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Abstract

Turan’s Theorem states that every graph of a certain edge density contains a complete graph K*
and describes the unique extremal graphs. We give a similar Theorem for ¢-partite graphs. For large
¢, we find the minimal edge density d¥, such that every ¢-partite graph whose parts have pairwise
edge density greater than d} contains a K*. It turns out that df = % for large enough /. We also

describe the structure of the extremal graphs.

1 Introduction

All graphs in this note are simple, and we follow the notation of [3]. Let GG be an ¢-partite graph on finite
sets V1, Va, ...V, Foravertex x € V(G), letd(x) := |N(x)|. The density between two parts is defined
as

LA
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For a graph H with |H| > ¢, let d¢(H ) be the minimum number such that every ¢-partite graph with
min;«; d;; > d¢(H) contains a copy of H. Clearly, d¢(H ) is monotone decreasing in . In [2], Bondy at
al. study the quantity d,;(H ), and in particular d} := dy(K?), i.e. the values for the complete graph on

three vertices, the triangle. Their main results about triangles can be written as follows.
Theorem 1. /2]
1. d% =7 = 0.618, the golden ration, and

2. d3 exists and d> = %



They go on and show that d§ > 0.51 and speculate that d;’ > % for all finite . We will show that this
is false. In fact, d;’ = % for ¢ > 13 as we will proof in Section 3. In Section 4, we will extend the proof
ideas to show that df := d,(K*) = % for large enough .

In order to state our results, we need to define classes Qf of extremal graphs. We will do this properly

in Section 2. Our main result is the following theorem.

Theorem 2. Let ¢ be large enough and let G = (V1 U Vo U ... UV, E) be an {-partite graph, such that

the pairwise edge densities

IGIV;iuVilll - k=2, ., .
d(Vi, Vj) == ][VHV|]] > - 1forz + 7.
illVj

Then G contains a K* or G is isomorphic to a graph in Qé“.

Corollary 3. For ¢ large enough, di? = %

The bound on ¢ one may get out of the proof is fairly large, and we think that the true bound is much
smaller. For triangles (k = 3), we can give a reasonable bound on ¢. We think that this bound is not

sharp, either. In fact we would not be surprised if £ > 5 turns out to be sufficient.

Theorem 4. Let ¢ > 13 and let G = (V1 UVLo U. ..UV, E) be an {-partite graph, such that the pairwise

edge densities
|GIVi U VS]]
d(Vi, Vi) = ———— >
’ Vil Vil

Then G contains a triangle or G is isomorphic to a graph in g?.

Corollary 5. d3; = 3.

2 Extremal graphs

For ¢ > (k — 1)!, a graph G is in Q_é“, if it can be constructed as follows.

V(G) = {(i,8,t):1<i<l 1<s<k—-1,1<t<nj},

EG) = {(G,s,t)@,s,t):i#4, s#5},



where for {71, 72, ..., m_1y1} being the set of all permutations of the set {1,...,k — 1},

for1 <i< (k—1)
nt=n?=.. =nk"1 for (k—1)! < i</, and

an>0 forl <i<U/{.

Let gf be the class of graphs which can be obtained from graphs in G, by deletion of some edges in

{(i,8,k)(7', 8", K') :s # N1 <i<i <(k—1)}.

It is easy to see that all graphs in Qé“ are (-partite and that gf contains graphs with d;; > % (and
dij = % for j > (k — 1)! for all graphs in gf).

For k = 3, the density condition is fulfilled for all graphs in G E’, and for all graphs in gg which have
dia2 > %

For k > 3, this description is not a full characterization of the extremal graphs in the problem.

We would need some extra conditions on the n; to make sure that all graphs in Gf fulfill the density

conditions.

3 Theorem 4—triangles

In this section we prove Theorem 4. We will start with a few useful lemmas. An important lemma for

the study of d° is the following.

