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1. Introduction

1.1. Motivation

Symmetric polyhedra have fascinated humans for a long time. Some of the most promi-
nent are regular polytopes, which have been known in two and three dimensions since
ancient times. Figure 1.1 shows the Vve regular three-dimensional polytopes, also known
as Platonic solids.

Figure 1.1.: The Vve Platonic solids: tetrahedron, cube, octahedron, dodecahedron,
icosahedron

The study and classiVcation of regular polytopes in general was revived by Schläfli
and later Coxeter [Cox73]. His research about symmetry groups of regular polytopes led
to new insights in algebra and other Velds where so called Coxeter or reWection groups
arise. A more general classiVcation of symmetric polytopes was attempted by Robertson
in [Rob84]. He succeeded in classifying all polytopes in low dimensions up to geometric
symmetries. In his book he lists all possible classes of symmetries for polygons, which
are polytopes in dimension two, and all polytopes in dimension three that have the same
combinatorial structure as a cube.

With the rise of linear and integer optimization, the study of polyhedra got one more
and also from a practical point of view important application. SigniVcant progress in in-
teger and combinatorial optimization in general has been made by exploring the structure
of related polytopes (cf. [GLS93, Sch98]), a branch known as polyhedral combinatorics.
These polytopes usually have two properties: they are highly symmetric and they suUer
from “combinatorial explosion”. This means that for small combinatorial problem size the
related polytopes are readily tractable but very quickly grow beyond the realm of feasible
computational methods. If symmetries of these polytopes can be found, bigger instances
can be worked on up to symmetries, exploiting symmetries. In combinatorial optimization
structural knowledge about even some parts of polyhedra may help to improve algorithm
performance. For instance, the best solvers for the traveling salesman problem use partial
knowledge of facets for their cutting plane approach (cf. [ABCC06]).

Besides optimization, symmetric polyhedra also occur as parts of many research prob-
lems from other areas of mathematics and science: The symmetry of a specially crafted
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1. Introduction

polytope was a key to a counterexample to the famous Hirsch conjecture by San-
tos [San10]. Symmetric polyhedra were also used by Kumar in algebraic geome-
try [Kum]. Some relevant polyhedra are already symmetric by construction, for instance,
permutation polytopes as described in [BHNP09]. These are only some examples of poly-
hedra that the author is aware of for which symmetry was successfully exploited. They
may motivate to look for symmetries also in other polytopes that are subject to research.

The rest of Chapter 1 formally introduces fundamental deVnitions of polyhedra and
group theory. With the help of these we discuss a hierarchy of symmetry types that we
may look for at polyhedra. In Chapter 2 we start with useful concepts and algorithms
from computational group theory. We use these to analyze one well-known and one new
approach to compute symmetries of polyhedra. At the beginning of Chapter 3 we look at
well-known methods for general description conversion of polyhedra without using sym-
metries. On top of these we discuss diUerent methods to exploit symmetries for descrip-
tion conversion by decomposition. Chapter 4 presents the author’s C++ implementation
SymPol of the described methods. We analyze the performance of the implementation and
compare the discussed alternatives for computing symmetries and performing a descrip-
tion conversion on several diUerent polyhedra.

Appendix A gives a proof of an open conjecture about the symmetries of permutation
polytopes. The idea of this proof was motivated by experiments with SymPol. The manual
of SymPol can be found in Appendix B.

1.2. Polyhedra

We continue this chapter with the necessary background on polytopes. We follow the
notation of [Zie95], which the interested reader may also consult for more theory and
details of polyhedra. First we look at two deVnitions for a polyhedron.

DeVnition 1.1 (H-polyhedron). Let A ∈ Rm×d and b ∈ Rm. We call the solution set
P (A, b) := {x ∈ Rd : Ax ≤ z} of the linear inequality system Ax ≤ b an H-
polyhedron.

For a second description of a polyhedron we need the notions of a convex and conical
hull. For a Vnite set V := {v1, . . . , vn} ⊂ Rd of points we deVne the convex hull of V as
the set

conv V :=
{ n∑
i=1

λivi : λi ∈ R, λi ≥ 0,
n∑
i=1

λi = 1
}

and the conical hull (or positive hull) as the set

coneV :=
{ n∑
i=1

λivi : λi ∈ R, λi ≥ 0
}
.

Later we will also need the aXne hull, which is the set

aff V :=
{ n∑
i=1

λivi : λi ∈ R,
n∑
i=1

λi = 1
}
.
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1.2. Polyhedra

DeVnition 1.2 (V-polyhedron). Let V := {v1, . . . , vn} ⊂ Rd andR := {r1, . . . , rl} ⊂ Rd.
We call P := conv V + coneR a V-polyhedron.

By the Farkas-Minkowski-Weyl Theorem or main theorem for polyhedra (see e. g.
[Sch98, Sec. 7.2] or [Zie95, Thm. 1.2]) the terms H- and V-polyhedron are equiva-
lent. This means that for every P := P (A, b) we can Vnd Vnite sets V and R such
that P = conv V + coneR and vice versa. Because the terms are equivalent, we
simply speak of a polyhedron. If a polyhedron is bounded, i. e. contained in a ball
BM := {x ∈ Rd : ‖x‖ ≤ M} for some M ∈ R, we call the polyhedron a poly-
tope. A polytope P is thus always of the form P = conv V for a Vnite set V . If on the
other hand a polyhedron P = coneR is a conical hull, we call it a (polyhedral) cone.

We denote by 〈x, y〉 := xTy the standard scalar product of two vectors x, y ∈ Rd. For a
polytope P ⊆ Rd we call an inequality 〈c, x〉 ≤ c0 valid if 〈c, x〉 ≤ c0 holds for all x ∈ P .
We call any set F of the form

F = P ∩ {x ∈ Rd : 〈c, x〉 = c0}

a face of P if 〈c, x〉 ≤ c0 is valid for P . The dimension of a face F is the dimension of its
aXne hull: dimF := dim(aff F ). We can see easily that P is always a face of P because
〈0, x〉 ≤ 0 is a valid inequality for P . Similarly, ∅ is a face since 〈0, x〉 ≤ −1 is a valid
inequality.

Some faces have special names. We call the faces of

• dimension 0 vertices,

• dimension 1 edges,

• dimension dim(P )− 2 ridges,

• dimension dim(P )− 1 facets.

We can apply these terms also for the unbounded case of a polyhedron. Here we call
unbounded edges (extreme) rays. Throughout this thesis we will usually identify a ray
rR+

0 = cone{r} ⊂ Rd with a representative r0 ∈ cone{r}. If a polyhedron P has
vertices V and rays R we can decompose P = conv V + coneR (cf. [Zie95, Thm. 2.15]).

We call a d-dimensional polytope P simple if every vertex lies in exactly d facets. We
say a d-dimensional cone is simple if every ray lies in exactly d − 1 facets. Determining
whether P (A, b) is simple is NP-hard [Dye83, Prop. 1]. If a polytope is given as convex
hull P = conv V then simplicity of P can be decided in polynomial time [BFM98, Thm. 4].
As we will see below, knowing whether a polytope P is simple or not may be useful to
estimate the running time of algorithms on P .

We say a cone P ⊂ Rd is pointed if there is no v ∈ Rd such that the line vRd is
contained in P . An example for a pointed two-dimensional cone is {(x, y) ∈ R2 : x ≤
0, y ≤ 0}. The half-space {(x, y) ∈ R2 : x ≤ 0} is not pointed because it contains the
whole y-axis.

For a polyhedron P = conv{v1, . . . , vk} + cone{r1, . . . , rl} ⊆ Rd we deVne the ho-
mogenization homog(P ) of P as

homog(P ) := cone
{( 1

v1

)
,

(
1
v2

)
, . . . ,

(
1
vk

)
,

(
0
r1

)
,

(
0
r2

)
, . . . ,

(
0
rl

)}
⊆ Rd+1.
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1. Introduction

We get P ∼= homog(P ) ∩ {x ∈ Rd+1 : x1 = 1} as intersection of the homogenization
with a hyperplane. In many situations it is easier to work with the homogenization of a
polyhedron because it is a polyhedral cone with apex 0. By this we may treat polytopes,
unbounded polyhedra and cones uniformly.

For every polytope P ⊆ Rd we can deVne its polar P∆ as

P∆ := {y ∈ Rd : 〈y, x〉 ≤ 1 for all x ∈ P}.

We can iterate this construction and obtain the double-polar P∆∆.

