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Abstract. We characterize all pairs of connected graphs {X, Y }
such that each 3-connected {X, Y }-free graph is pancyclic. In par-
ticular, we show that if each of the graphs in such a pair {X, Y }
has at least four vertices, then one of them is the claw K1,3, while
the other is a subgraph of one of six specified graphs.

1. Introduction

A graph G on n vertices is pancyclic if for each k, 3 ≤ k ≤ n, a
cycle of length k can be found in G. We say that G is {H1, . . . , H`}-
free, if it contains no induced copies of any of the graphs H1, . . . , H`.
For all terms not defined here we refer the reader to [1]. The problem
of characterizing all families of H1, . . . , H` such that each “sufficiently
connected” {H1, . . . , H`}-free graph is pancyclic has been studied by
a number of authors. In particular, the family of all pairs of graphs
X,Y , such that each 2-connected {X, Y }-free graph G 6= Cn on n ≥ 10
vertices is pancyclic, has been characterized by Faudree and Gould
in [2] (we refer the reader to this paper for further references to this
problem). In this paper we characterize all graphs X,Y such that each
3-connected {X, Y }-free graph is pancyclic.

For any graph H, let S(H) be the graph obtained from H through
subdivision of every edge. Let L(H) be the line graph of H.

Let G0 = L(S(K4)). Let G1 be the graph obtained from G0 by
contraction of the two edges x1x2, x3x4 ∈ E(G0), where the edges x1x2

and x3x4 are selected in a way that N(xi)∩N(xj) = ∅ for 1 ≤ i < j ≤ 4
(see Figure 2). It is not hard to see that both G0 and G1 are 3-
connected claw-free graphs. Furthermore, neither of them contains a
cycle of length four.

Let S3(K4) be the graph obtained from K4 by a subdivision of each
edge by three vertices of degree 2. Let H be the multigraph obtained
from S3(K4) by doubling each edge of S3(K4) incident with a vertex

1991 Mathematics Subject Classification. 05C38.
Key words and phrases. pancyclic graphs, claw-free graphs, forbidden subgraph.

1



2 R.J.GOULD, T. LUCZAK, AND F.PFENDER

of degree 3. Finally, let G2 = L(H). Alternatively, one can obtain G2

through a replacement of each triangle of G0 by the 9-vertex graph T
pictured in Figure 1. Again, it is easy to see that G2 is 3-connected,
claw-free, and it contains no cycle of length 10 ≤ ` ≤ 11. Further, G2

contains no induced cycles of length 4 ≤ ` ≤ 9.

Figure 1. The graph T

By G3 we denote the graph consisting of a Kn−4 (n ≥ 7) and four
extra vertices x1, x2, x3, x4 with N(x1) = N(x2) = N(x3) = N(x4)
and |N(x1)| = 3 (see Figure 2). Clearly, G3 is 3-connected and not
hamiltonian (and thus not pancyclic). Finally, G4 is the point-line
incidence graph of a projective plane of order seven, i.e., the vertices
of G4 correspond to the points and the lines of the plane, and two of
them, v and w, are adjacent if v stands for a point and w for a line
containing it. It is easy to check that G4 is 3-connected, has girth six,
and is thus not pancyclic.

Theorem 1. For every connected graph X, X 6∈ {K1, K2}, the follow-
ing two statements are equivalent:

(i) each X-free 3-connected graph G is pancyclic;
(ii) X = P3.

Proof. Any P3-free connected graph is complete and therefore pan-
cyclic. Thus, it is enough to show that (i) implies (ii).

As K3,3 and the graph G1 are not pancyclic, an induced copy of X
must be contained in both K3,3 and G1. As G1 does not contain a copy
of C4, X cannot contain a copy of C4. As any induced subgraph of
K3,3 with diameter greater than two contains C4, we know that X is a
star K1,r. As there are no induced copies of K1,r with r ≥ 3 in G1, we
infer that X = P3. �
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Figure 2. 3-connected non-pancyclic graphs

Lemma 2. Let X and Y be connected graphs on at least three vertices
and X, Y 6= P3. If each {X,Y }-free 3-connected graph is pancyclic,
then one of X, Y is K1,3.

Proof. Suppose that X, Y 6= K1,3. As K3,3 is not pancyclic, one of
X and Y has to be an induced subgraph of K3,3. Without loss of
generality we may assume that X is an induced subgraph of K3,3. As
X is not K1,3 or P3, X contains C4.

As C4 is not a subgraph of G4, Y is an induced subgraph of G4,
and thus Y has girth at least six and maximum degree at most three.
Furthermore, G3 contains no induced copies of C4, so Y has to be an
induced subgraph of G3. But the only induced subgraphs of G3 with
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girth larger than three and maximum degree at most three are K1,3

and its subgraphs. This proves the lemma. �

Finally, each connected graph F which appears as an induced sub-
graph of all of G0, G1 and G2, and is not contained in the claw K1,3,
is a subgraph of one of the following six subgraphs:

• P7, the path on seven vertices,
•  L, the graph which consists of two vertex-disjoint copies of K3

and an edge joining them;
• N4,0,0, N3,1,0, N2,2,0, N2,1,1, where Ni,j,k is the graph which con-

sists of K3 and vertex disjoint paths of length i, j, k rooted at
its vertices.

To see this, observe first that F has at most |V (G1)| = 10 vertices,
and F cannot contain an induced cycle of length greater than 3 since
F needs to be contained in G2. If F contains at most one triangle, G1

can be used to limit the possibilities to the graphs mentioned above.
Further, if F contains more than one triangle, there are exactly two
triangles, and they are at distance one from each other due to G0.
Finally, at most one vertex in each of the two triangles can have degree
greater than 2; otherwise, such a triangle in an induced copy of F in G2

has to be located in one of the K6’s in the center of one of the copies
of T , but there is no other triangle in G2 with distance 1 to such a
triangle.

Let F denote the family which consists of the above six graphs (see
Figure 3).

As we have already deduced from the properties of graphs G0, G1

and G2, if each 3-connected {K1,3, Y }-free graph is pancyclic, then Y
is a subgraph of one of the graphs listed above. Our main result states
that the inverse implication holds as well.

Theorem 3. Let X and Y be connected graphs on at least three vertices
such that X, Y 6= P3 and Y 6= K1,3. Then the following statements are
equivalent:

(i) Every 3-connected {X, Y }-free graph G is pancyclic.
(ii) X = K1,3 and Y is a subgraph of one of the graphs from the

family F = {P7,  L, N4,0,0, N3,1,0, N2,2,0, N2,1,1}.

Since (i) implies (ii), it is enough to show that for each graph Y from
F and each 3-connected {K1,3, Y }-free graph G, G is pancyclic. Hence,
the proof of Theorem 3 consists, in fact, of six statements, one for each
graph from F , which we show in the following sections of the paper.

In the proofs, for a cycle C we always distinguish one of the two
possible orientation of C. By v− and v+ we denote the predecessor
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Figure 3. The family F

and the successor of a vertex v on such a cycle, with respect to the
orientation. We write vCw for the path from v ∈ V (C) to w ∈ V (C),
following the direction of C, and by vC−w we denote the path from
v to w opposite to the direction of C. By 〈x1, . . . , xk〉 we mean the
subgraph induced in G by vertices x1, . . . , xk.

2. Forbidding  L

In this section we make the first step towards proving Theorem 3:
we show the fact that each 3-connected claw-free graph which contains
no induced copy of  L is pancyclic.

