CLAW-FREE 3-CONNECTED P₁₁-FREE GRAPHS ARE HAMILTONIAN

TOMASZ ŁUCZAK AND FLORIAN PFENDER

ABSTRACT. We show that every 3-connected claw-free graph which contains no induced copy of P_{11} is hamiltonian. Since there exist non-hamiltonian 3-connected claw-free graphs without induced copies of P_{12} this result is, in a way, best possible.

1. Statement of the main result

A graph G is $\{H_1, H_2, \ldots, H_k\}$ -free if G contains no induced subgraphs isomorphic to any of the graphs H_i , $i = 1, 2, \ldots, k$. A graph without induced copies of $K_{1,3}$ is called claw-free, and a graph containing no copies of K_3 is triangle-free.

Broersma and Veldman [3] showed the following theorem. (Here and below P_k denotes the path on k vertices.)

Theorem 1. If G is a 2-connected $\{K_{1,3}, P_6\}$ -free graph, then G is hamiltonian.

Bedrossian [1] characterized all pairs of forbidden subgraphs X, Y, such that every 2-connected $\{X, Y\}$ -free graph is hamiltonian. Later, Faudree and Gould [6] extended that list under the extra condition that the graph has at least ten vertices.

In the above results, it is natural to consider 2-connected graphs, as this is a neccessary condition for hamiltonicity. In this paper we study 3-connected graphs instead to see what kind of results we can achieve with this extra condition. We show the following result analogous to Theorem 1.

Theorem 2. Every 3-connected $\{K_{1,3}, P_{11}\}$ -free graph is hamiltonian.

This extends a result from Brousek *et al.* [5], who showed as a corollary of a result about 2-connected claw-free graphs that every 3-connected $\{K_{1,3}, P_7\}$ -free graph is hamiltonian.

¹⁹⁹¹ Mathematics Subject Classification. 05C45.

Key words and phrases. Hamilton cycle, claw-free graphs, forbidden subgraphs.

Furthermore, in the last section of the paper, we give an example of an infinite family of non-hamiltonian 3-connected $\{K_{1,3}, P_{12}\}$ -free graphs.

2. Closure, cycle closure and line graphs

We start with some definitions and notation (for terminology not defined here we refer the reader to [2]). For a graph G which contains at least one cycle the *circumference* of G, denoted by c(G), is the length of a longest cycle contained in G. We denote the *neighborhood* of a set of vertices $X \subseteq V(G)$ in a graph G by N(X). Similarly, the *closed neighborhood* of a set of vertices $X \subseteq V(G)$ is $N[X] = X \cup N(X)$. We write L(G) for the *line graph* of G. A graph G is *essentially kedge-connected* if the deletion of less than k edges leaves at most one component with more than one vertex. In this paper by *circuit* we mean a closed trail, possibly of length zero. A circuit C is *dominating* if every edge in G is incident to at least one vertex of C.

The closure cl(G) of a graph G is the minimal $(K_4 - e)$ -free graph containing G as a spanning subgraph. This notion was introduced by Ryjáček [10], who also characterized basic properties of the closure operation.

Theorem 3. Let G be a claw-free graph. Then:

- (i) cl(G) is uniquely determined by G,
- (ii) there is a (unique) triangle-free graph H such that cl(G) = L(H),
- (iii) $c(\operatorname{cl}(G)) = c(G),$
- (iv) G is hamiltonian if and only if cl(G) is hamiltonian.

A claw-free graph G is *closed*, if cl(G) = G. By (ii), all closed graphs consist of a collection of maximal cliques, each two of which share at most one vertex. A class \mathcal{P} of graphs is called *stable under* cl, if $G \in \mathcal{P}$ implies $cl(G) \in \mathcal{P}$ for every claw-free graph G. Brousek *et al.* [5] showed the following theorem.

Theorem 4. The class of $\{K_{1,3}, P_\ell\}$ -free graphs is stable under cl for any $\ell \geq 3$.

Broersma and Ryjáček [4] expanded on the closure operation and introduced the *cycle closure* of a claw-free graph G, $cl_C(G)$, as follows.