Theorem 1.3. Let P = P (A, 1) = conv V be a polytope that has 0 as interior point. Then
P∆ = convA = P (V, 1) and P∆∆ = P .

In this formulation we switch seamlessly between the interpretation of a set S of n
vectors in dimension d (for the convex hull) and the d × n matrix S consisting of the
elements of S as rows (for the inequalities). For a proof of Theorem 1.3 the reader may
consider [Zie95, Thm. 2.11] or [Sch98, Thm. 9.1].

Let P = P (A, b) be an H-polytope. We call the task of computing a set V such that
P = conv V vertex enumeration. Given a V-polytope Q = convW , we name the task
of computing facet inequalities B, c such that Q = P (B, c) facet enumeration. More
generally, we speak of a description conversion problem if we have to convertH to V or
vice versa.

Because of the polarity theorem 1.3 it suXces to have an algorithm for either facet or
vertex enumeration. For instance, suppose we have a vertex enumeration algorithm and
a polytope Q = conv V . For the polar Q∆ we formally obtain Q∆ = P (V, 1). We can
apply our vertex enumeration algorithm to Q∆ and get a set B such that Q∆ = convB.
Polarizing again yields Q = Q∆∆ = P (B, 1), the sought facet description of Q.

Although the H- and V-polyhedra are equivalent regarding their descriptive powers,
these are diUerent from a computational point of view. A Vrst obvious point to note is that
the sizes of H- and V-description may diUer substantially. Let Cd := [−1, 1]d ⊆ Rd be a
d-cube. The cube Cd has 2d facets, so it can be described by only 2d inequalities. But Cd
has 2d vertices, which is exponential in the number of facets. On the other hand, a simplex
conv{0, e1, . . . , ed} ⊂ Rd has as many vertices as facets.

Because there may be a huge gap between the size ofH- and V-description, complexity
analysis of polyhedral description conversion usually looks at the time needed in terms
of combined input and output size. However, all algorithms today still may need super-
polynomial time (in input plus output size) to perform a description conversion of a general
polytope (cf. [ABS97] and [FLM97]). More recently, [KBB+06] have shown that enumer-
ating all vertices of an unbounded polyhedron is NP-hard. However, their result leaves
the bounded case of a polytope and enumerating together vertices and rays of a poly-
hedron still open. For some special cases polynomial algorithms are known. For simple
H-polyhedra Avis and Fukuda give a polynomial time vertex enumeration algorithm
(cf. [AF92, Avi00]). A polynomial time vertex enumeration algorithm for polytopes with
vertices v ∈ {0, 1}d, so called 0/1-polytopes, is known as well (cf. [BL98]). We will look
more closely at description conversion algorithms in Section 3.1.
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1.3. Groups and group actions

1.3. Groups and group actions

Before we can start with symmetries of polyhedra, we have to remember some concepts
from group theory. We say a group G acts on a set Ω if there is a binary operation
G× Ω→ Ω such that

• xe = x for the identity e ∈ G and every x ∈ Ω, and

• xgh = (xg)h for g, h ∈ G and x ∈ Ω.

Common examples for group actions are permutation and matrix groups.

Permutation groups consist of permutations of a Vnite set Ω, which we usually iden-
tify with the set of natural numbers {1, . . . , n} for some n ∈ N. We write Sn for the
symmetric group of n elements, that is for the group of all permutations of n elements.
In this thesis we will always use lowercase Greek letters to denote permutations. For a
permutation σ we write σ(i) for the image of i ∈ N under the action of σ. Matrix groups
consist of matrices over a Veld and act by matrix-vector multiplication on the underlying
vector space. In this thesis we usually work with the group of all invertible d× d-matrices
over the reals or over the rationals, denoted by GL(R, d) and GL(Q, d), respectively.

If a group G is Vnitely generated by some elements g1, . . . , gk, we write G =
〈g1, . . . , gk〉. For two groups G,H we denote by G ≤ H that G is a subgroup of H .
The number of elements in G is called order of G and we denote it by |G|. Furthermore,
we stick to Knuth [Knu91] for his compact notation of group inverses, so g− shall be the
inverse element of g.

The orbit of x ∈ Ω under G is the set of images xG := {xg : g ∈ G}. Let H,K ≤ G
be subgroups of G and g ∈ G. Then we deVne the right coset Hg := {hg : h ∈ H}
and analogously the left coset gH := {gh : h ∈ H}. The double coset HgK is given by
HgK := {hgk : h ∈ H, k ∈ K}. As becomes immediately clear from the deVnition, two
cosets Hg1, Hg2 are either the same or disjoint. Because every g ∈ G is in one coset, G is
partitioned by its cosets. Thus it makes sense to deVne a right (left) transversal U ⊆ G for
G moduloH as a set containing exactly one representative of everyH-right (left) coset of
G, including the identity eU ∈ U .
The stabilizer Stab(G, x) of of x ∈ Ω in G is deVned as the set Stab(G, x) := {g ∈

G : xg = x} and forms a subgroup of G. Similarly, we write Stab(G,Γ) := {g ∈ G :
xg ∈ Γ for all x ∈ Γ} for the setwise stabilizer of a set Γ ⊆ Ω.

1.4. Polyhedra and symmetry

There are diUerent kinds of symmetries we can look for at a polyhedron. We can distin-
guish four types: congruences, aXne and projective symmetries, which have some kind of
geometric realization, and combinatorial symmetries. Throughout this section we assume
that the vertex barycenter B(P ) of our polyhedron P , i.e. B(P ) := 1

m

∑m
i=1 vi for all

vertices v1, . . . , vm of P , is the origin. This allows us to consider the linear symmetries,
congruences and aXne symmetries, without translation term.

The most accessible example for geometric symmetries are congruences. Let P ⊆ Rd
be a polyhedron and O ∈ GL(R, d) be an orthogonal transformation. We say that O is
a congruence if O leaves P setwise invariant. Of course, the set of all congruences of P

5



1. Introduction

Figure 1.2.: Example of a polygon with maximal congruence symmetry group

constitute a matrix group. All congruences are well-known geometric transformations
like reWections and rotations. The square in Figure 1.2 has eight congruences which are
given by reWections at the diagonals and axes. The group that is generated by these eight
congruences is generally known as the dihedral group D4.

A generalization of congruences are aXne symmetries. We say that A ∈ GL(R, d) is
an aXne symmetry of a polyhedron P if it leaves P setwise invariant. The rectangle R

Figure 1.3.: Example of a polygon with maximal aXne symmetry group

in Figure 1.3 has only four congruences generated by reWections. The 90 degree rotations
about the center, which are congruences of the square, are not applicable to this rectangle.

But we can combine a scaling by the matrix As =

(
1
2

0
0 2

)
with a 90 degree rotation O90

to obtain an aXne symmetry A := O90As of the Vgure, which is no congruence. Thus the
group of aXne symmetries of R still is the dihedral group D4.

A further generalization are projective symmetries. A projective symmetry of a poly-
hedron P is a projective transformation that leaves P setwise invariant. We can identify
this symmetry group with the aXne symmetries of homog(P ). The trapezoid T in Fig-

Figure 1.4.: Example of a polygon with maximal projective symmetry group

ure 1.4 has the dihedral group D4 as projective symmetry group because homog(T ) has
the same aXne symmetries as homog(R) where R is the rectangle from Figure 1.3. For
a brief introduction to projective transformations the interested reader may also consider
[Zie95, Sec. 2.6].

6



1.4. Polyhedra and symmetry

Figure 1.5.: Hasse diagram of a pyramid (source: http://en.wikipedia.org/wiki/File:
Pyramid_face_lattice.svg)

We now turn to a diUerent kind of symmetries: combinatorial symmetries. Before we
can properly deVne them, we need more notation. The set of all faces of a polyhedron
forms a partially ordered set by inclusion, a so called poset. Because the intersection of
two faces of a polyhedron yields another face, the poset of faces forms a so called lattice
and we speak of the face lattice L(P ) of P . [Zie95, Sec. 2.2] contains an introduction
into poset terminology and further statements about the face lattice structure. The face
lattice embodies the complete combinatorial structure of a polyhedron. An extension of the
concept of a polyhedron are abstract polyhedra, which are algebraic objects inspired from
face lattices of geometric polyhedra (cf. [MS02]). In this thesis we will only be concerned
with geometric polyhedra.