Theorem 4. Every 3-connected {K1,3,  L}-free graph is pancyclic.

Proof. Suppose that G is a minimal counterexample to the above state-
ment, and that G contains a cycle C of length t but no cycles of
length t + 1 (the existence of triangles is obvious). Let H be a com-
ponent of G − C. Note that for every vertex x ∈ N(H) ∩ V (C) and
v ∈ N(x) ∩ V (H), we have that vx−, vx+ 6∈ E, and thus x−x+ ∈ E to
avoid a claw.

Claim 1. No vertex from H has more than two neighbors on C.

Proof. Suppose there is a vertex v ∈ V (H) with x, y, z ∈ N(v) ∩
V (C). As 〈v, x, y, z〉 is not a claw, there is an extra edge, say xy ∈ E.
As 〈v, x, y, z, z−, z+〉 is not  L, there is an extra edge between two of
these vertices. We have yz+ 6∈ E, otherwise yz+Cy−y+Czvy is a cycle
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of length t + 1, a contradiction. A similar argument shows that none
of the pairs yz−, xz−, xz+, is an edge of G.

Therefore, either yz ∈ E, or xz ∈ E. If xz 6∈ E, then 〈y, x, z, y+〉
is a claw, thus xz ∈ E. Similarly, yz ∈ E, and so, by the previous
argument xy±, x±y, x±z, y±z /∈ E. Furthermore x+y+ 6∈ E, since
otherwise x+y+CxvyC−x+ is a cycle of length t + 1, contradicting the
choice of G. Similarly, x−y− 6∈ E.

As 〈x, x−, x+, y, y−, y+〉 is not  L, either x+y− ∈ E, or x−y+ ∈ E. By
symmetry we may assume x+y− ∈ E. Now x++y 6∈ E, since otherwise
the cycle yx++Cy−y+Cx−x+xvy has length t+1, while Ct+1 6⊆ G. The
edge x++v would lead to the cycle vx++Cx−x+xv, thus x++v 6∈ E.
Finally, x++z 6∈ E to avoid the cycle x−xzvx++Cz−z+Cx−.

Note that x++y− 6∈ E, since otherwise 〈x+, x++, y−, y, v, z〉 is  L.
To avoid the claw 〈x+, x, x++, y−〉, we have xx++ ∈ E. To avoid
the claw 〈x, x++, x−, v〉, we have x++x− ∈ E. But now the cycle
x−x++Cy−x+xvyCx− has length t+1 (see Figure 4), the contradiction
establishing the claim. 3

x
y

z

v

y+

Figure 4

Claim 2. Let x, y ∈ V (C) ∩ N(H). Then xy ∈ E if and only if
N(x) ∩N(y) ∩ V (H) 6= ∅.

Proof. For one direction, suppose z ∈ N(x) ∩ N(y) ∩ V (H). Let P
be a shortest path from z to C in G−{x, y}. Let v be the first internal
vertex on this path. By Claim 1, v 6∈ V (C). If v ∈ N(x) ∩N(y), start
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over with z′ = v and P ′ = P − x. So assume that v 6∈ N(x) ∩ N(y),
say vx 6∈ E. If vy 6∈ E, then xy ∈ E to avoid a claw, and we are done.
Assume that xy 6∈ E, and thus vy ∈ E. We know that vx−, vx+ 6∈ E,
otherwise we can expand C by including vertices v and z and omitting
y to get a cycle of length t+1. Moreover, yx−, yx+ 6∈ E, since otherwise
we can replace y−yy+ by y−y+, and insert y and z between x and x+

or between x− and x, respectively, to increase the length of the cycle
by one. But now 〈z, y, v, x, x−, x+〉 is  L, a contradiction.

For the other direction, let P be a shortest x–y path through H not
using xy. By symmetry, we may assume that y 6= x+. Let x1 be the
successor of x on P , let y1 be the predecessor of y on P . If x1 = y1

we are done, so let x1 6= y1. To avoid the claw 〈x, x+, x1, y〉, x+y ∈ E.
If x1y1 ∈ E, then we can extend C through xx1y1yx+ and skip y and
another vertex in N(H)∩V (C) to get a cycle of length t+1. So assume
x1y1 6∈ E.

Let x2 be another neighbor of x1 not on P , and let y2 denote another
neighbor of y1 not on P . We know that N(x2) ∩ {x−, x+} = N(y2) ∩
{y−, y+} = ∅, as otherwise a cycle of length t + 1 can be found. Now
xx2, yy2 ∈ E to avoid claws and  L’s around x1 and y1. If x2, y2 ∈ V (H)
we get the  L = 〈x, x1, x2, y, y1, y2〉, as P is shortest. Thus, we may
assume that x2 ∈ V (C), and N(x2) ∩ {y, y1, y2} 6= ∅. By the first part
of the claim this implies that x2y ∈ E or x2y2 ∈ E and y2 ∈ V (C).

If x2y ∈ E, then the cycle xx1x2yx+Cx−2 x+
2 Cy−y+Cx has length t+1

(see Figure 5).
If x2y2 ∈ E and y2 ∈ V (C), and x2y2 6∈ E(C), then the cycle

xx1x2y2yx+Cx−2 x+
2 Cy−2 y+

2 Cy−y+Cx has length t + 1.
Finally, if x2y2 ∈ E(C), say y2 = x+

2 , then x−2 y+
2 ∈ E to avoid the

claw 〈x2, x1, x
−
2 , y+

2 〉. But now the cycle

xx1x2y2yx+C(x2)
−(y2)

+Cy−y+Cx

has length t + 1. 3

Note that, as a consequence of Claim 2, N(H) does not include two
consecutive vertices on C.

Claim 3. If x, y ∈ N(H) ∩ V (C) and xy ∈ E, then xy−, xy+ 6∈ E.

Proof. Suppose xy− ∈ E. By Claim 2, there is a vertex z ∈ N(x) ∩
N(y) ∩ V (H). Now the cycle xzyCx−x+Cy−x has length t + 1, a
contradiction. The symmetric case xy+ ∈ E can be treated in the
same way. 3

Claim 4. If x, y, z ∈ N(H) ∩ V (C) and xz, yz ∈ E, then xy ∈ E.

Proof. Otherwise, 〈z, z+, x, y〉 is a claw by Claim 3. 3
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Figure 5

Claim 5. 〈N(H) ∩ V (C)〉 is complete.

Proof. Suppose the claim is false. Then there are two vertices x, y ∈
N(H) ∩ V (C) with xy 6∈ E. Let P be a shortest x–y path through H.
We may assume that x and y were chosen such that P is shortest. Let
P = v0(= x)v1 . . . vk−1vk(= y). By Claim 2, k + 1 = |V (P )| ≥ 4. Let
R = R(P ) be a shortest path in G − {v0, v2} from v1 to C. We may
assume that P is chosen such that R is shortest.

Suppose that k = 3. Suppose there is a vertex z ∈ N(v1) ∩ N(v2).
Then, one of the pairs xz, yz is not an edge, otherwise, either z ∈ V (C)
and xy ∈ E by Claim 4, or z 6∈ V (C) and xy ∈ E by Claim 2. Say
xz 6∈ E. By Claim 2, z 6∈ V (C). But now we can find a copy of  L at
〈v1, v2, z, x, x+, x−〉, a contradiction showing that N(v1) ∩N(v2) = ∅.