Let G be a closed claw-free graph and let C be an induced cycle of length k. We say that the cycle C is *eligible in* G if $4 \le k \le 6$ and if the k-cycle $L^{-1}(C)$ in $H = L^{-1}(G)$ contains at least k - 3 nonconsecutive vertices of degree two in H.

For an eligible cycle C in G set $B_C = \{uv \mid u, v \in N_G[C], uv \notin E(G)\}$. The graph G'_C with vertex set $V(G'_C) = V(G)$ and edge set $E(G'_C) = E(G) \cup B_C$ is called the C-completion of G at C.

Definition 1. Let G be a claw-free graph. We say that a graph H is a cycle closure of G, denoted $H = cl_C(G)$, if there is a sequence of graphs G_1, \ldots, G_t such that

- (i) $G_1 = \operatorname{cl}(G)$,
- (ii) $G_{i+1} = \operatorname{cl}((G_i)'_C)$ for some eligible cycle C in G_i , $i = 1, \ldots, t 1$,
- (iii) $G_t = H$ contains no eligible cycles.

For the cycle closure, the following is true.

Theorem 5. [4] Let G be a claw-free graph. Then

(i) $cl_C(G)$ is well defined (i.e. uniquely determined),

(ii) $c(G) = c(cl_C(G)).$

We will start by showing the following theorem about the cycle closure.

Theorem 6. The class of $\{K_{1,3}, P_\ell\}$ -free graphs is stable under cl_C for any $\ell \geq 3$.

Proof. By Theorems 4 and 5, it is sufficient to show that G'_C is P_{ℓ} -free for every $\{K_{1,3}, P_{\ell}\}$ -free graph G, and any eligible cycle C.

Suppose, to the contrary, that G'_C contains an induced P_ℓ , $P = x_1x_2...x_\ell$. Since G is P_ℓ -free and $E(G'_C) = E(G) \cup B_C$, E(P) contains at least one edge of B_C . Since $G'_C[N[C]]$ is complete, E(P) contains at most two vertices in N[C]. Thus, E(P) contains exactly one edge $e \in B_C$, say $e = x_i x_{i+1}$, and $V(P) \cap N[C] = \{x_i, x_{i+1}\}$. Take a shortest path R in G from x_i to x_{i+1} using only vertices from V(C) as internal vertices to create a path $P' = x_1 \dots x_i R x_{i+1} \dots x_\ell$. As $V(P) \cap N[C] = \{x_i, x_{i+1}\}$, P' is induced, contradicting the fact that G is P_ℓ -free. This proves the theorem.

Let G be a 3-connected claw-free graph closed under cl_C . Let $L^{-1}(G)$ be the unique line graph original, i.e. the unique graph whose line graph is identical with G, guaranteed by Theorem 3(ii). Similarly, let F be a claw-free graph closed under cl_C .

The following are well known facts about line graphs:

Fact 7. If G is a line graph, the following are true:

(i) G is k-connected if and only if $L^{-1}(G)$ is essentially k-edgeconnected.

- (ii) [8] G is hamiltonian if and only if $L^{-1}(G)$ has a dominating circuit.
- (iii) F is an induced subgraph of G if and only if $L^{-1}(F)$ is a (not necessarily induced) subgraph of $L^{-1}(G)$.

Let $\overline{L}(G)$ be the graph obtained from $L^{-1}(G)$ after deleting all vertices of degree one and after replacing all vertices of degree two by edges between their two neighbors. Let $\mathcal{M} = \mathcal{M}(\overline{L}(G)) \subseteq V(\overline{L}(G))$ be the set of vertices which were neighbors of vertices of degree less or equal two in $L^{-1}(G)$. From Fact 7, we get the following statements about $\overline{L}(G)$.

Fact 8. The following are true:

- (i) $\overline{L}(G)$ is well defined.
- (ii) $\overline{L}(G)$ is triangle-free.
- (iii) $\overline{L}(G)$ is 3-edge-connected.
- (iv) G is hamiltonian if and only if $\overline{L}(G)$ has a dominating circuit covering all vertices in \mathcal{M} .