A common visualization of a face lattice, or a poset in general, is a Hasse diagram. The
Hasse diagram depicts a graph that has the elements of a poset as vertices. Two vertices
x, y are connected by an edge if and only if x ( y. Figure 1.5 shows the face lattice of
a three-dimensional pyramid. All vertices correspond to faces of the pyramid, and edges
indicate setwise inclusion.

Based on the face lattice of a polyhedron we can deVne the most general form of its
symmetry: combinatorial symmetry. A combinatorial symmetry of a polyhedron P is
an automorphism f of its face lattice L(P ). Generally, we say that f is a face lattice
isomorphism between two face lattices L(P ), L(Q) if f is a bijection of the faces of P to
the faces of Q such that for all faces F,G of P it holds that

F ⊆ G ⇐⇒ f(F ) ⊆ f(G).

A face lattice isomorphism f between L(P ) and L(P ) is a face lattice automorphism.
We write in short AutP for the combinatorial automorphism group of a polyhedron P .

7
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1. Introduction

Note that the groups AutP and Aut(homogP ) are isomorphic because P and homogP
essentially have the same combinatorial structure.

Figure 1.6.: Example of a polygon with maximal combinatorial symmetry group

The polygon P in Figure 1.6 continues our series of four-sided polygons. It has only
trivial geometric symmetries as the identity is the only congruence and aXne and projec-
tive symmetry. But its combinatorial symmetry group is isomorphic to the dihedral group
D4 as P has the same combinatorial structure as a square.
Every geometric symmetry is also a combinatorial symmetry because it permutes all

faces of a polyhedron while preserving inclusion. The reverse does not hold as there
are combinatorial symmetries which are not geometric as we have seen in Figure 1.6.
In general, combinatorial symmetries are also more powerful than geometric symmetries
in the following sense: [BEK84] give an example of a 4-dimensional polytope P with a
combinatorial symmetry f which cannot be realized as aXne transformation. That is,
there is no polytope P ′ with the same face lattice as P such that f is induced by any
orthogonal transformation on P ′.
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2. Computing Polyhedral Symmetries

We will see shortly that it is quite obvious how we can obtain combinatorial symmetries
of P if vertices and facets of a polyhedron P are known. However, the task of description
conversion implies that often only partial information is available. In this chapter we
will thus look at methods to obtain combinatorial symmetries even if either vertices or
facets of P but not both are available. Before we can discuss two diUerent approaches
for computing a subgroup of Aut(P ), we have to look at some basics from the Veld of
computational group theory.

2.1. Methods from computational group theory

Computational group theory provides the necessary means to work eXciently with math-
ematical groups algorithmically. In his thesis [Reh10] the author gave a brief overview
of algorithms for permutation groups, which are at the heart of computations around any
kind of symmetries. In this section we will brieWy remind ourselves of some important
concepts that we will use throughout this chapter to compute symmetries of polyhedra.
We will also extend the scope of algorithms to treat both permutation and Vnite matrix
groups. Besides the author’s thesis, the interested reader may Vnd all required computa-
tional aspects of permutation groups in [HEO05] and [Ser03].

2.1.1. Bases, strong generating sets and backtrack search

In this section we discuss a structure for representing a symmetry group so that we can
treat it algorithmically. We always assume that G is a Vnite group acting faithfully on
a set Ω. The usual case is to consider G as a permutation group with Ω being a set of
numbers. But we also can and will use it for a (Vnite) matrix group G ≤ GL(R, d) where
Ω = Rd is the set of d-dimensional vectors, on which G acts naturally by matrix-vector
multiplication.

DeVnition 2.1. LetG be a Vnite group acting on the set Ω. We call a sequence of elements
B := (β1, β2, . . . , βm) ⊆ Ω a base for G if the only element of G to Vx B pointwise is the
identity.

For a base B we denote by G[i] := G(β1,...,βi−1) the pointwise stabilizer of the i− 1 Vrst
base elements (β1, . . . , βi−1) which form a subgroup chain, the stabilizer chain:

G = G[1] ≥ G[2] ≥ · · · ≥ G[m] ≥ G[m+1] = 〈()〉. (2.1)

The cosets of G[i] modulo G[i+1] are closely related to the orbits βG
[i]

i . For two cosets
G[i+1]a = G[i+1]b with a, b ∈ G[i] we have a = hb for h ∈ G[i+1] and thus βai =

9



2. Computing Polyhedral Symmetries

βhbi = βbi because h stabilizes βi. Also the reverse direction holds: From βai = βbi we can
immediately conclude that the two cosets G[i+1]a, G[i+1]b are the same. So we can build
a transversal for G[i] modulo G[i+1], which contains one representative for every coset, by
looking at elements generating the orbit ∆(i) := βG

[i]

i . For every β ∈ ∆(i) let uβ ∈ G[i]

be an element that maps βi to β, i. e. β
uβ
i = β. Then it follows from our considerations

that U (i) := {uβ : β ∈ ∆(i)} is a (right) transversal forG[i] moduloG[i+1]. By Lagrange’s
Theorem, every g ∈ G can uniquely be decomposed into

g = umum−1 · · ·u2u1, for some ui ∈ U (i). (2.2)

So far we do not know how to compute G[i] and the related orbits and transversals ∆(i)

and U (i). An important concept to facilitate this is a strong generating set.

DeVnition 2.2. Let S be a generating set for a Vnite permutation group G with base B.
The set S is a strong generating set (SGS) for G relative to B if it contains generators for
all G[i], that is

G[i] = 〈S ∩G[i]〉, for 1 ≤ i ≤ m+ 1. (2.3)

For brevity, we call a pair B, S of a strong generating set S relative to a base B a BSGS.

A base together with a strong generating set enables us to compute the transversals
along the stabilizer chain. By enumerating all possible transversal combinations

unun−1 · · ·u2u1 with ui ∈ U (i), (2.4)

we enumerate all group elements according to (2.2). If we want to search for group ele-
ments with a speciVc mathematical property P , we can list all elements and Vlter those
satisfying P . In the following we write G(P) for all elements of G fulVlling property P .
The decomposition based on (2.4) has the advantage that for many common problems

we do not have to consider all combinations. Equation (2.4) is actually about base point
images. The choice of u1 Vxes the image of the Vrst base point, the choice of u2u1 Vxes the
image of the Vrst two base points, and so on until the complete image is known. For the
problem of searching elements with some mathematical property P , it is often possible
to infer from a partial base image given by u′iu

′
i−1 · · ·u′1 that it cannot be extended to

a group element satisfying P . In this case we can thus skip all combinations that start
with u′iu

′
i−1 · · ·u′1. This is the key to backtrack search in a group given by a BSGS. In

Section 2.3.2 we will see an example where we search for symmetries of polyhedra.

2.1.2. Partition backtracking

The backtracking approach we have seen so far has one big disadvantage: it works only
with one (base) point at the same time. However, it is often possible to put the knowledge
of all prior decisions to good use and speed up the search for G(P).

DeVnition 2.3. An ordered partition Π = (Π1, . . . ,Πk) of Ω is a sequence of non-empty,
pairwise disjoint subsets Πi ⊆ Ω such that

⋃k
i=1 Πi = Ω. The sets Πi are called cells of

Π. We denote the length of Π by |Π| := k and the set of all ordered partitions by OP(Ω).
The group Sym(Ω) acts cellwise on ordered partitions: Πg := (Πg

1, . . . ,Π
g
k) for every

g ∈ Sym(Ω).
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2.1. Methods from computational group theory

We prefer ordered partitions to unordered partitions because two ordered partitions
Π,Σ ∈ OP(Ω) with |Π| = |Σ| = |Ω|, i. e. consisting of only single-element cells, induce
exactly one permutation g ∈ Sym(Ω) by Πg = Σ. In the following we refer to ordered
partitions of Ω simply as partitions. An important relation between partitions is that of a
reVnement:

DeVnition 2.4. Let Π = (Π1, . . . ,Πl) and Σ = (Σ1, . . . ,Σm) be partitions. We say that
Π is a reVnement of Σ, Π ≤ Σ, if the cells of Σ are a consecutive union of cells of
Π. Formally, Σi =

⋃ki
j=ki−1+1 Πj for some indices 0 = k0 < k1 < · · · < km = l. A

reVnement is strict if |Π| > |Σ| and we write Π � Σ in this case.

The central concept of our partition backtracking will be a reVnement process that in
some way harmonizes with the property P we are looking for.

