2-Factors in Hamiltonian Graphs

Florian Pfender *

Abstract

We show that every hamiltonian claw-free graph with a vertex x of degree $d(x) \geq 7$ has a 2-factor consisting of exactly two cycles.

1 Introduction

All graphs considered in this paper are simple and undirected. The vertex set of a graph is V, and E is the edge set. For notation not defined here we refer the reader to [1]. The neighborhood of a vertex v is denoted by $N(v)$, the degree of a vertex v is $d(v)=|N(x)|$. If $X \subseteq V$ is a set of vertices, $G[X]$ stands for the subgraph on X induced by G. The complete bipartite graph $K_{1,3}$ is also called the claw, and a graph is said to be claw-free if it does not contain any induced copies of $K_{1,3}$.

In the paper, C will always be a hamiltonian cycle with some orientation. For a vertex $v \in V$, let v^{+}, v^{++}, v^{3+}, etc. denote the successors of v on C, and let v^{-}, v^{--}, v^{3-}, etc. denote the predecessors of v. The notation $u C v$ stands for the $u-v$ path given by C and its orientation, $u C^{-} v$ will be the $u-v$ path following C in reversed direction. Let $U:=\left\{v \in V \mid v^{-} v^{+} \notin E\right\}$. We will call a 2-factor consisting of exactly two cycles a $2 C$-factor.

Hamiltonicity of graphs has been studied widely, and lately a lot of the conditions that imply a graph to be hamiltonian were shown to be sufficient to also guarantee the existence of a wide range of 2factors. But what can we say when we assume hamiltonicity as one of the properties of the graph? What kind of conditions will yield what kind of 2 -factors?

[^0]Consider the following family \mathcal{G} of graphs: Let $G(V, E)$ be a graph. Then G belongs to \mathcal{G} if

1. For some $k \geq 5, V$ is the disjoint union of vertex sets $V_{1}, V_{2}, V_{3}, \ldots V_{k}$ with (let $V_{k+1}=V_{1}$):
(a) $\left|V_{i}\right| \geq 1$ for all $1 \leq i \leq k$,
(b) $\left|V_{i}\right|=1$ for at least five different indices,
(c) $\left|V_{i}\right|+\left|V_{i+1}\right| \leq 4$ for all $1 \leq i \leq k$.
2. $E=\left\{u v \mid u, v \in V_{i} \cup V_{i+1}\right.$ for some $\left.1 \leq i \leq k\right\}$.

It is easy to observe that every graph in \mathcal{G} is hamiltonian, but no graph in \mathcal{G} contains a $2 C$-factor. Further note that \mathcal{G} contains graphs with minimum degree $\delta(G)=4$, maximum degree $\Delta(G)=6$ and average degree $\bar{d}(G)>5-\epsilon$ for every $\epsilon>0$. Consider for instance the graph $G \in \mathcal{G}$ with $\left|V_{1}\right|=\left|V_{3}\right|=\left|V_{5}\right|=\left|V_{7}\right|=\left|V_{9}\right|=1,\left|V_{2}\right|=\left|V_{4}\right|=$ $\left|V_{6}\right|=\left|V_{8}\right|=3$ and $\left|V_{10}\right|=\left|V_{11}\right|=\ldots=\left|V_{k}\right|=2$.

No hamiltonian graphs with average degree $\bar{d}(G) \geq 5$ which do not contain a $2 C$-factor are known. On the other hand, the best known bound for the minimum degree forcing the existence of a $2 C$-factor is the following theorem by Gould and Jacobson.

Theorem 1. [3] Let G be a hamiltonian graph on $n \geq 8$ vertices with minimum degree $\delta(G) \geq 5 n / 12$. Then G contains a $2 C$-factor.

There are no nontrivial bounds for the maximum degree in this setting of general graphs, as the graph obtained from joining an $(n-1)$ cycle with a single vertex is hamiltonian with maximum degree $n-1$, but has no $2 C$-factor.

But, for the special class of claw-free graphs, we get the following sharp result.

Theorem 2. Let G be a hamiltonian claw-free graph containing a vertex x with degree $d(x) \geq 7$. Then G has a 2-factor consisting of exactly two cycles.

2 Proof

We will start with the following lemma.

Lemma 3. Suppose G is a hamiltonian graph on at least 8 vertices that has no $2 C$-factor. If $u, v \in U$ and $u v \in E$, then $|u C v| \leq 4$ or $|v C u| \leq 4$.