Proof. By Fact 7(i), $L^{-1}(G)$ is essentially 3-edge-connected, therefore the vertices of degree less than 3 form an independent set in $L^{-1}(G)$, and the graph $\overline{L}(G)$ resulting from their deletion/replacement contains no vertices of degree less than three. Furthermore, there are no triangles or multiple edges in $\overline{L}(G)$ as G is closed under cl_C , and $L^{-1}(G)$ thus contains no induced k-cycles with at least k-3 vertices of degree two, where $3 \leq k \leq 6$. This establishes (i) and (ii).

Clearly, $\overline{L}(G)$ is essentially 3-edge-connected, since $L^{-1}(G)$ is essentially 3-edge-connected, and each edge cut in $\overline{L}(G)$ induces an edge cut of the same size in $L^{-1}(G)$. Again, there are no vertices of degree less than three in $\overline{L}(G)$, so this implies (iii).

Finally, it is easy to see that every dominating circuit in $L^{-1}(G)$ induces a dominating circuit covering all vertices in \mathcal{M} in $\overline{L}(G)$ and vice versa, together with Fact 7(ii) this establishes (iv).

Fact 9. If G is P_{ℓ} -free for some $\ell \geq 3$ and G is non-hamiltonian, then $\overline{L}(G)$ contains none of the following as a (not necessarily induced) subgraph:

- (i) $P_{\ell+1}$,
- (ii) $P_{\ell} = x_1 x_2 \dots x_{\ell}$ with $x_1 \in \mathcal{M}$,
- (iii) $P_{\ell-1} = x_1 x_2 \dots x_{\ell-1}$ with $x_1, x_{\ell-1} \in \mathcal{M}$.

Proof. If $\overline{L}(G)$ contains a $P_{\ell+1}$ or a $P_{\ell} = x_1 x_2 \dots x_{\ell}$ with $x_1 \in \mathcal{M}$, then $L^{-1}(G)$ contains a $P_{\ell+1}$, which contradicts the fact that G is P_{ℓ} -free by Fact 7(iii).

Thus, assume that $\overline{L}(G)$ contains a path $P_{\ell-1} = x_1 x_2 \dots x_{\ell-1}$ with $x_1, x_{\ell-1} \in \mathcal{M}$. Let v be a vertex in $N_{L^{-1}(G)}(x_1)$ with $d(v) \leq 2$, and let u be a vertex in $N_{L^{-1}(G)}(x_{\ell-1})$ with $d(u) \leq 2$. If $u \neq v$, then the path in $L^{-1}(G)$ which corresponds to $vx_1x_2 \dots x_{\ell-1}u$ contains a path of length $\ell + 1$, which, again, is not possible. Therefore, u = v, d(u) = 2 and $x_1x_2 \dots x_{\ell-1}x_1$ is a cycle in $\overline{L}(G)$. As G is not hamiltonian, $x_1x_2 \dots x_{\ell-1}x_1$ is not a dominating circuit covering \mathcal{M} in $\overline{L}(G)$ by Fact 8(iv). Thus, there is another vertex $y \in V(\overline{L}(G))$, connected to some x_k . Now the path in $L^{-1}(G)$ corresponding to $yx_k \dots x_{\ell-1}ux_1 \dots x_{k-1}$ contains a path of length $\ell + 1$, the final contradiction.

Thus, Theorem 2 will follow from Fact 9 and the following lemma.

Lemma 10. Let G be a triangle-free 3-edge-connected graph and let $\mathcal{M} \subseteq V(G)$ be a subset of its vertices. Then G contains one of the following:

- (i) a dominating circuit containing all vertices in \mathcal{M} ,
- (ii) P_{12} ,
- (iii) $P_{11} = v_1 v_2 \dots v_{11}$ with $v_1 \in \mathcal{M}$,
- (iv) $P_{10} = v_1 v_2 \dots v_{10}$ with $v_1, v_{10} \in \mathcal{M}$.