DeVnition 2.5. A P-reVnementR is a mappingR : OP(Ω)→ OP(Ω) such that
• R(Π) ≤ Π for Π ∈ OP(Ω) and,
• if g ∈ G(P) and Π ∈ OP(Ω) it holds that

R(Π)g = R(Πg). (2.5)

In other words, the operation of a P-reVnement and every g ∈ G(P) on partitions
commute. This means, if g is unknown, we can potentially gain information on g because
we know how it acts on a Vner partition with less degrees of freedom. To actually create
reVnements of partitions we can use an intersection of partitions.

DeVnition 2.6. Let Π = (Π1, . . . ,Πl) and Σ = (Σ1, . . . ,Σm) be partitions. We deVne
the intersection Π ∧ Σ as the partition with the non-empty sets Πi ∩ Σj for 1 ≤ i ≤ l,
1 ≤ j ≤ m as cells, ordered by the following rule: Πi1 ∩ Σj1 precedes Πi2 ∩ Σj2 if and
only if i1 < i2 or i1 = i2 and j1 < j2.

Lemma 2.7. Let Π,Σ ∈ OP(Ω). The intersection Π∧Σ is a reVnement of Π. The reverse
statement does not hold.

Proof. By deVnition of the intersection we have Π ∧ Σ = (Π1 ∩ Σ1,Π1 ∩ Σ2, . . . ,Π1 ∩
Σm,Π2 ∩ Σ1,Π2 ∩ Σ2, . . . ), which is a reVnement of Π. The order in which we have
deVned the intersection to work with cells is also the reason why Π∧Σ is not a reVnement
of Σ.

Example 2.8. Consider the set Ω = {1, 2, . . . , 7}. We write Π := (1 3 5 | 2 4 | 6 7) in short
for the partition ({1, 3, 5}, {2, 4}, {6, 7}). We have that Σ := (1 3 | 5 | 2 4 | 6 | 7) ≤ Π is
a strict reVnement of Π. Because the order into which cells are split up is not relevant,
Σ′ := (5 | 1 3 | 4 | 2 | 6 7) ≤ Π is another strict reVnement of Π. We can “isolate” elements
α ∈ Ω of a partition by intersecting with Iα := (α |Ω \ {α}). For example, to isolate 5 in
Π we compute Π ∧ I5 = (5 | 1 3 | 2 4 | 6 7).

For technical details of a partition backtrack search the interested reader may consider
[Reh10] or [Leo91, Leo97]. A full description would go beyond the scope of this thesis so
we brieWy look at the idea of this algorithm. Let us assume we have Π,Σ ∈ OP(Ω) such
that for some (possibly unknown) g ∈ G(P) the relation Πg = Σ holds. As mentioned
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2. Computing Polyhedral Symmetries

before, Πg := (Πg
1, . . . ,Π

g
k) means cellwise action of g on the partition. For instance, the

trivial partitions Π = Σ = (Ω) are an obvious starting point. The Vner Π and Σ are, i. e.
the more cells they have, the more information we get about g ∈ G(P). If both Π and Σ
are discrete, that means all cells consist of a single element, the permutation g is uniquely
determined.

The way to get there are P-reVnements. We start with a pair Π̂, Σ̂ of ordered partitions
such that Π̂g = Σ̂ for some g ∈ G(P). Then we try to Vnd P-reVnementsR that actually
yield Vner partitions Π := R(Π̂) � Π̂ and Σ := R(Σ̂) � Σ̂. For such a reVnement R we
obtain Πg = R(Π̂)g = R(Π̂g) = Σ by the P-reVnement property (2.5). We can iterate
this process until we cannot Vnd a better, strict reVnement. If the resulting Π and Σ are
not discrete, we resort to backtracking as follows: We pick one cell index 1 ≤ j ≤ |Π|
with |Πj| ≥ 2 and one α ∈ Πj . Because Πg = Σ and especially Πg

j = Σj , the image αg of
α has to be some β ∈ Σj . In a backtracking manner we probe each of this possible image
candidates β. A backtrack reVnement Bα is a function OP(Ω)→ OP(Ω) deVned as

Bα(Π) := Π ∧ (α |Ω \ {α}).

So for the next iteration we set Π̂ := Bα(Π) and Σ̂ := Bβ(Σ) for some β ∈ Σj , assuming
that there still is a g ∈ G(P) with Π̂g = Σ̂ (and αg = β). When we eventually reach a
discrete partition Σ, the pair Π,Σ deVnes a unique g ∈ Sym(Ω) by Πg = Σ. What is left
to us is to check whether also g ∈ G(P).

With this sketch of partition backtracking we conclude this excursion into computa-
tional group theory and return to the main task of computing symmetries of polyhedra.

2.2. Transforming the problem

It is well-known how to obtain combinatorial symmetries of a polyhedral cone if all rays
and facets are known. Because every face of a cone is the conical hull of its rays and every
face is the intersection of facets, every combinatorial symmetry is already determined by
the relationship between rays and facets (cf. [KS03, p. 216]). We consider the bipartite
graph I(P ) that has the rays and facets of P as nodes. A ray r and a facet F are joined
by an edge in I(P ) if and only if r ⊆ F . We call I(P ) the incidence graph of P since it
records the incidence between rays and facets. Every face lattice automorphism of P and
thus every combinatorial symmetry of P corresponds to an automorphism of the graph
I(P ) and vice versa. A graph automorphism f is a permutation of its node set V such
that n1, n2 ∈ V are joined by an edge if and only if f(n1), f(n2) ∈ V are joined by an
edge. Thus we can compute combinatorial automorphisms of polyhedra by computing
automorphisms of graphs, which is a well-studied problem. It is still an open problem
whether computing graph automorphism has polynomial complexity or not. Despite that,
there exist fast implementations like [nauty] that are widely used in practice. [KS03] also
show that computing combinatorial symmetries from the vertex/facet incidences is graph
isomorphism complete, i. e. it is always “as hard” as computing isomorphisms of graphs.

Since our central problem in this thesis is description conversion of polyhedra, it may
often be the case that we have only information about either the vertices or the facets.
Although for some families of polytopes the full combinatorial automorphism group is
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known (cf. [KW10], [Fio01]), this is not the general case. Thus we are interested in com-
puting at least a subgroup of the general combinatorial symmetry group of a polyhedron
when only partial information is available.
As the full combinatorial symmetry group is beyond our reach, we start by looking at

geometrical symmetries of a polyhedron P . Because the symmetries of P are isomorphic
to the symmetries of its homogenization homog(P ), we will only consider the case of a
polyhedral cone P . So let P be given by its rays r1, . . . , rn. Then any aXne symmetry
A ∈ GL(R, d) of P is characterized by

Ari = λirσ(i) for all 1 ≤ i ≤ n (2.6)

for a σ ∈ Sn depending on A. For such an A we clearly have A cone{r1, . . . , rn} =
cone{Ar1, . . . , Arn} = cone{r1, . . . , rn}. Equivalently, we could also consider a cone P
given as non-redundant H-description {x ∈ Rd : 〈ci, x〉 ≤ 0 for 1 ≤ i ≤ m}. Then an
aXne symmetry A of P is given by

cTi A = λic
T
σ(i) for all 1 ≤ i ≤ m (2.7)

and AT is an aXne symmetry of the polar P∆. We see that the equations (2.6) and (2.7)
are the same up to transposition for V- and H-description. Thus we can conclude that
for computing aXne symmetries the knowledge of either V- orH-description is suXcient,
provided one can solve (2.6) or (2.7). This problem is still not suitable for our purpose
as there seems to be no known algorithm for computing A satisfying this relationship
(cf. [BDS09, Sec. 3.1]). An indicator for why this problem is hard is that the group of
matrices A may be inVnite. For instance, for the cone P := cone{e1, e2} every matrix

Aλ :=

(
λ 0
0 λ

)
or A′λ :=

(
0 λ
λ 0

)
for every λ > 0 satisfy (2.6).

