $j=j(v)$ such that $d_{Z_{j}}(v)<$ $2 k(r-1)^{2}+k<2 k r(r-1)$. Further, such a $j(v)$ is unique.

Proof: Suppose, to the contrary, there is a $v \in V-\bigcup_{i=0}^{r-2} Z_{i}$ such that $d_{Z_{j}}(v) \geq$ $2 k(r-1)^{2}+k$ for every $j=0,1, \ldots, r-2$. Set $a=2 k(r-1)$ and $m=r-1$, then for all $0 \leq j \leq r-2$

$$
\begin{aligned}
\left|N_{Z_{j}}(v)\right| & =d_{Z_{j}}(v) \geq m a+k, \text { and } \\
d_{Z_{j}}\left(z_{i}\right) & \geq\left|Z_{j}\right|-a \text { for } z_{i} \in Z_{i}, i>0, i \neq j .
\end{aligned}
$$

Applying Lemma 2.2, we see that there are k vertex disjoint cliques of order $r-1$ whose vertex sets are in $N(v)$, a contradiction.

To show the uniqueness of $j(v)$, suppose there are two distinct j_{1} and j_{2} such that $d_{Z_{j_{i}}}(v)<2 k(r-1)^{2}+k$ for both $i=1$ and 2 . Since $n \geq 4 k^{2} r^{4} \geq$ $4 k r^{2}(r-1)^{2}$, we have that

$$
\begin{aligned}
d(v) & \leq n-\left|Z_{j_{1}} \cup Z_{j_{2}}\right|+4 k(r-1)^{2}+2 k \\
& \leq n-\left[\left(\frac{n}{r-1}-2 k(r-1)^{2}\right)+\left(\frac{n}{r-1}-k(2 r-3)\right)\right]+4 k(r-1)^{2}+2 k \\
& =\frac{r-2}{r-1} n-\frac{n}{r-1}+2 k(r-1)^{2}+k(2 r-3)+4 k(r-1)^{2}+2 k \\
& <\frac{r-2}{r-1} n-k,
\end{aligned}
$$

a contradiction.
Adding each $v \in V-\bigcup_{i=0}^{r-2} Z_{i}$ to $Z_{j(v)}$, we obtain a partition of $V=V_{0} \dot{U} V_{1} \dot{\cup} \ldots \dot{U} V_{r-2}$.

Clearly, for each $i=0, \ldots, r-2$,

$$
\begin{equation*}
\left|V_{i}\right| \geq\left|Z_{i}\right| \geq \frac{n}{r-1}-2 k(r-1)^{2} \tag{5}
\end{equation*}
$$

For each i and each $v_{i} \in V_{i}$, since

$$
\Delta\left(G\left[V_{i}\right]\right) \leq \Delta\left(G\left[Z_{i}\right]\right)+\left|V-\bigcup_{i=0}^{r-2} Z_{i}\right| \leq 2 k(r-1)^{2}+4 k(r-1)^{2}
$$

we have that:

$$
\begin{aligned}
\left|\overline{N_{G-V_{i}}\left(v_{i}\right)}\right| & \leq\left(n-d\left(v_{i}\right)\right)-\left(\left|V_{i}\right|-\Delta\left(G\left[V_{i}\right]\right)\right) \\
& \leq\left(\frac{n}{r-1}+k\right)-\left(\frac{n}{r-1}-2 k(r-1)^{2}-6 k(r-1)^{2}\right) \\
& =k+2 k(r-1)^{2}+6 k(r-1)^{2} \\
& <8 k r^{2}
\end{aligned}
$$

In particular, we have that:

$$
\begin{equation*}
d_{V_{j}}\left(v_{i}\right) \geq\left|V_{j}\right|-8 k r^{2} \tag{6}
\end{equation*}
$$

We will show that $V_{0}, V_{1}, \ldots, V_{r-2}$ satisfy (1) and (2). Let $a=8 k r^{2}$. Since $n \geq 4 k^{2} r^{4} \geq 8 k r^{4}$, for any j, we have that

$$
\left|V_{j}\right| \geq \frac{n}{r-1}-2 k(r-1)^{2} \geq(r-1) a+2 k
$$

Proof of (1). Suppose for some $y \in V_{i},\left|N(y) \cap V_{i}\right| \geq k$, say the neighbors are $y_{1}, y_{2}, \ldots, y_{k}$ in V_{i}. By Lemma 2.1, there are k cliques $D_{1}, D_{2}, \ldots, D_{k}$ such that $y, y_{j} \in D_{j}$ and $\left|D_{j}\right|=r$ for each j. Further, $D_{j} \cap D_{\ell}=\{y\}$ for all $j \neq \ell$. Thus, a copy of $F_{k, r}$ is found, a contradiction.