Let z1 be the first vertex on R following v1 and let z2 ∈ N(v2)\V (P ).
To avoid claws, xz1, yz2 ∈ E. If one of the pairs yz1, xz2 is an edge, then
Claim 2 and Claim 4 imply that xy ∈ E, a contradiction. Furthermore,
z1z2 6∈ E, for otherwise P ′ = xz1z2y would allow a shorter R. But now
〈z1, v1, x, z2, v2, y〉 is a copy of  L, a contradiction showing that k > 3.

Just like above, let z1 be the first vertex on R following v1 and let
z2 ∈ N(v2) \ V (P ). If z2 ∈ V (C), then xz2, yz2 ∈ E as P is shortest,
implying that xy ∈ E by Claim 4. Thus, z2 6∈ V (C). If v1z2 ∈ E,
then xz2 ∈ E to avoid a copy of  L at 〈v1, v2, z2, x, x+, x−〉. By the same
argument, if v2z1 ∈ E, then z1 6∈ V (C) and xz1 ∈ E. But, as before,
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this is impossible since R is shortest. Thus, v2z1 6∈ E and xz1 ∈ E to
avoid the claw 〈v1, v2, x, z1〉.

If v1z2 6∈ E, then v3z2 ∈ E to avoid the claw 〈v2, v1, v3, z2〉. If
z1 ∈ V (C), then z1z2 6∈ E, otherwise yz1 ∈ E as P is shortest, and
thus xy ∈ E by Claim 4. If z1 6∈ V (C), then z1z2 6∈ E as R is shortest.
But now 〈v2, v3, z2, v1, x, z1〉 is a copy of  L. Thus, v1z2, xz2 ∈ E.

Let z3 ∈ N(v3) \ V (P ). If xz3 ∈ E, then z3 ∈ V (C) as P is shortest.
But then yz3 ∈ E as z3v3v4 . . . vk is shorter than P , and so xy ∈ E
by Claim 4. Thus, xz3 6∈ E. If v2z3 ∈ E, then xz3 ∈ E by the above
argument, a contradiction. Thus, v2z3 6∈ E, and therefore v4z3 ∈ E
to avoid the claw 〈v3, v2, v4, z3〉. Moreover, z2z3 6∈ E, since otherwise
〈z2, v2, x, z3〉 is a claw. But now, 〈v2, v1, z2, v3, v4, z3〉 is a copy of  L, the
final contradiction establishing the claim. 3

Now we are ready to complete the proof of the theorem. By Claim 1,
|V (H)| ≥ 2. Contract H to a single vertex h in the new graph G′. As
〈N(H) ∩ V (C)〉 is complete by Claim 5, G′ is 3-connected and claw-
free. Since N(h) induces a complete graph G′ contains no copies of
 L involving h as one of the center vertices. If there was  L with h
as a corner vertex of a triangle xyh, there would be  L in G with the
triangle xyz, where z is a vertex in N(x)∩N(y)∩V (H) whose existence
is guaranteed by Claim 2. Consequently, G′ is a 3-connected {K1,3,  L}-
free graph smaller than G. Thus, G′ is pancyclic and contains a cycle
C ′ of length t + 1. If h 6∈ V (C ′), then C ′ is a cycle of length t + 1
contained in G. If h appears on C ′ between x and y, replace it with
z ∈ N(x)∩N(y)∩V (H) from Claim 2, again forming a cycle of length
t + 1, a contradiction proving the theorem. �

3. Forbidding N2,2,1

In this section we deal with 3-connected claw-free graphs, which
contain no induced copy of the graph N2,2,1, a common supergraph of
both N2,2,0 and N2,1,1.

Here and below a hop is a chord of a cycle C of type vv++.

Lemma 5. Let G be a claw-free graph with minimum degree δ(G) ≥ 3,
and let C be a cycle of length t without hops, for some t ≥ 5. Set

X = {v ∈ V (C) | there is no chord incident to v},
and suppose for some chord xy of C we have |X ∩ V (xCy)| ≤ 2. Then
G contains cycles C ′ and C ′′ of lengths t− 1 and t− 2, respectively.

Proof. Let us choose a chord xy such that |X ∩ V (xCy)| is mini-
mal, and among those such that |V (xCy)| is minimal. Consider the
cycle C̄ = xyCx. As C has no hops, |V (C̄)| ≤ t − 2. A vertex
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v ∈ V (x+Cy−) \ X has a neighbor w ∈ V (y+Cx−) as |V (xCy)| is
minimal. To avoid the claw 〈w, w+, w−, v〉, one of the edges vw+, vw−

appears in G, thus v can be inserted into C̄, i.e., C̄ can be extended to
the cycle xyCwvw+Cx or xyCw−vwCx. This way we can append all
the vertices from V (x+Cy−) \ X to C̄ one-by-one. The only possible
problem in this process occurs if we want to insert a second vertex
v′ ∈ V (x+Cy−) \X at the same spot. But as G is claw-free and there
are no chords inside x+Cy−, 〈N(w) ∩ V (x+Cy−)〉 consists of at most
two complete subgraphs of size at most two each, where one of them is
a subset of N(w) ∩ N(w+), the other one a subset of N(w) ∩ N(w−).
Therefore, we can insert any number of vertices in N(w) ∩ V (x+Cy−)
into C̄. So we conclude that we can transfer any number of vertices
from V (x+Cy−) \X into C̄.

As |X ∩ V (xCy)| ≤ 2, we can build in this way a cycle C ′′ of length
t − 2. Using this procedure we can also construct a cycle of length
t − 1 unless |X ∩ V (xCy)| = 2. But then |X ∩ V (yCx)| ≥ 2 by the
minimality of |X ∩ V (xCy)|, and we can extend C ′′ through a vertex
z′ ∈ N(z)\V (C), where z ∈ X∩V (yCx) (observe that one of z′z+, z′z−

is an edge to avoid a claw at z, and no vertex of V (xCy) was inserted
next to z as z is not an end of a chord). �

Fact 6. Let G be a 3-connected claw-free graph which contains no cycles
of length t, for some 4 ≤ t ≤ n. Let C be a cycle of length t − 1 in G
and x ∈ V (G) \ V (C) be adjacent to vertices v, w ∈ V (C), which are
themselves adjacent in G. Then, G contains an induced copy of N2,2,1.

Proof. Let P be a shortest path from x to C in G − {v, w}. We may
assume that x was chosen from N(v) ∩ N(w) \ V (C) such that P is
shortest.

To avoid claws, v−v+, w−w+ ∈ E. Note that wv−, vw− 6∈ E, other-
wise C could be extended through x. Let v2 ∈ V (v+Cw) be the vertex
closest to v on C with vv2 6∈ E, let v1 = v−2 . Let w2 ∈ V (w+Cv) be
the vertex closest to w on C with ww2 6∈ E, let w1 = w−

2 .
First, we want to show that 〈x, v, v1, v2, w, w1, w2〉 is an induced copy

of N2,2,0. If xwi ∈ E for i ∈ {1, 2}, then the cycle wxwiCw−w+Cw−
i w

has length t. Thus, xwi 6∈ E for i ∈ {1, 2} and, by symmetry, xvi 6∈ E
for i ∈ {1, 2}.