Lemma 6. [2] Let G = (V1 UVoUV3UVy, E) be a 4-partite graph with |V1| = 1, such that the pairwise

edge densities d(V;, V;) > % for i # j. Then G contains a triangle.

With the same proof one gets a slightly stronger result which we will use in our proof. In most cases
occurring later, X will be the neighborhood of a vertex, and the Lemma will be used to bound the degree

of the vertex.

Lemma 7. Let G = (V1 U Vo U V3, E) be a 3-partite graph and X an independent set, such that the
pairwise edge densities d(V;, Vj) > %fori # jand | X NV;| > %|V};]f0r 1 < i < 3, with a strict

inequality for at least two of the six inequalities. Then G contains a triangle.

In order to prove the first part of Theorem 1, the authors show a stronger result.



Theorem 8. [2] Let G = (V1 U Vo U Vi, E) be a 3-partite graph with edge densities d;j = d(V;,V;),

and d;jd;i, + dji, > 1 for {4, j, k} = {1,2,3}. Then G contains a triangle.
As a corollary from Lemma 7 and Theorem 8 we get

Corollary 9. Let G = (Vi U Vo U ... UV, E) be a balanced (-partite graph on nl vertices with edge

densities d;; > %, which does not contain a triangle. Then for every independent set X C V(G),

(6+1)
| X| < =52

Proof of Theorem 4. Suppose that G contains no triangle. Without loss of generality we may assume
that each of the ¢ > 13 parts of GG contains exactly n vertices, where n is a sufficiently large even
integer. Otherwise, blow up each part by an appropriate factor, which has no effect on the densities or
the membership in Gy, and creates no triangles.
For a vertex x let d;(x) = |N(x) N'V;|. For each edge zy € E(G), choose i and j such that x € V;
and y € Vj, and let
s(zy) := d(z) — dj(z) + d(y) — di(y).

We have

1
Y. slay) = 5 Yo osley) = ) |d@)? =) di(x)
zyeE(G) zeV(G) zeV(G) J=1
yeN(z)
The set N (x) is independent, so by Lemma 7, at most two of the d;(x) may be larger than %, and by
Lemma 8, d;(z)dx(z) < $n? for every vertex € V; and j # k.
Therefore, for fixed d(x) > n, the last sum is minimized if d;(x) = n for one j, dj(xz) = 5 or

dj(x) = 0 for all but one of the other j, and 0 < d;(x) < % for the last remaining j. For d(x) < n, the

last sum is non negative. Thus,

Hé” S stay) > Z 2 n? — (d(x) — n)2)

zyeE(G) Zd V(G)
B 22(1() o In?
Y d(w) >_d(x)
2 /n3
2 22 @) —n = s
2n
> ((=2Jn- .

Therefore, there is an edge zy € E(G) with s(zy) > (¢ — 2)n — 4. By symmetry, we may assume

4



thatz € Vi, y € Vo and d(x) — da(x) > d(y) — di(y). Let

12
N'(z) := N(2) \ Va, N'(y) := N(y) \ Vi, and W' := | J Vi \ (N (2) U N (y)).
1=3

Let G := G[Uf:3 V;]. Since N’(z) and N’(y) are independent sets, and [W’| < 2% < 2 and by
Lemma 7 and Theorem 8, for fixed |W'| G'[N'(z) U N'(y)] has at most as many edges as in the graph
we would getif [N (z)NV3] = |[N(y)NVy| = nand [W/'UN'(Y))NVs| = |[N(z)NV5| = |[N(2)NV;| =
IN(y) N Vi| = % for 6 < i < £, and all possible edges (i.e., all edges not inside N (x), N(y) or one of

the Vj;) are there. So,

¢—2\n? n? {—3
AN / < e nt 2.
e ol < () + g -

Further, by Corollary 9, no vertex in G’ can have degree larger than K_Tgn, SO

—2\n? n? n 0 —2\n? 7
"< —-— 4 — = < — 4+ —n?.
”G”—< 2 )2+2+|W 2-( 2 >2+12"

On the other hand, by the density condition,

{—2\n?
G| > —
o= ("57) 5
so at most 5n? of the possible edges between N’(x) and N'(y) are missing. In particular, no vertex z

can have large neighborhoods in both N'(z) and N'(y), i.e.