Next suppose that $\sum_{j \neq i} \nu\left(V_{j}\right) \geq k$. Let $y_{1} z_{1}, y_{2} z_{2}, \ldots, y_{k} z_{k}$ be a k-matching with the property that y_{j} and z_{j} are in the same V_{ℓ} for some $\ell \neq i$. Now, since $n \geq 4 k^{2} r^{4} \geq 16 k^{2} r^{3}$,

$$
\left|\bigcap_{j=1}^{k}\left(N_{V_{i}}\left(y_{j}\right) \cap N_{V_{i}}\left(z_{j}\right)\right)\right|>\left|V_{i}\right|-2 k\left(8 k r^{2}\right) \geq\left(\frac{n}{r-1}-2 k(r-1)^{2}\right)-16 k^{2} r^{2} \geq 1
$$

Therefore, there exists a vertex $y \in V_{i}$, such that $\bigcup_{j=1}^{k}\left\{y_{j}, z_{j}\right\} \subseteq N(y)$. By Lemma 2.1, there are k cliques $D_{1}, D_{2}, \ldots, D_{k}$ such that $y, y_{j}, z_{j} \in D_{j}$ and $\left|D_{j}\right|=r$ for each j. Further, $D_{j} \cap D_{\ell}=\{y\}$ for all $j \neq \ell$. Thus, a copy of $F_{k, r}$ is found, a contradiction.

Proof of (2). Let $v \in V_{i}$ have neighbors $x_{1}, x_{2}, \ldots, x_{s}$ in V_{i} and neighbors y_{1}, $z_{1}, y_{2}, z_{2}, \ldots, y_{t}$, and z_{t} in $V-V_{i}$ where, for each $j=1, \ldots, t, y_{j}$ and z_{j} in the
same V_{ℓ} for some $\ell \neq i$ and $y_{j} z_{j} \in E(G)$. By (1), both s and t are less than k. Suppose for the moment that $s+t \geq k$. Consider k of the cliques $\left\{v, x_{1}\right\}$, $\ldots,\left\{v, x_{s}\right\},\left\{v, y_{1}, z_{1}\right\}, \ldots,\left\{v, y_{t}, z_{t}\right\}$. Applying Lemma 2.1 again, we obtain k cliques $D_{1}, D_{2}, \ldots, D_{k}$ which induce a copy of $F_{k, r}$, a contradiction, which completes the proof of Lemma 2.3.

3 Proof of the Main Lemma

The following lemma was obtained in [3].
Lemma 3.1 Let H be a graph and b a nonnegative integer such that $b \leq$ $\Delta(H)-2$, and let $\nu=\nu(H), \Delta=\Delta(H)$. Then

$$
\begin{equation*}
\sum_{x \in V(H)} \min \left\{d_{H}(x), b\right\} \leq \nu(b+\Delta) . \tag{7}
\end{equation*}
$$

Let G be a graph with a partition of the vertices into $r-1$ non-empty parts

$$
V(G)=V_{0} \dot{\cup} V_{1} \dot{\cup} \ldots \dot{U} V_{r-2} .
$$

Let $G_{i}=G\left[V_{i}\right]$ for each $i=0,1, \ldots, r-2$, and define

$$
G_{c r}=\left(V(G),\left\{v_{i} v_{j}: v_{i} \in V_{i}, v_{j} \in V_{j}, i \neq j\right\}\right),
$$

where "cr" denotes "crossing". For each $i \in\{0,1, \ldots, r-2, c r\}$ let $d_{i}(x)=$ $d_{G_{i}}(x)$ and $\nu_{i}=\nu\left(G_{i}\right)$. We generalized Lemma 6.2. in [3] to the following lemma.