3. Graphs without long paths

In this section we prove Lemma 10. Our argument includes an elementary but laborious analysis of cases, so we start with stating a few simple facts we shall repeatedly use in this part of the paper.

Fact 11. Let $P = v_1 v_2 \dots v_\ell$ be a longest path in a connected graph G.

- (i) $N(v_1) \subseteq V(P)$. Moreover, $v_{\ell} \notin N(v_1)$ unless P is a hamiltonian path.
- (ii) If some v_i , $2 \le i \le \ell 2$, has a neighbor outside V(P), then $v_{i+1} \notin N(v_1)$.
- (iii) If $w \notin V(G) \setminus V(P)$ is adjacent to v_2 and v_j for some $2 \le i < j \le \ell 1$, then $v_{j-1} \notin N(v_1)$.

Proof. It is easy to check that if any of the conditions (i)–(iii) fails, then G contains a path longer than P.

Fact 12. Let $P = v_1 \dots v_\ell$ be a longest path in a 2-connected, 3-edgeconnected, triangle-free graph G, and let H denote the graph induced in G by $V(G) \setminus V(P)$.

(i) If $\ell \leq 10$, then $V(G) \setminus V(P)$ is an independent set.

(ii) If ℓ = 11, then all components of H which contain more than one vertex are stars, with vertices z, y₁,..., y_k, such that the neighborhood of each of vertices y_i, i = 1, 2, ..., k, consists of z, v₄, and v₈.

Proof. Suppose there exists a vertex z lying at distance two from P. Then, since G is 2-connected, there are two vertex-disjoint paths which join z with two different vertices of P, each of length at least two. Hence, for some $k \geq 3$ and $2 \leq i < j \leq \ell - 1$, there exists a path $P' = v_i w_1 \dots w_k v_j$ such that $w_1, \dots, w_k \notin V(P)$. Note that $i \geq 3$, since otherwise the path $w_k w_{k-1} \dots w_1 v_i v_{i+1} \dots v_\ell$ is longer than P. Similarly, $j \leq \ell - 3$. But then the path $v_1 \dots v_i w_1 \dots w_k v_j \dots v_\ell$ is longer than P unless k = 3 and $\ell = 11$. Hence, if a vertex z lies at distance two from P, then $\ell = 11$ and all paths from z to P have length two and join z with one of the vertices v_4 , v_8 . All other vertices are within distance one from P.

Let F be a component of H. If it contains a vertex which lies at distance two from P, then, as we have just proved, it must be a star of the type described above. Thus, let us assume that all vertices of F have at least one neighbor on P. Note also that F cannot contain a cycle. Indeed, since G is triangle-free, such a cycle would have at least four vertices; this would imply that two different vertices of P are connected by an "external" path P' of length at least five, which, as we have seen above, is impossible. Thus, since the minimum degree of G is three, at least two vertices of F, say, x and y, have at least two neighbors each on P. Furthermore, if x and y are not adjacent, one can argue as above that F must be a star of the type described in (ii), so we may assume that xy is an edge of G. Let W denote the set of the vertices of P which are adjacent to one of the vertices x and y. Since G is triangle-free the neighborhoods of x and y are disjoint, and so $|W| \geq 4$. Note also that no two vertices of W are consecutive vertices of P, and neighbors of x and y must lie at distance at least three on P, since this will lead to a longer path. Thus, at least one of the vertices v_2 and $v_{\ell-1}$ must belong to W, say, v_2 is adjacent to x. But then the path $yxv_2v_3...v_\ell$ is longer than P, contradicting the choice of P.

We call a graph G super-eulerian if it contains a circuit which goes through every vertex of G, i.e., if it has a spanning Eulerian subgraph. The following two facts are easy consequences of the above definition.

Fact 13. Let G be a complete bipartite graph with bipartition (V_1, V_2) , where $|V_1| = 3$ and $|V_2| = k$. Then, if $k \ge 2$, G contains a circuit which covers all vertices of V_2 . Moreover, if $k \ge 3$, then for every two

different vertices $v, v' \in V_1$ there is a trail in G which starts at v, ends in v', and covers every vertex of G.