(IN() (N (@)] = )N (=) 1 V' (9)] < 2

12
Let
X' = {veV(G):|INw)NN'(z)] > %|N,($)|},
Y = {veV(@): IN@) NN'(y)|> 5Ny}, and

7' = V(G)\ (X'UY).



If z € Z’, then

| N ()] Tn? . (—=1)n ™ 2n
dey < <
e T s T Ui LU e T A e

and for z € Z' \ W', at least Léy)' -n > ZTT?n > %n of the missing possible edges edges between

N'(z) and N'(y) are incident to z. Therefore,

Z'| < W'+ §n < fn.

Again, since X' is an independent set, at most two of the sets V; N X’ contain more than % vertices.
We may assume that these sets are contained in V3 U V}. Let G” = G’ \ (V53U V), and X", Y and Z”

the according subsets of X', Y/ and Z’. Then by the density condition,

0 — 4\ n?
"~ n
6= ("5

On the other hand, |G”|| < |E(X",Y")| + |E(Z",V(G")|, and |[E(X”,Y")| is maximized for fixed

1Z"| <nif [VsNY"| =nand |V; N X"| = § for 6 < i < {. Thus,

n?(—5) n(l—6) (n(l—5) (-1 7 2
_Z// Z//

2 2 ( 2 | ’)H (4 +3£—15+£—1>n
0 — 4\ n? o (l—1 7 2 {—6

- ( 2 )2+|Z|( RV A B >”
(6—4)1@2

< —.

= 2 )2

Equality is only attained for Z” = (), in which case it is easy to show that GG is isomorphic to a graph in

1"

IN

gs. O

4 Theorem 2—complete subgraphs

Graphs which have almost enough edges to force a K* either contain a K* or have a structure very
similar to the Turén graph. This is described by the following theorem from [1], where a more general

version is credited to Erdos and Simonovits.

Theorem 10. /I, Theorem VI.4.2] Let k > 3. Suppose a graph G contains no K* and

G|l = (1 - ﬁ +0(1)> (f')



Then G contains a (k — 1)-partite graph of minimal degree (1 — 5 +0(1))|G| as an induced subgraph.

Proof of Theorem 2. For the ease of reading and since we are not trying to minimize the needed ¢, we
will use some variables ¢; and ¢; > 0. As / is chosen larger, the ¢; grow without bound and the ¢;
approach 0.

Let G be an /-partite graph with V(G) = V4 U Vo U ... UV, with densities d;; > % and suppose
that G contains no K*. Without loss of generality we may assume that each of the V; contains exactly n

vertices, where n is a sufficiently large integer divisible by & — 1.

o= (1- - 1) (),

Let H be the (k—1)-partite subgraph of G guaranteed by Theorem 10, with V(H) = X;UXoU. . .UX}_

We have

and Z := V(G) \ V(H). There is a ¢c; > 0 so that | Z| < ¢;|G| (and this ¢; becomes arbitrarily small if
¢ is chosen large enough). Let X; ; := V;NX; and Z; := V; \ Uj X j. After renumbering the V; and the
X, wehave |Z;| < 2cinand | X; 1| > [ X2 > ... > | X 1| for1 <i < ¢ </, where {1 > ﬁ

is picked as large as possible. For some ¢z > 0 (with ca — 0), there is at most one index ¢ < ¢; with

| Xi1| > (k—il + 02) n, as otherwise there is a pair (V;, Vy) with d;; < % So we may assume that

for1 <¢< /¢ —1land1 < j <k — 1. This implies that
1G[Xi g, X ]Il > | Xij|[ Xt jo| — can®

fori #4d,j#7,1<4,i <l —1,1<4 7 <k—1andsome c3 > 0 with c3 — 0.
For every v € J;<y, 1 Vi, find a maximum set P, of pairs (is, js) with (1,1) < (is,js) < (£ —
17k - 1)’ Us 7& Us's Js ?é Js's

|P| = k — 1, then we have a K*. So we may assume this is not the case. Assign v € Z to one set