Lemma 3.2 Suppose G is partitioned as above so that (1) and (2) are satisfied. If G is $F_{k, r}$-free, then

$$
\begin{equation*}
\sum_{i=0}^{r-2}\left|E\left(G_{i}\right)\right|-\left(\sum_{0 \leq i<j \leq r-2}\left|V_{i}\right|\left|V_{j}\right|-\left|E\left(G_{c r}\right)\right|\right) \leq f(k-1, k-1) . \tag{8}
\end{equation*}
$$

Proof: Observe that $G_{c r}$ is an $(r-1)$-partite graph, and $\sum_{0 \leq i<j \leq r-2}\left|V_{i}\right|\left|V_{j}\right|-$ $\left|E\left(G_{c r}\right)\right|$ is the number of edges missing from the complete $(r-1)$-partite graph. By (1) and the definition of f, we see that $\left|E\left(G_{i}\right)\right| \leq f(k-1, k-1)$, so the left hand side of (8) is bounded above by $(r-1) f(k-1, k-1)$. Delete vertices of G so that the left hand side of (8) is maximal, let G be minimal in this case.

We now claim that for each $i=0, \ldots, r-2$ and every $x \in V_{i}$,

$$
\begin{equation*}
d_{i}(x)-\left(\left|V-V_{i}\right|-d_{c r}(x)\right)>0 . \tag{9}
\end{equation*}
$$

In fact, if for some $x \in V_{i}, d_{i}(x)-\left(\left|V-V_{i}\right|-d_{c r}(x)\right) \leq 0$ holds, then

$$
\begin{gathered}
\left|E\left(G_{i}-x\right)\right|+\sum_{j \neq i}\left|E\left(G_{j}\right)\right|-\left(\sum_{j \neq i}\left|V_{i}-x\right|\left|V_{j}\right|+\sum_{i \neq j<\ell \neq i}\left|V_{j}\right|\left|V_{\ell}\right|-\left|E\left(G_{c r}-x\right)\right|\right) \\
=\sum_{j=0}^{r-2}\left|E\left(G_{j}\right)\right|-\left(\sum_{0 \leq j<\ell \leq r-2}\left|V_{j}\right|\left|V_{\ell}\right|-\left|E\left(G_{c r}\right)\right|\right)-\left(d_{i}(x)-\left|V-V_{i}\right|+d_{c r}(x)\right) \\
\geq \sum_{j=0}^{r-2}\left|E\left(G_{j}\right)\right|-\left(\sum_{0 \leq j<\ell \leq r-2}\left|V_{j}\right|\left|V_{\ell}\right|-\left|E\left(G_{c r}\right)\right|\right),
\end{gathered}
$$

contradicting the minimality of G. Hence (9) holds.
We also claim that for each $i=0, \ldots, r-2$,

$$
\begin{equation*}
d_{i}(x)-\left(\left|V-V_{i}\right|-d_{c r}(x)\right) \leq k-1-\sum_{j \neq i} \nu_{j} . \tag{10}
\end{equation*}
$$

To see (10), we need only observe that,

$$
\begin{aligned}
& d_{i}(x)-\left(\left|V-V_{i}\right|-d_{c r}(x)\right) \\
& \leq k-1-\sum_{j \neq i}\left[\nu\left(G_{j}\left[N(x) \cap V_{j}\right]\right)+\left|V_{j}\right|-d_{j}(x)\right] \text { by }(2) \\
& \leq k-1-\sum_{j \neq i} \nu_{j},
\end{aligned}
$$

where the last inequality holds since any matching in G_{j} has at most $\left|V_{j}\right|-d_{j}(x)$ edges with one or both endpoints outside $N(x) \cap V_{j}$. This proves (10).

We can also assume that for each $i=0,1, \ldots, r-2$

$$
\begin{equation*}
1 \leq \sum_{j \neq i} \nu_{j} \leq k-2, \tag{11}
\end{equation*}
$$

by the following arguments. If $\sum_{j \neq i} \nu_{j}=0$, then G_{j} is empty for every $j \neq i$, and in this case by (1),

$$
\left|E\left(G_{i}\right)\right|-\left(\sum_{j<\ell}\left|V_{j}\right|\left|V_{\ell}\right|-E\left(G_{c r}\right) \mid\right) \leq\left|E\left(G_{i}\right)\right| \leq f(k-1, k-1) ;
$$

thus (8) holds trivially, verifying the lemma. If $\sum_{j \neq i} \nu_{j}=k-1$, then by (9) and (10), we would have

$$
0<d_{i}(x)-\left(\left|V-V_{i}\right|-d_{c r}(x)\right) \leq 0,
$$

a contradiction.