If viwj ∈ E for i, j ∈ {1, 2}, then

viwjCv−v+Cv−i vxww−
j C−w+w−C−vi

is a cycle of length t. Thus, viwj 6∈ E for i, j ∈ {1, 2}, and 〈x, v, v1,
v2, w, w1, w2〉 is an induced copy of N2,2,0.
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Now consider the vertex x1, the unique neighbor of x on P . If x1v ∈
E, then also x1w ∈ E as otherwise 〈v, x1, w, v−〉 is a claw (if x1v

− ∈
E, C can be extended through x1 to form a cycle of length t unless
x1 ∈ V (C). But then, the cycle v−x1xvCx−1 x+

1 Cv− contains t vertices).
Consequently, since P is shortest, x1 ∈ V (C). Now one can mimic the
argument we have used above to show that 〈x1, x

+
1 , v, v1, v2, w, w1, w2〉

is an induced copy of N2,2,1.
So assume that x1v, x1w 6∈ E. If x1vi ∈ E for some i ∈ {1, 2}, then

we can again extend C through x and x1, possibly skipping a third
neighbor of V (G)\V (C) on the cycle to create a Ct. Thus, x1vi, x1wi 6∈
E for i ∈ {1, 2}, and 〈x, x1, v, v1, v2, w, w1, w2〉 is an induced copy of
N2,2,1, finishing the proof. �

Lemma 7. Let G be a 3-connected claw-free graph such that for some
6 ≤ t ≤ n, G contains a cycle C of length t− 1 but contains no cycles
of length t. Then, G contains an induced copy of N2,2,1.

Proof. Suppose, for the sake of contradiction, that G contains no in-
duced copy of N2,2,1. Let H be a component of 〈V (G) \ V (C)〉, and
let u, v, w ∈ N(H) ∩ V (C). Let x ∈ V (H), and let Pu, Pv and Pw

be shortest paths through H from x to u, v and w, respectively. Let
S = V (Pu) ∪ V (Pv) ∪ V (Pw). We may assume that H, u, v, w and x
are chosen in a way that |S| is minimal and that x has degree three in
〈S〉. To avoid a claw at x, there has to be an edge between two vertices
y, z ∈ N(x) ∩ S. By symmetry, we may assume that y ∈ V (Pv) and
z ∈ V (Pw). By the minimality of |S|, the only other possible additional
edges in 〈S〉 are the edges {uv, uw, vw}.

Furthermore, note that there are no edges between S \ {u, v, w} and
V (C) \ {u, v, w}. Otherwise, either |S| is not minimal, or G, being
claw-free, forces a situation like in Fact 6, guaranteeing N2,2,1. This
observation, together with the fact that for any two vertices a, b ∈ V (C)
with ab ∈ E we have N(a) ∩ N(b) ∩ V (H) = ∅ (Fact 6), implies that
〈N(u)∩V (C)〉, 〈N(v)∩V (C)〉 and 〈N(w)∩V (C)〉 are complete graphs.

Let Px = Pu, Py = Pv − x and Pz = Pw − x. By symmetry we may
assume that |V (Pz)| ≤ |V (Py)| ≤ |V (Px)|, and that u, w and v appear
on C in this order. By Fact 6, |V (Py)| ≥ 2.

Case 1. |V (Pz)| = 1, i.e., z = w.

Suppose first that vw ∈ E. Thus, 〈v−, v, v+, w−, w, w+〉 is complete
as 〈N(v) ∩ V (C)〉 and 〈N(w) ∩ V (C)〉 are complete. As t ≥ 5, there
is a vertex a ∈ {w+, w−, v+, v−} − {u, v, w}. If |V (Py)| ≥ 4, then
〈{w, a}∪V (Px)∪V (Py)〉 contains an induced N2,2,1. Thus, |V (Py)| ≤ 3.
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Consider the cycle C ′ = wyPyvC−w+v+Cw. We have t ≤ |V (C ′)| ≤
t + 1. As Ct 6⊆ G, we know that |V (C ′)| = t + 1. But now the cycle
obtained from C ′ by skipping u (this is always possible as 〈N(u)∩V (C)〉
is complete) has length t, a contradiction. Therefore, vw 6∈ E.

If |V (Py)| ≥ 4, then 〈{w,w+}∪ V (Px)∪ V (Py)〉 contains an induced
N2,2,1. Thus, |V (Py)| ≤ 3.

Now suppose that wv− ∈ E. Then w−v− ∈ E as 〈N(w) ∩ V (C)〉
is complete. Consider the cycle C ′ = wyPyvCw−v−C−w. Then t ≤
|V (C ′)| ≤ t + 1 and, since Ct 6⊆ G, we have |V (C ′)| = t + 1. But now
the cycle obtained from C ′ by skipping u has length t, a contradiction.
Therefore, wv− 6∈ E.

Let b be the first vertex on wCv with wb 6∈ E. If vb ∈ E, then
the cycle C ′ = vbCv−v+Cw−w+Cb−wyPyv has length t or t + 1. We
can then skip u if needed to create a cycle of length t, a contradiction.
Thus, vb 6∈ E and, by an analogous argument, vb− 6∈ E. If |V (Px)| ≥ 4,
then 〈{w, b−, b} ∪ V (Px) ∪ V (Py)〉 contains an induced N2,2,1. Thus,
|V (Px)| ≤ 3.

If ub ∈ E, then the cycle C ′ = ubCu−u+Cw−w+Cb−wxPxu has
length t or t + 1. Then omitting v if necessary, one can find a cycle
of length t in G, a contradiction. Thus, ub 6∈ E and, by a similar
argument ub− 6∈ E.

Observe that 〈{w, b−, b}∪V (Px)∪V (Py)〉 contains an induced N2,2,1,
unless |V (Px)| = |V (Py)| = 2. But then since Ct 6⊆ G, we see that
〈x, y, w, u, u+, v, v+, w+〉 is an induced copy of N2,2,1.

Case 2. |V (Pz)| = 2.

If |V (Py)| ≥ 4, then 〈{z, w} ∪ V (Px) ∪ V (Py)〉 contains an induced
N2,2,1. Thus, |V (Py)| ≤ 3.

Suppose that v+w+ ∈ E. Let C ′ = wzyPyvC−w+v+Cu−u+Cw.
Then t ≤ |V (C ′)| ≤ t+1, so, as Ct 6⊆ G, |V (C ′)| = t+1. Since Ct 6⊆ G,
C ′ contains no hops. Hence, no vertex of V (C)\{u, u−, u+, v, v+, w, w+}
has a neighbor in V (G) \ V (C). Observe also that all neighbors of u,
v and w on C are completely connected. Consequently, the chordless
vertices of C ′ are contained in the set {z, u−, u+}∪ V (Py) \ {v}. Thus,
C ′ has at most five chordless vertices and one can use Lemma 5 to
reduce it to a cycle of length t, which contradicts the assumption that
Ct 6⊆ G. Therefore, v+w+ 6∈ E. This also implies that vw, vw+ 6∈ E.

A similar argument shows that uw, uw+ 6∈ E if |V (Px)| ≤ 3. If
|V (Py)| = 3, this implies that 〈{z, w, w+} ∪ V (Px) ∪ V (Py)〉 contains
an induced N2,2,1. Thus, |V (Py)| = 2.

We have already seen that v+w+ 6∈ E, so there are no edges between
{w,w+} and {v, v+}. Similarly, there are no edges between u and
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{v, v+, w, w+} if |V (Px)| = 2. But now 〈{z, y, w, w+, v, v+} ∪ V (Px)〉
contains an induced N2,2,1.

Case 3. |V (Pz)| ≥ 3.