Therefore we look at a solution to a simpliVed version of (2.6). Like the authors of
[BDS09] we call A ∈ GL(R, d) a restricted symmetry of P if

Ari = rσ(i) for all 1 ≤ i ≤ n (2.8)

for a σ ∈ Sn depending on A. We write RAut(P ) for the group of restricted symmetries
of P . Note that if P is the homogenization of a polytope P ′ then RAut(P ) is the group of
aXne symmetries of P ′ and (2.6) yields the projective symmetries of P ′.
We also see that we can regard the group of restricted symmetries RAut(P ) as matrix

group and as permutation group. So far we have mostly been concerned with the matrix
group representation. When we regard RAut(P ) as a subgroup of the combinatorial sym-
metries Aut(P ), any restricted symmetry A acts on the face lattice as well. By (2.8) we
see how A permutes the rays of P . This is enough to determine how A acts on all other
faces of P since every face is characterized by its incidence with the rays of P . We will
switch transparently been the interpretations of a restricted symmetry as a matrix and a
permutation of rays/facets, which induces a face lattice automorphism. The usage will
always be clear from the context.
After these general remarks we now turn to the actual computation of restricted symme-

tries. From the deVnition in (2.8) we do not get any information about how the matrices A
or the permutations σ look like. As an example for a restricted symmetry we consider the
following triangle T of Figure 2.1 with vertices o := (0, 0)T , a := (1, 0)T and b := (0, 2)T .
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o a

b

Figure 2.1.: Example for restricted symmetries

Then a simple calculation shows that the matrix A :=

(
0 1

2

2 0

)
is a restricted symmetry

of the triangle T . We see immediately that this transformation A is neither a reWection
nor orthogonal. In general, angles may change under a restricted symmetry. To overcome
this we can apply a transformation to the input.
In the following we look for restricted symmetries of the set V := {v1, . . . , vn} ⊂ Rd.

This set V may represent the vertices or rays of a polyhedron or normal vectors of the
facets of a polyhedron. A restricted symmetry for V is given by Avi = vσ(i) for a σ ∈ Sn,
as introduced before in (2.8). We assume that V is full-dimensional, i.e. dim(aff V ) = d.
We can always achieve this by a suitable projection. For V we consider the following
matrix:

Q =
n∑
i=1

viv
T
i ∈ Rd×d. (2.9)

We can easily see that this matrix is positive deVnite if V is full-dimensional. Hence we can
compute the inverse Q− and its Cholesky decomposition RTR := Q−. We apply R to the
vectors in V and obtain vectors wi := Rvi, which make up the setW := {w1, . . . , wn}.
Angles between the transformed vectorswi will not change under a restricted symmetry

A ∈ GL(R, d) since

〈wi, wj〉 = wTi wj = vTi R
TRvj = vTi Q

−vj

= vTi A
TQ−Avj

= vTσ(i)Q
−vσ(j)

= 〈wσ(i), wσ(j)〉.

(2.10)

Here we have used the following observation or, more precisely, its inverse:

AQAT = A

(
n∑
i=1

viv
T
i

)
AT =

n∑
i=1

Aviv
T
i A

T =
n∑
i=1

vσ(i)v
T
σ(i) = Q. (2.11)

For our example above we compute Q =

(
1 0
0 4

)
, Q− =

(
1 0
0 1

4

)
and R =

(
1 0
0 1

2

)
.

Transforming Figure 2.1 with R, we obtain an isosceles triangle as depicted in Figure 2.2.
The restricted symmetry A for the vectors V transforms into an orthogonal matrix

T := RAR−. For this matrix we have Twi = wσ(i) if Avi = vσ(i). Note that we have the
following identity for the transformed vectors wi

n∑
i=1

wiw
T
i =

n∑
i=1

Rviv
T
i R

T = RQRT = Id (2.12)
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Ro Ra

Rb

Figure 2.2.: Example for restricted symmetries (continued)

This means that thew1, . . . , wn mimic an orthonormal base forRd. In fact, [Had40, Satz 1]
shows that the wi are a projection of n orthonormal unit vectors e1, . . . , en ∈ Rn into
the Rd.
To actually compute restricted symmetries of a polyhedron we look at two ways to

exploit equation (2.10). We already have seen that a restricted symmetry A, σ implies

〈wi, wj〉 = 〈wσ(i), wσ(j)〉 (2.13)

for all i, j. Likewise the reverse is true. If (2.13) holds for a σ ∈ Sn and all i, j then we can
Vnd a matrix T ∈ GL(R, d) such that Twi = wσ(i) for all i.

To see this we choose an Rd-basis from vectors inW . Without loss of generality we can
assume that w1, . . . , wd constitute a basis. Then we write P for the matrix consisting of
w1, . . . , wd as columns and Pσ for the matrix with wσ(1), . . . , wσ(d) as columns. Because
w1, . . . , wd make up a basis, the equation (2.13) is equivalent to P TP = P T

σ Pσ. This means
that T := PσP

− is an orthogonal matrix. For 1 ≤ i ≤ d we have Twi = PσP
−wi =

Pσei = wσ(i). Thus for 1 ≤ i ≤ d and 1 ≤ j ≤ n it holds that

wTσ(i)Twj = (Twi)
TTwj = wTi wj = wTσ(i)wσ(j).

So we have wTσ(i)(Twj − wσ(j)) = 0. Because the wσ(i) = Twi form an Rd-basis, this
implies

Twj = wσ(j) for all 1 ≤ j ≤ n.

This shows that for Vnding restricted symmetries it is enough to search permutations
σ ∈ Sn such that 〈wi, wj〉 = 〈wσ(i), wσ(j)〉 for all i and j. In the following section we
will discuss one solution to Vnd these permutation directly and one new algorithm that
approaches the problem from the matrix side.

2.3. Algorithms for computing restricted symmetries

2.3.1. Graph and matrix automorphisms

In [BDS09] the problem (2.13) is interpreted as a graph automorphism problem. The advan-
tage of this approach is that this is a quite well-studied problem and there also exists soft-
ware to compute graph automorphisms like [nauty]. So in order to obtain restricted sym-
metries as graph automorphisms we consider the edge-weighted complete graph G(W )
with vertex set W and edge weights c(wi, wj) = 〈wi, wj〉. Every automorphism of this
graph G(W ) corresponds to a restricted symmetry of W . However, for implementations
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it may be necessary to transform the edge-weighted into a vertex-weighted graph. For
instance, nauty only handles vertex-weighted graphs. The nauty manual contains a de-
scription of how to transform a graph accordingly, requiring |W |dlog2(c + 1)e vertices
where c is the number of diUerent edge weights in the graph.

In this section we follow a more direct path to solve this problem and avoid the pre-
processing transformation. Instead of interpreting 〈wi, wj〉 = 〈wσ(i), wσ(j)〉 as a graph
automorphism problem, we also can consider it directly as a matrix automorphism prob-
lem. We can state the problem we want to solve as follows. Given a symmetric matrix
A ∈ Nn×n, Vnd generators of the group Aut(A) := {σ ∈ Sn : aij = aσ(i)σ(j)}.
Of course, this is still a graph automorphism problem in disguise but we will not need a
further transformation of the input.

Solving this matrix automorphism problem can easily be Vtted into a partition back-
tracking framework that we had a glimpse on in Section 2.1.2. To state again all details of
partition backtracking would go beyond the scope of this thesis and the interested reader
may consider the author’s other thesis [Reh10]. Instead, we will only look at the funda-
mental structures that we need to solve our problem. That is, we need speciVc partition
reVnement procedures for the matrix automorphism problem. We do not have to start
from scratch as Leon has already outlined in [Leo91] how such a reVnement can look like.

According to DeVnition 2.5 from page 11, we discuss two P-reVnements that we can
plug into a partition backtrack search to compute Aut(A) = G(P) as a subgroup of Sn.
Let Ω = {1, . . . , n} be the set of row or column indices. Without loss of generality we can
assume that A ∈ {1, . . . , v}n×n for some v ∈ N such that for every w ∈ {1, . . . , v} there
exists a matrix element aij with aij = w. First we remind ourselves how we can isolate
elements or sets from a partition by intersecting with a special partition.

DeVnition 2.9. Let Γ ⊆ Ω. Then we deVne the isolating partition I(Γ) := (Γ |Ω \ Γ).

With this notation at hand we can describe the Vrst P-reVnement.

Lemma 2.10. Let A ∈ {1, . . . , v}n×n be a symmetric matrix and G(P) ≤ Aut(A) Then
for every w ∈ {1, . . . , v}

Rdiag,w(Π) := Π ∧ I({i ∈ Ω : aii = w}) (2.14)

is a P-reVnement.

Proof. To show that Rdiag,w is a P-reVnement we have to prove that Πg ∧ I({i ∈ Ω :
aii = w})g = Πg ∧ I({i ∈ Ω : aii = w}) for every g ∈ G(P). This is easy to see
because these isolating partitions are g-invariant:

I({i ∈ Ω : aii = w})g = I({ig ∈ Ω : aii = w}) =

= I({i ∈ Ω : aig− ig− = w})
= I({i ∈ Ω : aii = w})

(2.15)

since g− ∈ Aut(A).