We may further suppose that

$$
\begin{equation*}
2 \leq \nu_{i} \text { for each } i=0, \ldots, r-2 . \tag{12}
\end{equation*}
$$

To the contrary, without loss of generality, assume that $\nu_{0} \leq 1$, then (11) implies that $\sum_{i=0}^{r-2} \nu_{i} \leq k-1$. As

$$
\sum_{i=0}^{r-2} f\left(\nu_{i}, \Delta\right) \leq f\left(\sum_{i=0}^{r-2} \nu_{i}, \Delta\right)
$$

always holds, we get that $\sum_{i=0}^{r-2}\left|E\left(G_{i}\right)\right| \leq f(k-1, k-1)$ and (8) follows.
Now apply Lemma 3.1 for the graph $G_{i}(i=0, \ldots, r-1)$ with $\Delta=k-1$ and $b=k-1-\sum_{j \neq i} \nu_{j} \leq \Delta-2$ (by (12)). Using (10) and (7) we get

$$
\begin{align*}
\sum_{x \in V_{i}}\left[d_{i}(x)-\left(\sum_{j \neq i}\left|V_{j}\right|-d_{c r}(x)\right)\right] \\
\leq \sum_{x \in V_{i}} \min \left\{d_{i}(x), k-1-\sum_{j \neq i} \nu_{j}\right\} \\
\leq \nu_{i}\left(2(k-1)-\sum_{j \neq i} \nu_{j}\right) \tag{13}
\end{align*}
$$

The left side in (13) equals

$$
2\left|E\left(G_{i}\right)\right|+\sum_{j \neq i}\left|E\left(V_{i}, V_{j}\right)\right|-\sum_{j \neq i}\left|V_{i}\right|\left|V_{j}\right|,
$$

so adding these $r-1$ sums (for $i=0, \ldots, r-2$) gives

$$
\begin{aligned}
2|E(G)|= & 2 \sum_{i=0}^{r-2}\left|E\left(G_{i}\right)\right|+2\left|E\left(G_{c r}\right)\right| \\
= & \sum_{i=0}^{r-2}\left(2\left|E\left(G_{i}\right)\right|+\sum_{i \neq j}\left|E\left(V_{i}, V_{j}\right)\right|-\sum_{j \neq i}\left|V_{i}\right|\left|V_{j}\right|\right)+2 \sum_{i<j}\left|V_{i}\right|\left|V_{j}\right| \\
\leq & \sum_{i=0}^{r-2} \nu_{i}\left(2(k-1)-\sum_{j \neq i} \nu_{j}\right)+2 \sum_{i<j}\left|V_{i}\right|\left|V_{j}\right| \\
= & 2\left[k^{2}-2 k+1-\left(k-1-\nu_{0}\right)\left(k-1-\sum_{j>0} \nu_{j}\right)-\sum_{0 \neq j \neq \ell \neq 0} \nu_{j} \nu_{\ell}\right] \\
& +2 \sum_{i<j}\left|V_{i}\right|\left|V_{j}\right| .
\end{aligned}
$$

This yields $|E(G)| \leq k^{2}-2 k+\sum_{i<j}\left|V_{i}\right|\left|V_{j}\right|$ (by (11), $k-1-\nu_{0} \geq 1$ and $k-1-\sum_{i \neq 0} \nu_{i} \geq 1$), and since $f(k-1, k-1)>k^{2}-2 k$, this implies (8),
finishing the proof of Lemma 3.2.

4 Proof of The Theorem

We can summarize Lemma 3.2 and Lemma 2.3 as follows.
Lemma 4.1 Suppose that G is an $F_{k, r}$-free graph on n vertices with $n \geq$ $4 k^{2} r^{4}$, and with minimum degree $\delta \geq \frac{r-2}{r-1} n-k$, then $|E(G)| \leq e x\left(n, K_{r}\right)+$ $f(k-1, k-1)$.