If |V (Px)| ≥ 4, then 〈V (Pz) ∪ V (Px) ∪ V (Py)〉 contains an induced
N2,2,1. Thus, |V (Pz)| = |V (Px)| = |V (Py)| = 3. Furthermore, we
know that uv, uw, vw ∈ E for the same reason. This implies that the
graph 〈(N(u) ∪ N(v) ∪ N(w)) ∩ V (C)〉 is complete. Since |V (C)| =
t − 1 ≥ 5, we know that |(N(u) ∪ N(v) ∪ N(w)) ∩ V (C)| ≥ 5, and so
〈(N(u) ∪ N(v) ∪ N(w)) ∩ V (C) ∪ S〉 is a pancyclic graph on at least
eleven vertices. Thus t ≥ 12.

Let us assume that uCw is the longest among the paths uCw, wCv,
and vCu. Since t ≥ 12, |V (uCw)| ≥ 4. In fact, since none of the cycles
of the type

wPzz[x]yPyvC−w+v+Cu−[u][u+][w−]w

has length t, we have |V (uCw)| ≥ 8.
We call a chord ab peripheral, if V (aCb) ⊆ V (u+Cw−), a++ 6= b,

and each other chord cd such that c, d ∈ V (aCb), is a hop, i.e., c and
d lie at distance two on C. Note that since u+w− ∈ E, there exists at
least one peripheral chord. Consider the cycle

C ′ = uPxxzPzwCv−v+Cu−w−C−u

of length t + 2. If the path u+Cw− contains two hops a−a+ and b−b+

such that a and b are non-consecutive vertices of C (and C ′), then
clearly we can omit a and b in C ′ obtaining a cycle of length t, con-
tradicting the fact that Ct 6⊆ G. Hence, we may assume that there
are at most two hops on u+Cw−, say a−a+ and aa++. Let bc be a
peripheral chord of C. Assume first that |V (b+Cc−)| ≥ 4 and con-
sider the cycle C ′′ = uPxxyzPzwCu−w−C−u of length t + 4. Note
that all vertices from V (b+Cc−), except at most four contained in the
set X = {a−, a, a+, a++}, are ends of chords of C (and C ′′) with one
end outside V (bCc). Thus, one can mimic the argument from the
proof of Lemma 5 to show that all except four vertices of b+Cc− can
be incorporated to bC ′′cb to transform it into a cycle of length t. If
|V (b+Cc−)| = 2, then uPxxzPzwCv−v+Cu−w−C−cbC−u is a cycle of
length t. If |V (b+Cc−)| = 3, then uPxxzPzwCu−w−C−cbC−u is a cy-
cle of length t. This contradiction with the assumption that Ct 6⊆ G
completes the proof of Lemma 7. �

Theorem 8. Every 3-connected {K1,3, N2,2,1}-free graph G on n ≥ 6
vertices contains cycles of each length t, for 6 ≤ t ≤ n.
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Proof. By Lemma 7, it is enough to show that G contains a copy of
either C5 or C6. Suppose that this is not the case. Since G is claw-free
and 3-connected, it contains a triangle xyz. Let u ∈ V (G) \ {x, y, z}.
As G is 3-connected, there are three vertex-disjoint paths from u to
{x, y, z}. Since G is a N2,2,1-free graph without C5 and C6, there is a
vertex w on one of these paths such that 〈x, y, z, w〉 is either K4, or
K−

4 , the graph with four vertices and five edges.
Let v ∈ V (G)\{x, y, z, w}. Consider three vertex-disjoint paths from

v to {x, y, z, w}. If 〈x, y, z, w〉 = K4, the above argument guarantees
a vertex w′ on one of the paths with |N(w′) ∩ {x, y, z, w}| ≥ 2, and
C5 can be found. If 〈x, y, z, w〉 = K−

4 , say xw 6∈ E, then one of the
three paths ends in y or z, say in y. Let w′ be the predecessor of y
on this path. One of the edges w′w and w′x has to be there to avoid
the claw 〈y, w, x, w′〉, but this implies that C5 ⊆ G, contradicting the
choice of G. �

4. Forbidding P7, N4,0,0, and N3,1,0

In this section we deal with 3-connected claw-free graphs which con-
tain no induced copy of one of the graphs P7, N4,0,0 and N3,1,0. We
start with the following simple consequence of Lemma 5.

Lemma 9. Let G be a 3-connected claw-free graph on n vertices which,
for some 5 ≤ t ≤ n − 1, contains a cycle of length t with at least one
chord but contains no cycles of length t−1. Then G contains an induced
copy of each of the graphs P7, N4,0,0 and N3,1,0.

Proof. Let G be a 3-connected claw-free graph, C be a cycle of length
t ≥ 5 in G which contains at least one chord, and let us assume that G
contains no cycles of length t−1. Let X be the set of chordless vertices
on C. Choose a chord xy in C for which |V (xCy)∩X| is minimal, and
for no other chord x′y′ such that x′ ∈ V (x+Cy−), y′ ∈ V (y+Cx−), and
|V (xCy)∩X| = |V (x′Cy′)∩X|, we have |V (x′Cy′)| < |V (xCy)|. Since
Ct−1 6⊆ G, C contains no hops. Hence, by Lemma 5, |V (xCy)∩X| ≥ 3.

We first show that a chord xy can be chosen in such a way that
|V (xCy)| ≥ 6. Suppose that this is not the case and let xy be a chord
which minimizes |V (xCy) ∩ X| and V (x+Cy−) = {x+, x++, y−} ⊆
X. Let uw be a chord in yCx that minimizes |X ∩ V (uCw)|, and
assume that |V (uCw)| is minimal under this restriction. Then, again,
V (u+Cw−) = {u+, u++, w−} ⊆ X. If the set {u+, u++, w−} has more
than one neighbor outside of C, we can extend yCxy through two of
these neighbors and obtain a cycle of length t− 1. Thus, there is only
one vertex z in N({u+, u++, w−})\V (C), and since {u+, u++, w−} ⊂ X,
we have zu+, zu++, zy− ∈ E. But G is 3-connected, so there has to
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be a path in G − {u, w} from {u+, u++, w−} to x+. Therefore, z has
another neighbor z′ 6∈ N({u+, u++, w−}); this however leads to the
claw 〈z, z′, u+, w−〉. Thus, we may assume that |V (xCy)| ≥ 6.

Note that, by the choice of |V (xCy)|, xy−, yx+ 6∈ E. To avoid the
claws 〈x, x+, x−, y〉 and 〈y, y+, y−, x〉 we have xy+, yx− ∈ E. If x+y+ ∈
E, then the cycle x+Cyx−C−y+x+ has length t− 1, thus x+y+ 6∈ E.
To avoid the claw 〈x, x+, x−, y+〉 we have x−y+ ∈ E. Moreover, since
Ct−1 6⊆ G, the pairs x−−y, x−−y−, x−y−, x−−y−−, x−y−− are not
edges of G and the choice of |V (xCy)| guarantees that x−−y3−, x−y3−,
x−−y4−, x−y4− 6∈ E. Now 〈x−−, x−, y, y−, y−−, y3−, y4−〉 is a copy of P7,
〈y+, x−, y, y−, y−−, y3−, y4−〉 is N4,0,0, and 〈y, x, x−, x+, x++, x3+, x−−〉
is an induced copy of N3,1,0. �

The following result has been shown by  Luczak and Pfender [3].