The second P-reVnement due to [Leo91] requires more notation.
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DeVnition 2.11. Let A ∈ {1, . . . , v}n×n be a symmetric matrix. Then we deVne the
Vngerprint function fA : Ω× 2Ω → Nv where 2Ω denotes the power set of Ω. The value
of fA(r, S) for r ∈ Ω and S ⊂ Ω is a v-dimensional vector z whose entries zw are deVned
for every w ∈ {1, . . . , v} as:

zw := |{i ∈ S : ari = w}|. (2.16)

In other words, we look at a subset of the r-th row of A, deVned by the column set S, and
count how many times each possible value w ∈ {1, . . . , v} occurs.

With this Vngerprint we can deVne the second P-reVnement.

Lemma 2.12. Let A ∈ {1, . . . , v}n×n be a symmetric matrix and G(P) ≤ Aut(A) Then
for every z ∈ Nv and 1 ≤ k ≤ |Π|

RVngerprint,z,k(Π) := Π ∧ I({i ∈ Ω : fA(i,Πk) = z}) (2.17)

is a P-reVnement.

Proof. As in the proof of the last lemma we show that the isolating partitions are g-
invariant. This time we have to be careful because the isolating partitions depend on Π.
Thus we have to show that Πg ∧ I({i ∈ Ω : fA(i, (Πk)

g) = z}) = Πg ∧ I({i ∈ Ω :
fA(i,Πk) = z})g for g ∈ G(P).

We Vrst remember that the components of the Vngerprint vector fA(r, S) count ele-
ments of the set {i ∈ S : ari = w}. Because

|{i ∈ S : ari = w}| = |{ig ∈ S : ari = w}|
= |{ig ∈ S : argig = w}|
= |{i ∈ Sg : argi = w}|

, (2.18)

it holds that fA(r, S) = fA(rg, Sg) for g ∈ Aut(A). Thus the equation

I({i ∈ Ω : fA(i,Πk) = z})g = I({ig ∈ Ω : fA(i,Πk) = z}) =

= I({i ∈ Ω : fA(ig
−
,Πk) = z})

= I({i ∈ Ω : fA(i, (Πk)
g) = z})

(2.19)

holds andRVngerprint,z,k is a P-reVnement.

The two P-reVnements from Lemma 2.10 and 2.12 are enough to compute Aut(A)
in a partition backtracking framework. They have been implemented by the author in
[PermLib] to be used by the polyhedral description software SymPol, which accompanies
this thesis. In Section 4.2 we will see how this rather simple approach compares to the
established graph-based solution using nauty.
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2. Computing Polyhedral Symmetries

2.3.2. Lattice automorphisms

For this section we assume that V ⊆ Qd, that means we just consider polyhedra with
rational coeXcients.
The matrix A of a restricted symmetry Avi = vσ(i) is not unique. Every conjugate

A′ := T−AT for any T ∈ GL(R, d) also satisVes A′vi = vσ(i). Thus we can apply a
linear transformation T ∈ GL(R, d) to V without changing the restricted symmetries in
their permutation representation. We choose d linear independent vectors from V , say
v1, . . . , vd. Then we set T as the inverse of the matrix with columns v1, . . . , vd. For the
transformed vectors W := {Tv : v ∈ V } we obtain that w1 = e1, . . . , wd = ed where
the ei are the standard unit normal vectors in Rd.
This implies that every restricted symmetry B of W , satisfying Bwi = wσ(i), has

wσ(1), . . . , wσ(d) as columns. It is diXcult to exploit this in our search for restricted sym-
metries. Choosing some columns of B yields no direct information whether this partial
selection can be extended to a restricted symmetry. However, the equation Bwi = wσ(i)

yields restrictions on the rows of B. In the following we will discuss a backtracking algo-
rithm that iteratively builds B row by row.
Suppose that {e1, . . . , ed} ⊆ W ⊆ Zd. Then, of course, every vector inW is a member

of the Z-lattice Zd. In this case also every possible restricted symmetry B has to be an
element of GL(Z, d). This follows directly fromW ⊆ Zd and | detB| = 1. We remember
the necessary condition for the matrix B

BQBT = Q, (2.20)

which also is equation (2.11) from page 14 withQ =
∑

iwiw
T
i . A diUerent view on (2.20) is

the following. Let b1, . . . , bd ∈ Zd be the columns ofBT . Naturally, these are also the rows
of B but because we want to work with column vectors only we regard them as columns
of BT . Thus we are looking for integer vectors b1, . . . , bd such that bTi Qbj = eTi Qej = qij
for all i, j where e1, . . . , ed are the unit normal vectors and qij are the entries of the matrix
Q. This problem is called a lattice automorphism problem.
Plesken and Souvignier give in [PS97] a backtracking algorithm to compute lattice

automorphisms. This algorithm computes

Aut(Zd, Q) := {B ∈ GL(Z, d) : BQBT = Q}. (2.21)

So we obtain the restricted symmetries RAut(W ) as the stabilizer of the set W in the
lattice automorphism group Aut(Zd, Q). This gives us two ways to compute RAut(W ).
First, we can dedicatedly compute the stabilizer of Aut(Zd, Q) after we have computed
Aut(Zd, Q) completely. Second, we can modify the algorithm of [PS97] to compute
RAut(W ) directly. In the following we discuss this second way and extend the origi-
nal backtracking algorithm by Plesken and Souvignier. Our task is to Vnd all matrices
B ∈ GL(Z, d) such that Bwi = wσ(i). We try to accomplish this by iteratively computing
columns b1, . . . , bd of BT .
We already know that the columns of B, which are the rows of BT , are some vectors

wσ(1), . . . , wσ(d). But because we have no information about the permutation σ, it is hard
to obtain information about the product Bwi, so we take another approach. Regardless
of our knowledge of the rows of BT , we know that not all vectors from Zd are suitable
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2.3. Algorithms for computing restricted symmetries

matrix columns. Looking again at (2.20), we can obviously restrict our search for columns
to the set

S := {b ∈ Zd : bTQb ≤ max
i
qii}. (2.22)

We can compute S for instance with the Fincke-Pohst algorithm as described in [FP85].
Computing S may not be feasible for all matrices Q as the best known algorithms require
exponential time in the worst case.
Because we will often switch between a list of vectors a1, . . . , ak and the matrix A

which has a1, . . . , ak as columns, we write for short A = mat(a1, . . . , ak). For our
backtrack search we need criteria to decide early if a certain set of m possible columns
b1, . . . , bm can be extended to b1, . . . , bd such that B = mat(b1 . . . bd)

T is a restricted
symmetry. In the following we discuss several necessary conditions for such an extension
to be possible. These conditions fall into two categories. First those described in [PS97],
which are generally applicable to lattice automorphism problems. Second those that are
speciVc for the restricted symmetry problem of vectors sets.
Of the three criteria presented in [PS97] we will only describe one. The other two may

only be useful for diXcult cases and the interested reader will Vnd them in [PS97, Sec. 5–
6]. For 1 ≤ m ≤ d we call (b1, . . . , bm) an m-partial automorphism if bTi Q, bj = qij for
all 1 ≤ i, j ≤ m. As Plesken and Souvignier observe, the number of extensions from an
m-partial to an (m+1)-partial automorphism is an invariant of all lattice automorphisms.
Additionally, we can use our condition Bwi = wσ(i) for restricted symmetries to state

another necessary condition. For every wi ∈ W we deVne w′i := Bmwi ∈ Zm where
BT
m := mat(b1, . . . , bm). Let Πm : Zd → Zm be the projection to the Vrst m coordinates.