Proof: Let us first suppose that $|u C v| \geq 6$ and $|v C u| \geq 6$ (see Figure 1). Since G is claw-free and $v \in U$, either $u v^{+} \in E$ or $u v^{-} \in E$. Say, $u v^{+} \in E(2)$. Now $v u^{+} \notin E(3)$, otherwise a $2 C$-factor can easily be constructed. By claw-freeness, $v u^{-} \in E$ (4). Next, $u^{-} v^{+} \notin E$ (5) to prevent a $2 C$-factor, thus $v^{+} u^{+}, v^{-} u^{-} \in E(6,7)$ to prevent claws in v, u, respectively. Now, $v^{++} u^{+} \notin E(8)$, otherwise $C_{1}=v u v^{+} v, C_{2}=$

Figure 1: $|v C u| \geq 6$
$u^{+} C v^{-} u^{-} \bar{C} v^{++} u^{+}$is a $2 C$-factor. By claw-freeness, $v v^{++} \in E$ (9). Again, $v^{-} u^{+} \notin E$ (10), thus $v^{++} v^{-} \in E$ (11). By a symmetric argument, $u^{--} u, u^{--} u^{+} \in E(12,13)$. Now, $v^{++} v^{--} \notin E(14)$, otherwise $C_{1}=v^{+} v v^{-} u^{-} u v^{+}, C_{2}=u^{+} C v^{--} v^{++} C u^{--} u^{+}$is a $2 C$-factor. Clawfreeness at v^{-}forces $v^{--} u^{-} \in E$ (16) as $v^{++} u^{-}$(15) would yield a $2 C$-factor. Now, $v^{3+} v^{-} \notin E(17)$, otherwise $C_{1}=v v^{+} v^{++} v, C_{2}=$ $v^{-} v^{3+} C v^{-}$is a $2 C$-factor. To avoid a claw at $v^{++}\left(v^{+} v^{-} \notin E\right), v^{3+} v^{+} \in$
E (18). But now, $C_{1}=v v^{-} v^{++} v, C_{2}=v^{+} u C v^{--} u^{-} \bar{C} v^{3+} v^{+}$is a $2 C$ factor, a contradiction. Note that the above argument only requires $|v C u| \geq 6$ as it works even if $v^{3+}=u^{--}$.

To prove the lemma suppose that either $|u C v|=5$ or $|v C u|=5$, we may assume by symmetry $|u C v|=5$ (see Figure 2). Note, that here $u^{++}=v^{--}$. If $u v^{+} \in E$ (1), the argument from above will give the contradiction, as $|v C u|>5$. Hence, $u v^{-}, v u^{+} \in E(2,3)$, and, following an argument symmetric to the one used above, $v^{-} u^{-}, v^{+} u^{+} \in$ $E(4,5)$. Now $u u^{++}, u v^{+} \notin E(6,7)$, so $u^{++} v^{+} \in E(8)$ to avoid a claw at u^{+}. But now, $C_{1}=u v u^{+} u, C_{2}=u^{-} v^{-} u^{++} v^{+} C u^{-}$is a $2 C$-factor, a contradiction.

Figure 2: $|v C u|=5$

Lemma 4. Suppose G is a hamiltonian graph on at least 8 vertices that has no $2 C$-factor. If $u, v \in U, u v \in E$, and $|u C v| \leq|v C u|$, then $G[u C v]$ is complete.

Proof: By Lemma 3, we know that $|u C v| \leq 4$. If $|u C v| \leq 3$, there is nothing to prove, so assume that $|u C v|=4$. If $G[u C v]$ is not complete, then $u v^{+}, v u^{-} \in E$ to avoid claws and a $2 C$-factor. As $u^{-} v^{+} \in E$ would yield a $2 C$-factor, $u^{-} v^{-}, u^{+} v^{+} \in E$ to avoid
claws. If one of the edges $u v^{-}$and $u u^{--}$exists, a $2 C$-factor is apparent. To avoid a claw centered at $u^{-}, u^{--} v^{-} \in E$ is forced. But now, $C_{1}=u u^{-} v u, C_{2}=u^{--} v^{-} u^{+} v^{+} C u^{--}$is a $2 C$-factor, a contradiction.

Proof of Theorem 2: Suppose again, for the sake of contradiction, that G contains no $2 C$-factor. Faudree et al. [2] showed that the 2-color Ramsey number for a triangle and a $K_{4}-e$ (the graph on 4 vertices with 5 edges) is

$$
r\left(K_{3}, K_{4}-e\right)=7
$$

As $d(x) \geq 7$, we know that $G[N(x)]$ contains either an independent set of size 3 or a $K_{4}-e$. The independent set would yield a claw, therefore $G[N(x)]$ contains a $K_{4}-e$, say $x_{1}, x_{2}, x_{3}, x_{4} \in N(x)$ and $x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4} \in E$.

Depending on the location of the five vertices $x, x_{1}, x_{2}, x_{3}, x_{4}$ on C, we will consider seven cases. Note that $G\left[x, x_{1}, x_{2}, x_{3}, x_{4}\right]$ is either a $K_{5}-e$ or a K_{5}.