Fact 14. Let H_1, \ldots, H_m be edge-disjoint subgraphs of a graph G, and let F denote the graph with vertices H_1, \ldots, H_m in which two vertices H_i , H_j are adjacent if and only if $V(H_i) \cap V(H_j) \neq \emptyset$. If each H_i , $i = 1, \ldots, m$, is super-eulerian, $V(G) = \bigcup_i V(H_i)$, and F is connected, then G is super-eulerian.

In particular, if each block of a connected graph G is super-eulerian, then G is super-eulerian as well. $\hfill \Box$

We shall also use the following result of Favaron and Fraisse [7], which is a consequence of the nine-point theorem by Holton *et al.* [9].

Lemma 15. If a graph G is 3-edge-connected, then for every nine vertices of G there is a circuit going through all these vertices.

In particular, each 3-edge-connected graph on at most nine vertices is super-eulerian.

Before we prove Lemma 10 we show the following lemma.

Lemma 16. Every triangle-free 3-edge-connected graph which does not contain a P_{10} as a subgraph is super-eulerian.

Proof. Let G be a triangle-free 3-edge-connected graph without a P_{10} . From Fact 14 and Lemma 15 it follows that we may assume that G is a 2-connected graph on at least ten vertices. Let $P = v_1 \dots v_\ell$, $\ell \leq 9$, denote a longest path in G. Fact 12 implies that all vertices $x \in V(G) \setminus V(P)$ have at least three neighbors on P. Note that since G has at least ten vertices the set $V(G) \setminus V(P)$ is non-empty.

Since G is triangle-free, and v_1, v_ℓ have no neighbors outside P (Fact 11(i)), we must have $\ell \geq 7$. Let us first consider the case $\ell = 7, 8$. Let $x \in V(G) \setminus V(P)$ and $v_i, v_j, v_k, 2 \leq i < i+1 < j < j+1 < k \leq \ell-1$ be neighbors of x on P. It is easy to check using Fact 11 that then the only three neighbors of v_1 on P are v_2, v_j and v_k , and v_ℓ can be adjacent only to v_i, v_j and $v_{\ell-1}$. Consequently, all vertices in $V(G) \setminus V(P)$ must have the same neighborhood v_i, v_j and v_k . Since $|V(G) \setminus V(P)| \geq 2$, G contains a circuit K which covers all vertices of $V(G) \setminus V(P)$ and uses no edges joining two vertices of P (see Fact 13 above). Note also that the circuit $K' = v_1 v_2 \dots v_\ell v_j v_1$ contains all vertices of P. Combining K and K' we get a circuit which goes through all vertices of G, and so G is super-eulerian.

Now suppose that $\ell = 9$. Then we split all vertices of $V(G) \setminus V(P)$ into two sets, S_1 and S_2 . The set S_1 consists of all the vertices which are adjacent to at least one of the "odd" vertices v_3 , v_5 , v_7 , while $S_2 = V(G) \setminus (V(P) \cup S_1)$. It is easy to verify that for any vertex $x \in S_1$ which has neighbors $v_i, v_j, v_k, i < j < k, v_1$ is adjacent to v_k, v_9 must be adjacent to v_i , and at least one of the vertices v_1 and v_9 is adjacent to v_j . If $x \in S_2$, then we claim only that v_1 is adjacent to at least two of the vertices v_4, v_6 and v_8 , and at least two of the vertices v_2, v_4, v_6 are neighbors of v_ℓ . Note however, that the above observation implies that one of the sets S_1, S_2 is empty. Hence, let us consider the two following cases.

Case 1. $S_2 = \emptyset$.

As we have already observed each $x \in S_1$ determines uniquely if v_1 is adjacent to v_7 or v_8 , and if v_9 is adjacent to v_2 or v_3 . Thus, there are two vertices $v_i, v_k \in V(P)$ such that for every $x \in S_1$, v_i is adjacent to x and v_9 , while v_k is a neighbor of both x and v_1 .