Theorem 10. Every 3-connected {K1,3, P11}-free graph G is hamilton-
ian. �

As an immediate consequence of Lemma 9 and Theorem 10 we get
the following theorem.

Theorem 11. Let G be a 3-connected {K1,3, P7}-free graph on n ver-
tices. Then G contains a cycle of length t, for each 7 ≤ t ≤ n.

Proof. Let G be a 3-connected {K1,3, P7}-free graph on n vertices.
From Theorem 10 it follows that G is hamiltonian. Let Ct, 8 ≤ t ≤ n,
be a cycle of length t in G. Since G is P7-free, Ct must have a chord.
Hence, Lemma 9 implies that G contains a cycle of length t− 1. �

The next result states that 3-connected {K1,3, N4,0,0}-free graphs
contain cycles of all possible lengths, except, perhaps, four and five.

Theorem 12. Every 3-connected {K1,3, N4,0,0}-free graph G on n ver-
tices contains cycles of each length t, for 6 ≤ t ≤ n.

Proof. We show first that every 3-connected {K1,3, N4,0,0}-free graph is
hamiltonian. Let G be a 3-connected claw-free graph G which is not
hamiltonian. From Theorem 10 it follows that G contains an induced
path P = v1 . . . v11. Since G is 3-connected, v6 has at least one neigh-
bor w outside P . Furthermore, G is claw-free and P is induced, so w
cannot have neighbors in both sets {v1, v2, v3, v4} and {v8, v9, v10, v11}.
Thus, suppose that w has no neighbors in {v1, v2, v3, v4} and let i0
denote the minimum i such that vi is adjacent to w (i.e., i0 is 5
or 6). Since G is claw-free, vi0+1 is adjacent to w, and so the vertices
vi0−4, vi0−3, vi0−2, vi0−1vi0vi0+1w span an induced copy of N4,0,0 in G.
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Hence, each 3-connected {K1,3, N4,0,0}-free graph on n vertices contains
a cycle of length n.

Thus, to show the assertion, it is enough to verify that if a 3-
connected {K1,3, N4,0,0}-free graph G contains a cycle C = v1 . . . vtv1 of
length t, 7 ≤ t ≤ n, then it also contains a cycle of length t− 1. From
Lemma 9 it follows that it is enough to consider the case in which C has
no chords, i.e., each vertex of C has at least one neighbor outside C.
Note that since G is claw-free, each w ∈ N(C) must have at least two
neighbors on C. But G is also N4,0,0-free which implies that for each
such vertex |N(w) ∩ V (C)| ≥ 3, and one can use the fact that G is
{K1,3, N4,0,0}-free again to verify that each w ∈ N(C) has precisely
four neighbors on C: vi, vi+1, vj and vj+1. If j ≥ i+6, then G contains
an induced copy of N4,0,0 on vertices vj, vj+1, w, vi+1, vi+2, vi+3, vi+4.
Moreover, if j ≤ i + 4, then there is a cycle of length t − 1 in G con-
taining the vertex w. Thus, we may assume that j− i = i− j = 5, i.e.,
t = 10 and each w ∈ N(C) is adjacent to vertices vi, vi+1, vi+5, vi+6 for
some i = 1, . . . , 10. Let w be adjacent to v1, v2, v6, v7, and let w′ be a
neighbor of v4. Assume that N(w′) = {v3, v4, v8, v9}. Then the vertices
v1, v2, w, v6, v5, v4, w

′ span a copy of N4,0,0; since G is N4,0,0-free, this
copy is not induced; consequently, w and w′ must be adjacent. But
this leads to a cycle v3w

′wv7v8 . . . v2v3 of length t− 1 = 9 in G. �

We conclude this section with a result on 3-connected {K1,3, N3,1,0}-
free graphs.

Theorem 13. Every 3-connected claw-free graph G on n vertices which
contains no induced copy of N3,1,0 contains a cycle of length t for each
6 ≤ t ≤ n.

Proof. We show first that each {K1,3, N3,1,0}-free 3-connected graph
is hamiltonian. Suppose that it is not the case and let G be a non-
hamiltonian {K1,3, N3,1,0}-free 3-connected graph with the minimum
number of vertices. From Theorem 10 it follows that G contains an
induced path P = v1v2 . . . v11. Since G is claw-free and P is induced,
every vertex w ∈ V (G)\V (P ) adjacent to vi, i = 2, . . . , 10, must be also
adjacent to either vi−1, or vi+1. Note however, that since G contains no
induced copy of N3,1,0, we have |N(w)∩V (P )| ≥ 3, unless N(w)∩V (P )
is either {v1, v2}, or {v10, v11}. Moreover, if w ∈ V (G)\V (P ) is adjacent
to three non-consecutive vertices in {v2, v3, . . . , v10}, then the fact that
G is claw-free implies that |N(w)∩V (P )| = 4, which, as one can easily
check by a direct examination of all cases, would lead to an induced
copy of N3,1,0. Hence, each vertex w ∈ V (G) \ V (P ) which is adjacent
to one of the vertices v3, . . . , v9, has precisely three neighbors on P :
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vi−1, vi, and vi+1 for some i ∈ {2, 3, . . . , 10}. Hence, for i = 3, . . . , 9,
set

Vi = {vi} ∪ {w ∈ V (G) \ V (P ) : N(w) ∩ V (P ) = {vi−1, vi, vi+1}}
= N(Vi−1) ∩N(Vi+1).

Claim 1.

(i) The path v1 . . . vi−1v
′
ivi+1 . . . v11 is induced for every i = 3, . . . , 9

and v′i ∈ Vi.
(ii) Every two vertices of Vi, i = 3, . . . , 9, are adjacent.
(iii) All vertices of Vi and Vi+1, i = 3, . . . , 8, are adjacent.
(iv) N(Vi) = Vi−1 ∪ Vi+1 for i = 4, 5, . . . , 8.

Proof . Each v′i ∈ Vi \ {vi} has only three neighbors vi−1, vi, vi+1 on
P , so (i) follows. Let v′i, v

′′
i ∈ Vi. Consider the claw 〈vi+1, v

′
i, v

′′
i , vi+2〉.

From (i) it follows that vi+2 is adjacent to neither v′i, nor v′′i , so v′iv
′′
i ∈

E(G), showing (ii).
Now let v′i ∈ Vi, v′j ∈ Vj \ {vj}, for 3 ≤ i < j ≤ 9. Since the path

v1 . . . vi−1v
′
ivi+1 . . . v11 is induced, v′j must have on it precisely three

consecutive neighbors. Hence, from the definition of Vj we infer that v′i
and v′j are adjacent if j = i + 1, and non-adjacent otherwise. Finally,
note that if v′i ∈ Vi, i = 4, . . . , 8, has a neighbor w ∈ V (G) \ V (P ),
then, because of the claw 〈v′i, w, vi−1, vi+1〉, w must have a neighbor on
P , and thus w ∈ Vi−1 ∪ Vi ∪ Vi+1. 3

Let G′ denote the graph obtained from G by deleting all vertices
from V6, and connecting all vertices of V5 with all vertices of V7. Then
G′ is 3-connected, claw-free, and contains no induced copy of N3,1,0

(note that no induced copy of N3,1,0 in G′ contains vertices of both V3

and V9). Thus, since G is a smallest 3-connected {K1,3, N3,1,0}-free non-
hamiltonian graph, G′ is hamiltonian. But each hamiltonian cycle in
G′ can be easily modified to get a hamiltonian cycle in G, contradicting
the choice of G. Hence, each 3-connected {K1,3, N3,1,0}-free graph is
hamiltonian.