Case 1. Suppose that the five vertices are consecutive on C, i.e. there is a $v \in V$, such that $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}=\left\{v^{--}, v^{-}, v, v^{+}, v^{++}\right\}$.

If $v^{--} v^{++}, v^{-} v^{+} \in E$, then $C_{1}=v v^{+} v^{-} v, C_{2}=v^{++} C v^{--} v^{++}$is a $2 C$-factor. Thus, one of the two edges is missing.

Suppose first that $v^{-} v^{+} \notin E$. If $v^{3-} v^{-} \in E$, then $C_{1}=v v^{--} v^{+} v, C_{2}=$ $v^{++} C v^{3-} v^{-} v^{++}$is a $2 C$-factor. Thus, $v^{3-} v^{-} \notin E$, and similarly $v^{3+} v^{+} \notin$ E. But this implies that $v^{--}, v^{++} \in U$, a contradiction with Lemma 3.

Thus, we may assume that $v^{--} v^{++} \notin E$, in fact we may assume that $x_{3}=v^{++}, x_{4}=v^{--}$. Note that $x x_{4}^{-} \notin E$, otherwise $C_{1}=$ $x_{4} x_{1} x_{2} x_{4}, C_{2}=x x_{3} C x_{4}^{-} x$ is a $2 C$-factor. Similarly, $x_{1} x_{4}^{-}, x_{2} x_{4}^{-}, x x_{3}^{+}$, $x_{1} x_{3}^{+}, x_{2} x_{3}^{+} \notin E$, and therefore $x_{3}, x_{4} \in U$. As $d(x) \geq 7, x$ has at least 3 neighbors other than $x_{1}, x_{2}, x_{3}, x_{4}$, say $y_{1}, y_{2}, y_{3} \in N(x)$ appear in this order on C. To avoid the claw $G\left[x, x_{3}, x_{4}, y_{2}\right]$, at least one of the edges $x_{3} y_{2}, x_{4} y_{2}$ has to exist, we may assume that $x_{3} y_{2} \in E$.

Suppose that $y_{2} \in U$. As $G\left[y_{2} C x_{3}\right]$ is not complete, $G\left[x_{3} C y_{2}\right]$ is complete by Lemma 4 (and $\left|x_{3} C y_{2}\right|=4$). This yields the $2 C$-factor $C_{1}=x_{1} x_{2} x_{3} x_{1}, C_{2}=x y_{1} x_{3}^{+} y_{2} C x_{4} x$, a contradiction. Thus, $y_{2}^{-} y_{2}^{+} \in E$. If $x_{2} y_{2} \in E$, then $C_{1}=x x_{2} y_{2} x, C_{2}=x_{1} x_{3} C y_{2}^{-} y_{2}^{+} C x_{4} x_{1}$ is a $2 C$-factor, thus $x_{2} y_{2} \notin E$. To avoid the claw $G\left[x_{3}, x_{3}^{+}, x_{2}, y_{2}\right]$, we have $x_{3}^{+} y_{2} \in E$. This yields the $2 C$-factor $C_{1}=x_{1} x_{2} x_{3} x_{1}, C_{2}=x y_{2} x_{3}^{+} y_{2}^{-} y_{2}^{+} C x_{4} x$, the contradiction finishing the case.

Figure 3: Case 1
Case 2. Suppose four of the vertices $x, x_{1}, x_{2}, x_{3}, x_{4}$ appear consecutively on C.

Let v be the vertex out of $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ which is not a predecessor or a successor of one of the other four vertices in the $K_{5}-e$. If $v \notin U$, then consider the cycle $C^{\prime}=v^{+} C v^{-} v^{+}$, and extend it through v by inserting v between two consecutive vertices in $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}$. We can apply Case 1 to this situation to get a contradiction. Thus, $v \in U$.

Let $u \in V$ such that $\left\{u^{--}, u^{-}, u, u^{+}\right\} \cup\{v\}=\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}$. As $G\left[x, x_{1}, x_{2}, x_{3}, x_{4}\right]$ is a K_{5} or a $K_{5}-e$, at least one of $u^{-} v$ and $u v$ is an edge, by symmetry we may assume $u v \in E$. To avoid the claw $G\left[v, u, v^{-}, v^{+}\right]$, one of $u v^{-}$and $u v^{+}$is an edge.

If $u v^{+} \in E$, then $u^{+} v \notin E$ to avoid a $2 C$-factor. Then $u^{-} v \in E$ and one of $u^{-} v^{-}$and $u^{-} v^{+}$is an edge. Either one of these two edges produces a $2 C$-factor, a contradiction.