Consider first the case that $|S_1| = |V(G) \setminus V(P)|$ is odd. Then, we can cover all but one element of S_1 , say x, by a circuit K which contains no edges with both ends in V(P) (Fact 13). Combining Kwith $v_1v_2\ldots v_9v_ixv_jv_1$ proves that G is super-eulerian (Fact 14).

If $|S_1|$ is even, then again we apply Fact 13 to find a circuit which contains all but two, say x, x', vertices of S_1 , and uses only edges incident to S_1 . Now it is enough to find a circuit K on vertices $V(P) \cup$ $\{x, x'\}$. Assume that x has neighbors v_i , v_j and v_k , i < j < k, and v_j is adjacent to, say, v_1 . Then $K = v_1 \dots v_9 v_i x' v_k x v_j v_1$.

Case 2. $S_1 = \emptyset$.

As before our aim is to show that one can cover all vertices of G by a number of edge-disjoint circuits (note that each circuit must contain at least two vertices from V(P)).

Let us partition S_2 into sets S'_2 and S''_2 , where S'_2 consists of all vertices which are adjacent to both vertices v_4 and v_6 , while $S''_2 = S \setminus S'_2$. We show first that for every $x \in S_2$ there exists a circuit with vertex set $V(P) \cup \{x\}$. Let us consider two subcases.

Case 2a. $x \in S'_2$.

One can verify using Fact 11 that there are two neighbors $v', v'' \in V(P)$ of x such that v_1 is adjacent to v' and v_9 is adjacent to v''. Hence $v_1v_2 \ldots v_9v''xv'v_1$ is a circuit we are looking for.

Case 2b. $x \in S_2''$.

Let us assume that x is adjacent to v_2 , v_4 and v_8 (the symmetric case in which x is adjacent to v_2 , v_6 and v_8 can be dealt with in a similar way). If there are two neighbors v' and v'' of x such that v_1 is adjacent to v' and v_9 is adjacent to v'' we can proceed as in the previous case. Thus, assume that it is not the case. Then both vertices v_1 and v_9 are adjacent to both v_4 and v_6 . Hence $v_1v_6v_7v_8xv_2\ldots v_6v_9v_4v_1$ is a circuit we are looking for.

Now suppose $|S_2| = |V(G) \setminus V(P)| \ge 2$. Each two vertices x, y, from S_2 share at least two neighbors, hence, they lie on a cycle of length four. Consequently, if $|S_2|$ is odd, then we can cover all but one vertex (say, x) of S_2 by edge-disjoint cycles and combine them with a circuit with vertex set $V(P) \cup \{x\}$ to show that G is super-eulerian. An analogous argument can be used to prove that G is super-eulerian if $|S_2|$ is even and the vertices v_1 and v_9 have a common neighbor on P. Thus, let us assume that $|S_2| \geq 2$ is even and the vertices v_1 and v_9 share no neighbors. We cover all but two, say x_1 , x_2 , vertices of S_2 by edgedisjoint cycles of length four. Then it is easy to see that among the vertices v_2 , v_4 , v_6 and v_8 we find three, say v', v'', and v''', such that for some $\alpha \in \{1, 2\}$, v' is adjacent to both v_1 and x_{α} , v'' is adjacent to both x_1 and x_2 , and v''' is adjacent to both $x_{3-\alpha}$ and v_9 . Then, the circuit $v_1v_2\ldots v_9v'''x_{3-\alpha}v''x_{\alpha}v'v_1$ covers all vertices from $V(P)\cup\{x_1,x_2\}$, and so G is super-eulerian. \square

Proof of Lemma 10. Let G be a 3-edge-connected graph such that the vertex set of G is partitioned into two classes: the set \mathcal{M} (the major vertices) and the set $V(G) \setminus \mathcal{M}$ (the minor vertices). Let ℓ be the number of vertices in a longest path in G and let $P = v_1 \dots v_\ell$ denote a longest path for which the set $\{v_1, v_\ell\}$ contains the maximum number of major vertices. We show that if either

• $\ell \leq 10$ and at least one of the vertices v_1, v_ℓ is minor,

• $\ell = 11$ and both vertices v_1, v_ℓ are minor,

or

then there exists a dominating circuit K which contains all major vertices of G.