Now let us assume that a 3-connected {K1,3, N3,1,0}-free graph G
contains a cycle C = v1v2 . . . vtv1 of length t, 7 ≤ t ≤ n. We shall
show that it must also contain a cycle of length t− 1. If C contains at
least one chord, the existence of such a cycle follows from Lemma 9, so
assume that C contains no chords. If a vertex w ∈ V (G) \ V (C) has a
neighbor v on C, then, since G is claw-free, one of the vertices v−, v+,
must be adjacent to w as well. Furthermore, since G is N3,1,0-free,
w cannot have only two neighbors on P . On the other hand, using
the fact that G is claw-free once again, we infer that if v has three
non-consecutive neighbors on P , then it must have precisely four of
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them. Furthermore, each choice of four neighbors on P leads either
to an induced copy of N3,1,0, or to a cycle of length t − 1. Thus, we
may assume that each vertex w ∈ V (G)\V (C) adjacent to at least one
vertex from C is, in fact, adjacent to precisely three vertices vi, vi+1, and
vi+2, for i = 1, . . . , t, where, of course, the addition is taken modulo t.
Let us define

Vi = {vi} ∪ {w ∈ V (G) \ V (P ) : N(w) ∩ V (P ) = {vi−1, vi, vi+1}}
= N(Vi−1) ∩N(Vi+1),

for i = 1, 2, . . . , t. Then one can use an argument identical with the
one used in the proof of Claim 1 to show that V (G) = V1 ∪ · · · ∪Vt is a
partition of the set of the vertices of G into complete graphs, each vertex
from Vi is adjacent to each vertex from Vi+1, and N(Vi) = Vi−1∪Vi+1, for
i = 1, . . . , t. Note that if |Vi| = |Vj| = 1 for some i 6= j, then |j− i| = 1
since otherwise the set Vi ∪ Vj = {vi, vj} would be a vertex-cut, while
G is 3-connected. Hence, for some i, in the sequence Vi, Vi+1, . . . , Vi−1,
each Vj, i + 1 ≤ j ≤ i− 2, has at least two elements. Clearly, it implies
that G contains cycles of all lengths t, 3 ≤ t ≤ n; in particular a cycle
of length t− 1. �

5. Proof of Theorem 3

In this section we conclude the proof of Theorem 3, showing that
if a 3-connected claw-free graph G does not contain an induced copy
of one of the graphs P7, N4,0,0, N3,1,0, N2,2,0, N2,1,1, then it contains a
cycle of length t, for t = 4, 5, 6.

Lemma 14. Let G be a 3-connected claw-free graph which contains a
cycle of length seven but no cycles of length six. Then G contains an
induced copy of P7.

Proof. Let G be a 3-connected claw-free graph without copies of C6 and
let C = v1v2 . . . v7v1 be a cycle of length seven in G. Since C6 6⊆ G,
C contains no hops. Applying Lemma 5, we infer that C contains no
chords.

Let x ∈ N(v1) \ V (C). Then xv2 or xv7 is an edge to avoid a
claw 〈v1, x, v2, v7〉. By symmetry, we may assume that xv2 ∈ E. To
avoid the P7 〈x, v2, v3, . . . , v7〉, x must have another neighbor on C.
Since C6 6⊆ G, the only possible candidates for neighbors of x are v3

and v7. Without loss of generality, we may assume that xv3 ∈ E.
Let P = (v2 =)y0y1 . . . yk(= v4) be the shortest path from v2 to v4 in
G − {v1, v3}. As v4v1 6∈ E, this path contains a vertex which is not
adjacent to both v1 and v3; let y` denote the first such vertex on P .
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To avoid the claw 〈y`−1, y`, v1, v3〉, either v1y` or v3y` is an edge, say
v3y` ∈ E. As 〈y`, v3, v4 . . . v1〉 is not P7, y`v4 ∈ E. But now, if ` ≥ 2,
then v1v2v3v4y`y`−1v1 is a cycle of length six, and if ` = 1, then such
a cycle is spanned by the vertices v1, v2, y1, v4, v3, x, contradicting the
fact that C6 6⊆ G. �

Lemma 15. If a 3-connected claw-free graph G contains a cycle of
length six but no cycles of length five, then G contains an induced copy
of each of the graphs P7, N4,0,0, N3,1,0, N2,2,1.

Proof. Let G be a 3-connected claw-free graph and let C = v1v2 . . . v6v1

be a cycle of length six contained in C. We split the proof into several
simple steps.

Claim 1. G contains no induced copy of K−
4 , i.e., the graph with four

vertices and five edges.

Proof. Let X = {v1, v2, v3, v4} ⊆ V (G) be such that all pairs of
vertices from X, except for {v1, v2}, are edges of G. Since G is 3-
connected, one of the vertices {v3, v4}, say, v3, must have a neighbor
w /∈ X. Because G is claw-free, w must be adjacent to one of the
vertices v1, v2, say, to v1. But this leads to a cycle v1wv3v2v4v1. 3

Claim 2. C has no chords. Moreover, no two non-consecutive vertices
vi, vj of C are connected by a path of either of the types viwvj, viww′vj,
where w, w′ /∈ V (C).

Proof. Since C5 6⊆ G, C contains no hops. Applying Lemma 5, we
infer that C contains no chords.

Furthermore, each path of type viwvj leads to either C5 or K−
4 , so

we can eliminate them using Claim 1. Finally, the only paths of type
viww′vj which do not immediately yield C5 are of type viww′v+++

i , but
then 〈vi, v

−
i , v+

i , w〉 is a claw, and any edge between vertices v−i , v+
i , w

leads to a cycle of length five. 3

Claim 3. G contains a vertex x which lies at distance two from C.

Proof. Suppose that all vertices of G are within distance one from C.
Then the fact that G is 3-connected implies that there exist two non-
consecutive vertices vi, vj ∈ V (C) which are joined by a path of length
at most three, which contradicts Claim 2. 3

Let x be a vertex which lies at distance two from C, and let w denote
a neighbor of x which lies within distance one from C. Claim 2 and
the fact that G is claw-free imply that w has two consecutive neighbors
on C, say, v1 and v2. From Claim 2 we infer that the graph H induced
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by the vertices V (C) ∪ {x, w} has only nine edges: the six edges of C
and three incident to w. Note that H contains induced copies of both
P7 and N3,1,0.

Now let w′ /∈ V (H) be a neighbor of v3. Note that because C5 6⊆ G,
w′ is adjacent neither to x nor to w. From Claim 2 and the fact that G is
claw-free it follows that the only neighbor of w′ in V (H), except v3, is in
the set {v2, v4}. If w′v4 ∈ E, then the vertices x, w, v1, v2, v3, w

′, v6, v5

span an induced copy of N2,2,1, and 〈w, v2, v1, v6, v5, v4, w
′〉 is N4,0,0.

Hence, assume that w′v2 ∈ E. Now let x′ be a neighbor of w′ outside
V (H) which is not adjacent to both v2 and v3 (the fact that G is 3-
connected and Claim 2 guarantee that such a vertex always exists).
Then, since G is claw-free and C5 6⊆ G, x′ is adjacent to none of the
vertices of V (H). But now the vertices x, w, v1, v2, w

′, x′, v6, v5 span an
induced copy of N2,2,1 in G.