N(v) N X, j,)| > can, where ¢4 := ky/cs. If there is a vertex v with

Y; D X;N Uig ¢,—1 Vi if there is no pair (i,7) in P,. If there is more than one available set, arbitrarily
pick one.
Now we reorder the V; and Y; again to guarantee that |Y; 1| > ... > |Y; 1| for 1 < i < ly < 4y,

with o > % as large as possible. In the following, only consider indices ¢ < /5. Note that for



veYij,

N(v)NY; | < (ca+ 2c1)n for all but at most k — 2 different j/, as Y; ; \ X; ;v C Zj.

Let Y/ C Y the set of all vertices v € Y; with |[N(v) NY;)| < 3(:15 + c5)¢en for some j # i,
¢5 1= ca+c4. Note that the sets Y; \ Y/ are independent, as the intersection of the neighborhoods of every
two vertices in this set contain a K*~2. Every vertex in v € Y/ N'V; may have up to ((cq4 +2¢1)(f2 — k +
1) 4+ k — 2)n neighbors in Y;. But, at the same time, v has at least |Yy/| — 3 (25 + c5)lon — n > 5-lon

non-neighbors in some Y/ \ V}, ¢’ # 4. Then

GV U VI < D IYiglYa gl + D Y] (((ca+2e1)(f2 = k 4+ 1) + k — 2)n — 55lon)

i i
3<d’
< > VigllYa gl + D 1Y (e 4201 + £ — ) fam
;ﬁ;’ l <o for large enough ¢
ly
< (§)e- S mlvs
i<i’

£ k=2 2
< (G)s

where equality only holds if [Y/| = 0 for all ¢, and |Y; j| = %5 for 1 < j < k — 1 and all but at most
one index i.

This completes the proof of d’g = k—:% for large enough ¢. We are left to analyze the extremal graphs.
After reordering, we have |Y; ;| = %7 and d(Y; ;, Yy jv) = 1for1 < j,j' <k —1land 1 <i,i' <k, if
i#1 and j # j'.

Letv € Vy for some i’ > k. Then [N (v) N U;; Vil < k(kk__f) n, as otherwise there is a K*~1

in N(v). On the other hand, equality must hold for all vertices v € V; due to the density condition.
Therefore, N(v) N ;< Vi = Vi \ Y] for some 1 < j < k — 1. Define Y; ; accordingly for all i’ > £,
and let Y; = |, Y; ;. Then V = |JY;. For every permutation 7 of the set {1,...,k — 1}, there can be
at most one set V; with |Y; )| > Y x2)] > ... > Y rge—p)| and |Y] z(1y| > [Y; r(x—1)|- Otherwise,

this pair of sets would have density smaller than % Thus, all but at most (k — 1)! of the V; have

Yi ;| = % for 1 < j < k — 1. Therefore, all extremal graphs are in gf . O



5 Open problems

As mentioned above, the characterization of the extremal graphs is not complete for £ > 3. We need to
determine all parameters n; so that the resulting graphs in Gé“ fulfill the density conditions.

The other obvious question left open is a good bound on ¢ depending on k in Theorem 2, and the
determination of the exact values of d’g for smaller /. In particular, is it true that d2 = %?

Another interesting open topic is the behavior of dy(H) for non-complete H. Bondy et al. [2] show

that
. X(H)—2
lim dy(H) = =——F——
Jm de(H) = =7
but it should be possible to show with similar methods as in this note that d,(H) = ;gg;j for large
enough ¢ depending on H.
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