Note that we may assume that G is 2-connected (Fact 14) and $\ell \geq 10$ (Lemma 16).

Case 1. $\ell = 10$ and at least one of the vertices v_1 , v_{10} , say v_1 , is minor.

Note first that Lemma 15 implies that there is a circuit K covering the vertices $\{v_2, \ldots, v_9\}$. Since it follows from Fact 11(i) and Fact 12 that the set $V(G) \setminus \{v_2, \ldots, v_{10}\}$ is independent, either $V(G) \setminus V(K)$ is an independent set which consists of minor vertices and we are done, or the set S of all major vertices in $V(G) \setminus V(P)$ is non-empty. Since the minimum degree of G is three, each vertex $x \in S$ is adjacent to at least three vertices on P. Note however, that x is not adjacent to v_2 since otherwise the path $xv_2v_3...v_{10}$ has the same length but more major ends than P. Furthermore, if v_i is a neighbor of x, not only v_{i+1} is not adjacent to v_1 (see Fact 11(iii)) but v_{i+2} is not a neighbor of v_1 either. Indeed, in this case P can be replaced by a path $xv_iv_{i-1}...v_1v_{i+2}v_{i+3}...v_{10}$ which starts at the major vertex x. Finally, if x is adjacent to $v_{\ell-1} = v_9$, then v_2 cannot be a neighbor of $v_{\ell} = v_{10}$, since otherwise the path $v_{10}v_2v_3...v_9x$ has one more major end than P.

There are ten possible ways of choosing three neighbors of x among the vertices v_3, v_4, \ldots, v_9 in such a way that none of them are consecutive. However, using Fact 11 and the observations mentioned above, one can check by a direct inspection that in seven of these cases connecting the vertex v_1 with two vertices in $\{v_4, \ldots, v_9\}$ immediately leads either to a longer path, or to a path of the same length as P but with more major ends. The three remaining cases are as follows:

- x is adjacent to v_3 , v_7 and v_9 . This forces v_1 to be adjacent to v_7 and v_9 , while v_{10} is adjacent to v_3 and v_7 .
- x is adjacent to v_4 , v_6 and v_9 . Then v_1 is adjacent to v_4 and v_9 , while v_4 and v_6 are neighbors of v_{10} .
- x is adjacent to v_4 , v_7 and v_9 . Then v_4 and v_7 are neighbors of v_1 , while v_{10} is adjacent to v_4 and v_7 .

Furthermore, in all the cases, the degree of both v_1 and v_{10} is three. Thus, since in each of the above cases v_1 has a different neighborhood, all vertices of S must have the same neighbors on P.

Suppose that $|S| \geq 2$. Then, Fact 13 implies the existence of a circuit K which uses only edges incident to S and covers all vertices of S. Moreover, v_1 and v_{10} have a common neighbor $v' \in V(P)$, so all vertices of P lie at the circuit $K' = v_1 \dots v_{10} v' v_1$. Combining K and K' we obtain a dominating circuit which contains all major vertices of G.

Now suppose that $S = \{x\}$. Then, from the description of the three cases we deal with, we infer that x has two different neighbors on P, say v' and v'', such that v' is adjacent to v_1 , while v'' is a neighbor of v_{10} . Hence the circuit $v_1 \ldots v_{10}v''xv'v_1$ contains all major vertices of G and, since it contains all vertices of P, is dominating in G.

Case 2. $\ell = 11$ and both vertices v_1, v_{11} , are minor.

It follows from Lemma 15 that G contains a circuit K which goes through all the vertices v_2, \ldots, v_{10} . Observe that without loss of generality we may assume that K contains all vertices of G which belong to non-trivial components of the graph H induced by $V(G) \setminus V(P)$. Indeed, it is enough to note that a graph induced by such a component and the vertices v_4 and v_8 contains both a spanning circuit as well as a spanning trail which starts at v_4 and ends at v_8 (Fact 14), which is easy to see with Fact 12(ii) (with the notation from Fact 12(ii), $v_4y_1zy_2v_4y_3v_8y_4v_4...$ and $v_4y_1zy_2v_8y_3v_4y_4v_8...$ would be a spanning trail and a spanning circuit, respectively). Thus, the set S of all major vertices of G which have at least three neighbors on P must be nonempty; otherwise K would be a dominating circuit which contains all major vertices.