Finally, let w′′ ∈ N(v5)\V (C). Then, either v4w
′′ ∈ E, or v6w

′′ ∈ E.
If v4w

′′ ∈ E, then 〈w′′, v4, v5, v6, v1, v2, w
′〉 is N4,0,0, if v6w

′′ ∈ E, then
〈w′′, v6, v5, v4, v3, v2, w〉 is N4,0,0, as ww′′, w′w′′ 6∈ E by Claim 2. �

For our argument we also need the following simple observation on
G1 defined in the Introduction (see Figure 2).

Fact 16. Let G be a 3-connected claw-free graph which contains no
cycles of length four. Let G̃1 be a copy of G1 in G. Then

(i) The copy G̃1 is induced. In particular, G contains induced
copies of each of the graphs P7,  L, N4,0,0, N3,1,0, N2,2,0, N2,1,1.

(ii) If G 6= G̃1, then G contains an induced copy of N2,2,1.

Proof. It is easy to check that if we add any edge to G1, then either we
create a copy of C4, or we get K1,3 which in turn, since G is claw-free,
forces a cycle of length four. Thus, (i) follows. In order to show (ii)
note that, since G̃1 is induced, any vertex x ∈ V (G) \ V (G̃1) with a
neighbor in G̃1 must be adjacent to precisely two vertices of G̃1, which
are connected by an edge which belongs to none of the four triangles
contained in G̃1. Now it is easy to check that a subgraph spanned in
G by {x} ∪ V (G̃1) contains an induced copy of N2,2,1 in which x has
degree one and is adjacent to a vertex of degree three. �

Lemma 17. Let G be a 3-connected claw-free graph which contains
a cycle of length five but no cycles of length four. Then G contains
an induced copy of each of the graphs P7, N4,0,0, N3,1,0, N2,2,0, N2,1,1.
Furthermore, if G 6= G1, then G contains an induced copy of N2,2,1.

Proof. Let C = v1v2v3v4v5v1 be a cycle of length five in a 3-connected
claw-free graph G which contains no cycles of length four. Clearly,
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C contains no chords. Let S = N(V (C)). Since C4 6⊆ G and G is
claw-free, each vertex w ∈ S is adjacent to precisely two consecutive
vertices of C, for each two vertices w′, w′′ ∈ S we have N(w′)∩V (C) 6=
N(w′′)∩V (C), and S is independent. A vertex w from S we call wi, if
w is adjacent to vi and vi+1. Observe also that, since S is independent
and G is claw-free, any vertex x /∈ V (C) ∪ S has in S at most two
neighbors; consequently, G must contain an edge with both ends in
V (G) \ (V (C) ∪ S).

Now let us assume that there exists an edge xy, such that x, y /∈
V (C) ∪ S and each of the vertices x and y has two neighbors in S,
denoted x1, x2 and y1, y2 respectively. Because of the claw 〈x, x1, x2, y〉,
we may assume that x1 = y1 = w1. Furthermore, to avoid C4, x and y
must be adjacent to different vertices from the set {w3, w4}. But now
the graph H induced in G by the set V (C)∪{x, y, w1, w3, w4} contains
a copy of the graph G1 and the assertion follows from Fact 16.

Thus, we may assume that each edge contained in V (G)\(V (C)∪S)
has at least one end which is adjacent to at most one vertex from S.
Note also that if a vertex x ∈ V (G)\(V (C)∪S) has just one neighbor in
S, then it must have at least two neighbors x′, x′′ in V (G)\ (V (C)∪S),
and all three vertices x, x′, x′′ cannot share the same neighbor in S
because C4 6⊆ G. Consequently, as G is claw-free, we may assume that
G contains vertices x and y such that x is adjacent to y, y is adjacent
to w1, x has at most one neighbor in S, and it is different than w1,
and y has at most one more neighbor in S (then it must be either w3

or w4). Let F be the graph spanned in G by V (C) ∪ {x, y, w1}. It
contains precisely nine edges: five edges of C, three edges incident to
w1, and xy.

Clearly, xyw1v2v3v4v5 is an induced copy of P7 in F ⊆ G. In order
to find in G induced copies of N4,0,0 and N3,1,0 consider the neighbor
of v4 in S: without loss of generality we may assume that it is w3.
If w3 is not adjacent to y, then G contains an induced copy of N4,0,0

(on the vertices y, w1, v1, v5, v4, v3, w3) as well as an induced copy of
N3,1,0 (with the vertex set {y, w, v2, v3, w3, v4, v5}). Thus, assume that
w3 is the only neighbor other than w1 of y in S. Because of the claw
〈y, x, w1, w3〉, w3 is also the only neighbor of x in S. But then the
vertices v2, v1, v5, v4, w3, x, y span in G an induced copy of N4,0,0, while
the vertices w1, v1, v5, v4, v3, w3, x span an induced copy of N3,1,0.

Finally, we shall show that G contains an induced copy of N2,2,1.
Thus, let x, y be defined as above and let w3 be a neighbor of v4.
Consider now two possible choices for a neighbor of v5. Assume first,
that there is a vertex w4 adjacent to both v4 and v5. Then vertices y,
w1, v1, v2, v3, w3, v5 and w4 span a copy of N2,2,1. It is induced unless y
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is adjacent to one of the vertices w3, w4, say w3. Then, because of the
claw 〈y, x, w1, w3〉, x is also adjacent to w3, and none of the vertices x,
y, is adjacent to w4. But then the vertices x, y, w1, v1, v2, v3, v5 and
w4 span an induced copy of N2,2,1.

Thus, suppose that G contains a vertex w5, adjacent to both v5

and v1. Note that the vertices x, y, w1, v1, v2, v3, v4, and w5 span an
induced copy of N2,2,1, unless w5x ∈ E. But if w5x ∈ E, then w3 is
adjacent to neither x nor y, and so there is an induced copy of N2,2,1

on the vertices y, x, w5, v1, v2, v5, v4, w3. �

As an immediate consequence of Theorem 8 and Lemmas 15 and 17
we get the following result.

Theorem 18. Each 3-connected {K1,3, N2,2,1}-free graph is either iso-
morphic to G1, or pancyclic. �

Finally we can complete the proof of the main result of the paper.

Proof of Theorem 3. We have already seen that (i) implies (ii). Since
the graphs N2,2,0 and N2,1,1 are induced subgraphs of N2,2,1, the fact
that (i) follows from (ii) is an immediate consequence of Theorems 4,
11, 12, and 13, Lemmas 14, 15, 17, and Theorem 18. �

We conclude the paper with a remark that for Theorem 3, the graphs
G0 and G1 we introduced at the beginning of the paper are, in a way,
extremal. It follows that the smallest 3-connected claw-free graph G
which is not pancyclic has ten vertices. Indeed, by Theorem 3, we may
assume that G contains an induced path P on seven vertices. The
minimal degree of G is at least three, so there are at least nine edges
incident to V (P ) which do not belong to P . But G is claw-free, so no
vertex from V (G)\V (P ) is adjacent to more than four vertices from P .
Consequently, |V (G)\V (P )| ≥ 3. In fact, one can examine the proof of
Lemma 17 to verify that the graph G1 is the only 3-connected claw-free
graph G on ten vertices which is not pancyclic. In a similar manner
one can also deduce from Theorem 10 and the proof of Lemma 15 that
the graph G0 (Figure 2) is the unique smallest 3-connected claw-free
graph on at least five vertices which does not contain a cycle of length
five.
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