On the other hand, if $u v^{-} \in E$, then $u^{-} v \notin E$ to avoid a $2 C$ factor. But this implies $u^{--} v, u^{-} u^{+} \in E$, and $C_{1}=u u^{-} u^{+} C v^{-} u, C_{2}=$ $v u^{--} C v$ is a $2 C$-factor, the contradiction finishing the case.

Case 3. Suppose there are two vertices $u, v \in V$ such that $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}=\left\{u^{-}, u, u^{+}, v, v^{+}\right\}$.

In this case, a $2 C$-factor is easy to find. Depending on which of the 10 edges is missing, either $C_{1}=v^{+} C u^{-} v^{+}, C_{2}=u C v u$ or $C_{1}=$ $v^{+} C u v^{+}, C_{2}=u^{+} C v u^{+}$will do.

Case 4. Suppose there are three vertices $u, v, w \in V$ such that $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}=\left\{u^{-}, u, u^{+}, v, w\right\}$.

By symmetry we may assume that $u^{-} v, u v, u^{+} v \in E$. If $v^{-} v^{+} \in E$, we can find a different hamiltonian cycle and apply Case 2. Thus, $v \in U$. To avoid the claw $G\left[v, u, v^{-}, v^{+}\right]$, one of the edges $u v^{-}, u v^{+}$has to exist. But either one produces a $2 C$-factor, a contradiction.

Case 5. Suppose there are three vertices $u, v, w \in V$ such that $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}=\left\{u, u^{+}, v, v^{+}, w\right\}$.

By symmetry we may assume that u, v, w appear on C in this order. If both $u v^{+}, u^{+} v \in E$, a $2 C$-factor is immediate, so one of these two edges is missing. This implies that all other 8 possible edges within $\left\{u, u^{+}, v, v^{+}, w\right\}$ exist. Further, $w \in U$, otherwise we can find a different hamiltonian cycle and apply Case 3 . If $v w^{+} \in E$, a $2 C$-factor is immediate, thus $v w^{-} \in E$ to avoid a claw centered at w. This yields the $2 C$-factor $C_{1}=w C u w, C_{2}=v^{+} C w^{-} v C^{-} u^{+} w^{+}$, a contradiction.

Case 6. Suppose there are four vertices $u, v, w, y \in V$ such that $\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}=\left\{u, u^{+}, v, w, y\right\}$.

By symmetry we may assume that u, v, w, y appear on C in this order. Suppose that $v y \in E$. By Lemma 3, at most one of v, y is in U, say $y \notin U$. If $v \in U$, then $v^{-} y \in E$ or $v^{+} y \in E$ to avoid a claw. But now we can reduce the case to Case 5. On the other hand, if $v \notin U$ we can find a different hamiltonian cycle by inserting v or y between u and u^{+}, depending on which of the edges is missing. Applying Case 4 to this situation gives a contradiction. Therefore, $v y \notin E$ and all other 9 possible edges inside $\left\{u, u^{+}, v, w, y\right\}$ exist.

If any of v, w, y is not in U, then we can reduce this case to Case 4 by inserting this vertex between u and u^{+}. Thus, we may assume that $v, w, y \in U$. Again by Lemma $3, u^{-} u^{+}, u u^{++} \in E$, as $|w C u|,\left|u^{+} C w\right| \geq$ 5. To avoid a claw at v, one of $u v^{-}, u v^{+}$is an edge. If $u v^{+} \in E$, then $C_{1}=u^{+} C v u^{+}, C_{2}=u v^{+} C u$ is a $2 C$-factor. If $u v^{-} \in E$, then $C_{1}=u u^{++} C v^{-} u, C_{2}=u^{+} v C u^{-} u^{+}$is a $2 C$-factor, the contradiction finishing this case.

Case 7. Suppose none of the vertices
$\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}=\left\{x, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ are consecutive on C.
We may assume that $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ appear on C in this order. If none of the five vertices are in U, a $2 C$-factor is easy to find. By symmetry, we may assume that $u_{3} \in U$. At least one of the edges $u_{3} u_{5}, u_{1} u_{3}$ exists, we may assume $u_{3} u_{5} \in E$. By Lemma $3, u_{5} \notin U$. To
avoid a claw, one of the edges $u_{3}^{-} u_{5}, u_{3}^{+} u_{5}$ has to exist. In either case we can pick a different hamiltonian cycle and reduce the argument to Case 6. This finishes the proof of the theorem.

References

[1] B. Bollobás, "Modern Graph Theory," Springer Verlag, New York, 1998.
[2] R. Faudree, C. Rousseau and R. Schelp, Studies Related to the Ramsey Number $r\left(K_{5}-e\right)$. In: "Graph Theory and Its Applications to Algorithms and Computer Science" (Y. Alavi et al. eds.), John Wiley and Sons, New York, (1985) 251-271.
[3] R. Gould and M. Jacobson, personal correspondence.

[^0]: *Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, fpfende@mathcs.emory.edu