Similarly as in the previous case one needs to examine all possible neighborhoods of $x \in S$, but now we can make use of the fact that both v_1 and v_{11} are minor so, for instance, no vertex from S is adjacent to v_{10} . It turns out that inspecting all possible candidates for neighbors of v_1 and v_{11} one can eliminate all but one case and infer that all vertices $x \in S$ must be adjacent to v_3 , v_6 and v_9 . This, in turn, forces v_1 to be adjacent to v_6 and v_9 , and v_{11} to have v_4 and v_6 as its neighbors. But then the argument identical to that given in Case 1 shows that there exists in G a dominating circuit K which contains all major vertices. This completes the proof of Case 2 and Lemma 10.

4. A non-hamiltonian 3-connected P_{12} -free claw-free graph

We conclude the paper by giving an example of a graph F which is claw-free and contains no induced copy of P_{12} , yet it is not hamiltonian, which shows that Theorem 2 is, in a way, best possible.

Let H be the graph obtained from the Petersen graph by attaching a pendant edge to each of its vertices. Let F = L(H).

Fact 17. The graph F is claw-free, 3-connected and non-hamiltonian. Moreover, it contains no induced copy of P_{12} .

Proof. Clearly, F is claw-free like every line graph. Furthermore, F is 3-connected since H is essentially 3-edge-connected. As the Petersen graph is 3-regular, a dominating circuit of H would be in fact a dominating cycle. Since the Petersen graph is non-hamiltonian, such a cycle can not exist, and thus, F is non-hamiltonian by Fact 7(ii).

Moreover, H does not contain P_{13} as a subgraph, and therefore, F contains no induced copy of P_{12} by Fact 7(iii).

Finally we remark that in the construction of H one can add more pendant edges to each of the ten vertices of the Petersen graph without making the graph F = L(H) hamiltonian or creating any induced $K_{1,3}$ or P_{12} 's in F. Therefore, there are non-hamiltonian 3-connected $\{K_{1,3}, P_{12}\}$ -free graphs on n vertices for every $n \geq 25$. Acknowledgments: We wish to thank the referees for their comments and suggestions.

References

- 1. P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity, Thesis, Memphis State University, USA, 1991.
- 2. B. Bollobás, "Modern Graph Theory," Springer Verlag, New York, 1998.
- H.J. Broersma, H.J. Veldman, Restrictions on induced subgraphs ensuring Hamiltonicity or pancyclicity of K_{1,3}-free graphs. In: "Contemporary Methods in Graph Theory" (R. Bodendiek, ed.), BI-Wiss.-Verlag, Mannheim, 1990, 181–194.
- H.J. Broersma, Z. Ryjáček, Strengthening the closure concept in claw-free graphs, Discrete Math., 223 (2001), 55–63.
- J. Brousek, Z. Ryjáček, O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graphs, Discrete Math., 196 (1999), 29–50.
- R.J. Faudree, R.J. Gould, Characterizing forbidden pairs for hamiltonian properties, Discrete Math. 173 (1997), 45–60.
- O. Favaron, P. Fraisse, Hamiltonicity and minimum degree in 3-connected clawfree graphs, J. Combin. Theory Ser. B, 82 (2001), 297–305.
- F. Harary, C.St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull., 8 (1965), 701–710.
- D.A. Holton, B.D. McKay, M.D. Plummer, C. Thomassen, A nine point theorem for 3-connected graphs, Combinatorica 2 (1982), 53–62.
- Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory, Ser. B 70 (1997), 217–224.

DEPARTMENT OF DISCRETE MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY, 61-614 POZNAŃ, POLAND

AND

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

E-mail address: <tomasz@amu.edu.pl>

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVER-SITY, ATLANTA, GA 30322

E-mail address: <fpfende@mathcs.emory.edu>