Proof: We can assume that G has the maximum number of edges under the conditions of Lemma 4.1 and apply Lemma 2.3 to get a decomposition of G into $G_{0}, G_{1}, \ldots, G_{r-2}, G_{c r}$. The graph $G_{c r}$ consists of the edges between V_{i} and V_{j} for all distinct pairs i and j. Lemma 3.2 implies that

$$
\begin{aligned}
&|E(G)|=\sum_{i=0}^{r-2}\left|E\left(G_{i}\right)\right|+\left|E\left(G_{c r}\right)\right| \\
& \leq \sum_{i<j}\left|V_{i}\right|\left|V_{j}\right|+f(k-1, k-1) \\
& \leq \operatorname{ex}\left(n, K_{r}\right)+f(k-1, k-1)
\end{aligned}
$$

and we are done.
Since ex $\left(n, K_{r}\right)-e x\left(n-1, K_{r}\right)=\left\lfloor\frac{r-2}{r-1} n\right\rfloor$, we see that the following lemma holds.

Lemma 4.2 Let G be a graph of order n, let k be an integer and c some constant independent from n. If $|E(G)| \geq e x\left(n, K_{r}\right)+c$ and $d(x) \leq \frac{r-2}{r-1} n-k$, then $|E(G-x)| \geq e x\left(n-1, K_{r}\right)+c+k$.

Proof of Theorem 2. Suppose that $n \geq 16 k^{3} r^{8}$, and that G is an $F_{k, r}$-free graph on n vertices. We need to show that G has at most $\operatorname{ex}\left(n, K_{r}\right)+f(k-1, k-1)$ edges. Suppose, to the contrary, that $|E(G)|>e x\left(n, K_{r}\right)+f(k-1, k-1)$. By Lemma 4.1, there exists a vertex $x=x_{n}$ with degree $d_{G}\left(x_{n}\right)<\frac{r-2}{r-1} n-k$.

Denote G by G^{n}, and let $G^{n-1}=G^{n}-x_{n}$. By Lemma 4.2,

$$
\left|E\left(G^{n-1}\right)\right| \geq e x\left(n-1, K_{r}\right)+f(k-1, k-1)+k .
$$

If there exists a vertex $x_{n-1} \in V\left(G^{n-1}\right)$ with degree $d_{G^{n-1}}\left(x_{n-1}\right)<\frac{r-2}{r-1}(n-$ $1)-k$, then delete it to obtain $G^{n-2}=G^{n-1}-x_{n-1}$. Continue this process as long as $\delta\left(G^{i}\right)<\frac{r-2}{r-1} i-k$, and after $n-\ell$ steps we get a subgraph G^{ℓ} with $\delta\left(G^{\ell}\right) \geq \frac{r-2}{r-1} \ell-k$. Note that

$$
\ell(\ell-1) / 2 \geq\left|E\left(G_{\ell}\right)\right| \geq e x\left(\ell, K_{r}\right)+k(n-\ell)+f(k-1, k-1) \geq k(n-\ell)
$$

We have that $\ell>\sqrt{k n} \geq 4 k^{2} r^{4}$, a contradiction to Lemma 4.1.

5 Remark

To avoid tedious calculations, we did not attempt to lower the bound $n \geq$ $16 k^{3} r^{8}$ in the proof, although we strongly believe the bound can be lowered substantially.

References

[1] H. L. Abbott, D. Hanson, and H. Sauer, Intersection theorems for systems of sets, J. Combin. Theory Ser. A 12 (1972), 381-289.
[2] V. Chvátal and D. Hanson, Degrees and matchings, J. Combin. Theory Ser. B 20 (1976), 128-138.
[3] P. Erdős, Z. Füredi, R. J. Gould, and D. S. Gunderson, Extremal Graphs for Intersecting Triangles, J. Combin. Theory Ser. B 64, No. 1 (1995), 89-100.
[4] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. 52 (1946), 1089-1091.

[^0]: * Corresponding Author Email address: fpfende@mathcs.emory.edu (Florian Pfender).
 ${ }^{1}$ Supported by NSF grant No. DMS-0070059
 ${ }^{2}$ Supported by NNSF of China and the innovation funds of Institute of Systems Science, AMSS, CAS