Then there has to exist a permutation σ ∈ Sn such that

Πm(wσ(i)) = w′i (2.23)

for every 1 ≤ i ≤ n. Thus, one necessary and easy to check condition for (2.23) is that
the list (w′i)i has the same elements in the same quantity as (Πm(wi))i. In the following
we write s1 ∼ s2 if two sequences s1, s2 ⊂ Zm contain the same elements in the same
quantity.
Putting these two criteria together leads to a backtrack algorithm to compute restricted

symmetries. As preparation for this algorithm we compute two things. First, the sets

Si = {b ∈ S : bTQb = qii and∃σ ∈ Sn 〈b, wj〉 = 〈ei, wσ(j)〉 for all 1 ≤ j ≤ n} (2.24)

for 1 ≤ i ≤ d. This is a restriction on the possible matrix columns based on a relaxed
version of (2.23). Every i-th matrix column has to be an element of Si. We can test mem-
bership in Si easily by comparing the elements of the sequences (〈b, wj〉)j and (〈ei, wj〉)j .
As a second step we compute the number of extensions of i- to (i+ 1)-partial automor-

phisms for every 1 ≤ i ≤ d. While doing so, Plesken and Souvignier suggest to Vnd
a better ordering of the base vectors e1, . . . , ed. We begin with computing f1i := |Si|.
We choose as Vrst base vector ej1 an index j1 such that f1j1 = mini f1i. This ensures the
number of choices at the Vrst backtracking level is minimal.
Given reordered base vectors ej1 , . . . , ejl , we compute jl+1 as follows. We set fl+1,i := 0

for i ∈ {j1, . . . , jl} and compute for all other values of i

fl+1,i := |{b ∈ Si : bTQejk = qijk for all 1 ≤ k ≤ l}|. (2.25)
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2. Computing Polyhedral Symmetries

Again we choose jl+1 such that fl+1,jl = mini fl+1,i among all fl+1,i > 0. This ensures
that we minimize our backtrack choices based on our previous selection of base vectors.
When we Vnish this process, we obtain a probably improved ordering j1, . . . , jd. In the
following we assume that ji = i for all i and set fi := fii. The values fi give the number
of possible extensions of an i-partial automorphism under the new base ordering. We now
formulate a Vrst version of our backtracking algorithm.

Input: Set of vectorsW = {w1, . . . , wn} ⊂ Zd, recursion level i, selected rows
B = {b1, . . . , bi−1}, candidate rows C for level i+ 1

Output: List B of matrices B such that B = RAut(W )

if i = d+ 1 then1

return {mat(B)}2

end3

B ← ∅4

forall b ∈ C \B do5

B′ ← B ∪ {b}6

C ′ ← ∅7

if i < d then8

// check whether B′ can be extended to an (i+ 1)-partial
automorphism

C0 ← {b′ ∈ Si+1 : b′TQb = qi+1,i and b′TQbj = qi+1,j for all 1 ≤ j < i}9

if |C0| 6= fi+1 then10

next11

end12

s0 ← ((Πi+1(w) : w ∈ W ))13

forall b′ ∈ C0 do14

s1 ← ((mat(B′ ∪ {b′}) · w : w ∈ W ))15

if s0 ∼ s1 then16

C ′ ← C ′ ∪ {b′}17

end18

end19

end20

B ← B ∪ Backtrack(i+ 1, B′, C ′)21

end22

return B23

Algorithm 2.1: First version of backtrack search for restricted symmetries

Algorithm 2.1 will Vnd all integer restricted symmetries of a setW . It expects as input
the matrix Q =

∑
iwiw

T
i and the candidate set of short vectors Si according to (2.24).

Besides these, the algorithm, which is recursively referred to as Backtrack, needs the
recursion level i, a set of already selected rows B and candidates for the i-th matrix row.
We may start Backtrack with i = 1, B = ∅, C = S1. Because Algorithm 2.1 computes
all restricted symmetries and not only generators of RAut(W ), it is only of theoretical
interest. In practice, we only require a generating set of the restricted symmetries as
matrix or as permutation representation. To improve Algorithm 2.1 we review it with
Section 2.1.1 in mind.
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2.3. Algorithms for computing restricted symmetries

In the group of all integer invertible matrices G := GL(Z, d), we are looking for gener-
ators of the subgroup H := {B ∈ G : ∃σ ∈ Sn : Bwi = wσ(i) for all i} = RAut(W ).
The unit normal vectors e1, . . . , ed are a base of GL(Z, d) and thus of H as well (in the
sense of DeVnition 2.1 from page 9). This is because for Id := mat(e1, . . . , ed) we have
BId = Id if and only if B = Id.

What we have done so far in Algorithm 2.1 is an implicit backtrack search in GL(Z, d)
with base e1, . . . , ed. At each recursion level i we choose the image of the i-th base point
ei. Thus we can use techniques from general subgroup search in groups with bases. Note
that in our case we do not need to know a strong generating set forG because we explicitly
know a subset of G that we search in. That is, we restrict our search to matrices where
the i-th column is a member of the set Si. From the possible improvements of our search
explained in [Reh10, Ser03] we discuss one simple enhancement, given by the following
lemma.

Lemma 2.13. Let G be a group with base β1, . . . , βm. Let G[i] be the pointwise stabilizer
of β1, . . . , βi−1 in G. Let H be a subgroup of G and suppose that for some i all elements
of K := G[i] ∩H are known. Then for every h, h′ ∈ H with G[i]h = G[i]h′ we have that
〈K,h〉 = 〈K,h′〉.

Proof. It suXces to show that Kh = Kh′. From G[i]h = G[i]h′ we know that there is a
u ∈ G[i] ∩H such that h = uh′. By deVnition ofK we have u ∈ K and thus h and h′ are
in the same coset Kh = Kh′.

This suggests the following improvement. At each recursion level i we choose as Vrst
candidate vector ei, which clearly is in Si. In this manner we Vnd all elements of G[i] ∩H
before G \ G[i] for every i. Suppose for some i we know K := G[i] ∩ H because we
have considered all extensions of e1, . . . , ei−1. When we Vnd an element h ∈ H during
our backtrack search as extension of e1, . . . , ei−2, bi−1 for some bi−1, then we can skip all
other extensions of e1, . . . , ei−2, bi−1 and proceed directly to the next e1, . . . , ei−2, b

′
i−1.

This is because Lemma 2.13 states that every second extension of e1, . . . , ei−2, bi−1 in H
can already be generated from 〈K,h〉.
Algorithm 2.2 is an improvement over Algorithm 2.1 as it computes only a generating

set for the group of restricted symmetries. We add a global variable icompleted shared among
all recursion levels which contains the least i such that G[i] ∩H is known. Whenever we
Vnd a new group generator mat(B), we jump back straight to this recursion level.

Computing G[i] ∩ H before G \ G[i] also has the advantage that our generating set of
H will automatically be a strong generating set relative to the base e1, . . . , ed because
it contains generators for all H [i]. When we consider the permutation group representa-
tion H ′ ≤ Sn of H , we automatically obtain a strong generating set for it as well. The
permutation group H ′ has a base consisting of the points 1, 2, . . . , d.

In general, the running time of this backtracking algorithm very much depends on the
cardinality of the set of short lattice vectors S or, more precisely, the corresponding Si.
This is because |S1||S2| · · · |Sd| is an upper bound on the order of RAut(W ) and the
number of possible elements constructed in the backtrack search. Thus one may decide in
advance based on the size of S whether a lattice backtrack search for restricted symmetries
seems feasible.
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Input: Set of vectorsW = {w1, . . . , wn} ⊂ Zd, recursion level i, selected rows
B = {b1, . . . , bi−1}, candidate rows C for level i+ 1

Output: List B of matrices B such that every 〈B〉 = RAut(W )

if i = d+ 1 then1

return {mat(B)}, icompleted2

end3

B ← ∅4

forall b ∈ C \B do5

B′ ← B ∪ {b}6

C ′ ← ∅7

if i < d then8

// check whether B′ can be extended to an (i+ 1)-partial
automorphism

C0 ← {b′ ∈ Si+1 : b′TQb = qi+1,i and b′TQbj = qi+1,j for all 1 ≤ j < i}9

if |C0| 6= fi+1 then10

next11

end12

s0 ← ((Πi+1(w) : w ∈ W ))13

forall b′ ∈ C0 do14

s1 ← ((mat(B′ ∪ {b′}) · w : w ∈ W ))15

if s0 ∼ s1 then16

C ′ ← C ′ ∪ {b′}17

end18

end19

end20

T, j ← Backtrack(i+ 1, B′, C ′)21

B ← B ∪ T22

if j < i then23

return B, j24

end25

end26

icompleted ← min{icompleted, i}27

return B, i28

Algorithm 2.2: Improved version of backtrack search for restricted symmetries

For a very large set of low-dimensional vectors, i.e. n � d, performing the sequence
image checks in lines 13 to 19 may be quite expensive. The key elements are computing
s1 for each b′ and comparing the two sequences, which amounts to a sorting operation on
s0 and s1. This means there are at least n scalar products of d-dimensional vectors to be
evaluated, plus an O(n log n) sorting eUort in line 16. In a trade-oU between speed per
node and total number of nodes visited during the backtrack search we may thus perform
this check only for i = d+ 1, for which we must, and for small i.

One last thing that we have to look at is our assumption that {e1, . . . , ed} ⊆ W is
integer. We always can achieve {e1, . . . , ed} ⊆ W , but thenW needs not to be integer in
general. In this non-integer case we may not obtain all restricted symmetries by solving
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2.3. Algorithms for computing restricted symmetries

(2.20) for integer matrices A. Reviewing the algorithm, we note that we require W to be
integer for only one thing: to fully enumerate all short lattice vectors S = {b ∈ Zd :
bTQb ≤ maxi qii} in (2.22). Let λ ∈ Z be the smallest integer such that λW ⊆ Zd. Then
we have to compute all vectors

S = {b ∈ 1

λ
Zd : bTQb ≤ max

i
qii}

=
1

λ
{b ∈ Zd : bTQb ≤ max

i
λ2qii}

(2.26)

instead. This extended short lattice vector problem may be impractical to solve for λ > 1
or cause a very large set S.

2.3.3. Comparison

At the end of this chapter we brieWy compare the two algorithms for computing restricted
symmetries. As both algorithms are backtracking algorithms, we focus on the preprocess-
ing steps and upper bounds on the number N of elements checked during the backtrack
search. Let V = {v1, . . . , vn} ⊆ Rd be the vectors we want to compute RAut(V ) for.
The graph or matrix automorphism approach requires the computation and inversion

of the d × d-matrix Q =
∑
viv

T
i as a preprocessing step. Then the automorphisms of a

symmetric n× n-matrix A, or equivalently the automorphisms of a vertex-labeled graph
with at least n vertices, are computed with a partition backtracking approach. Since the
image of d base vectors determines the image of the remaining n−d we obtain an obvious
upper bound for the backtrack search by N ≤ n(n − 1) · · · (n − d + 1)(n − d). In
most cases this bound can be improved by looking at the speciVc R-base induced by the
matrix A (cf. [Reh10, Sec. 3.2.3]).
As mentioned before, the performance of the lattice automorphism approach is deter-

mined by two things. First, a set of short lattice vectors S = {b ∈ Zd : bTQb ≤ maxi qii}
has to be computed. This may require exponential time depending on d and maxi qii ≥ n.
If we do not know a-priori whether V admits an integer lattice representation, we have to
invert a d× d-matrix to get an answer to this question. Second, a backtrack search based
on S is conducted. Clearly, we have N ≤ |S1||S2| · · · |Sd| ≤ |S|d where Si ⊆ S is the set
of vectors suitable for the i-th column of the lattice automorphism matrix. We can obtain
a better estimation once we have computed the Vngerprint matrix according to (2.25). This
yields the bound N ≤ f1f2 · · · fd.
Thus a possible advantage of the second approach is that, if we brieWy ignore S, it works

with a d × d instead of a n × n matrix. If n = |V | is much larger than d, then the graph
in the Vrst approach may contain too many vertices to be tractable in practice. In this case
we may hope for a relatively small set of short vectors S to compute RAut(V ) by lattice
automorphisms. We will see in Section 4.2 one particular problem class for which these
conditions hold and the lattice automorphism approach is clearly superior.
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3.1. Classic methods

In this section we will look at algorithms for the description conversion problem. As we
have already seen in the discussion after Theorem 1.3 on page 4, the facet enumeration and
vertex enumeration problem are polar to each other. Thus we can concentrate on one of
these two and in the following we will be concerned only with vertex enumeration. This
means, we are given a polytope P = P (A, b) and want to Vnd a set of vertices V such
that P = conv V . Sometimes it will be more convenient to work with the homogenized
version: given a cone P = P (A, 0), Vnd a set of rays R such that P = coneR.

In his overview [Sei04], Seidel identiVes three categories into which almost all the
available algorithms for the vertex enumeration problem can be put. In this section we
will brieWy discuss representatives of two of the three categories: incremental and graph
traversal methods.

3.1.1. Incremental methods

Let A ∈ Rn×d be a matrix with rows a1, . . . , an. Then for a set K ⊆ {1, . . . , n} we
denote with AK the sub-matrix of A that consists of the rows indexed by K . In order
to perform a description conversion of a polytope P = P (A, b), incremental methods
iteratively construct a V-representation for polytopes P (AK1 , b1) ⊃ P (AK2 , b2) ⊃ · · · ⊃
P (AKl , bl) = P (A, b) = P where K1 ⊂ K2 ⊂ · · · ⊂ Kl = {1, . . . , n} is an ascending
chain of index sets. One of the easiest to describe incremental algorithms is the double
description method. This algorithm was Vrst described in [MRTT53] and has modern
implementations, for example [cdd]. In the following, we stick to the notation of [FP96],
which is the basis for cdd.

Let A ∈ Rn×d and R ∈ Rd×m be two matrices. We call the pair (A,R) a double
description pair if P (A, 0) = coneR. Here we interpret again coneR as the conical hull
of the columns ofR. In this context, a vertex enumeration problem for a cone P = P (A, 0)
is to determine a double description pair (A,R) where R is an unknown matrix to be
computed. As the double description method is an incremental method, we will use a pair
(AK , R) to compute (AK+i, R

′) where we write AK+i short for AK∪{i}. Before we look at
this iterative process we examine how to Vnd a Vrst double description pair to start from.

Lemma 3.1. Let P = P (A, 0) be a d-dimensional polyhedral cone and A be matrix n× d
matrix. Select a d × d sub-matrix AK of A which consists of linearly independent rows
(indexed by a set K). Then (AK ,−A−K) is a double description pair.
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Proof. For a λ ≥ 0, λ ∈ Rd we have

x ∈ P (AK , 0) ⇔ AKx ≤ 0 ⇔ AKx = −λ ⇔ x = −A−Kλ ⇔ x ∈ cone(−A−K).

Thus we know how to compute a starting point for the double description method and
will now look at the iteration step.
We start with a double description pair (AK , R). When we add a matrix row with

index i to AK , we intersect P (AK , 0) = coneR with a half-space {x ∈ Rd : aix ≤ 0}.
The corresponding hyperplane partitions the space into three parts:

H−i = {x ∈ Rd : aix < 0}
H0
i = {x ∈ Rd : aix = 0}

H+
i = {x ∈ Rd : aix > 0}.

Let J be the set of column indices of R. Then also the rays, the matrix columns rj with
j ∈ J , are partitioned into three parts:

J− = {j ∈ J : rj ∈ H−i }
J0 = {j ∈ J : rj ∈ H0

i }
J+ = {j ∈ J : rj ∈ H+

i }
.

For a new matrix R′ that is to form a double description pair (AK+i, R
′) we have to do

two things. Obviously, we can discard the rays from R with indices in J+ because they
do not lie in P (AK+i, 0). But we can use these to compute new rays that lie on the new
hyperplaneH0

i . The way to do this is the dual of the so called Fourier-Motzkin elimination.
For more information about the Fourier-Motzkin elimination the interested reader may
consult [Sch98, Sec. 12.2], which contains a description of the Fourier-Motzkin elimination
with historical pointers, and [Zie95, Sec 1.2,1.3], which present both the Fourier-Motzkin
elimination method and its dual. This gives us the following central lemma which is
Lemma 3 from [FP96].

Lemma 3.2 (Main Lemma for Double Description Method). Let (AK , R) be a double de-
scription pair and let i be a row index of A not inK . Then the pair (AK+i, R

′) is a double
description pair, where R′ is the d × |J ′| matrix with column vectors r′j (j ∈ J ′) deVned
by

J ′ = J− ∪ J0 ∪ (J+ × J−), and

r′j = rj for j ∈ J− ∪ J0,

r′jj′ = (Airj)rj′ − (Airj′)rj for each (j, j′) ∈ J+ × J−.

Proof. [FP96, p. 96]

So with the help of Lemma 3.2 and Lemma 3.1 we can compute a double description
pair (A,R) and thus solve the vertex enumeration problem, at least in theory.
In practice, however, the number of rays quickly runs beyond all tractable limits because

many of the constructed r′jj′ rays are redundant. [FP96] give several improvements, one of
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which is how to compute in each step a minimal matrix R. However, [Bre99] showed that
the running-time of all incremental algorithms is super-polynomial in input and output
size in the worst case. Despite this bad worst case behavior the double description method
may still be the best choice for degenerate, i.e. non-simple input (cf. [Sei04, p. 511]).

3.1.2. Graph traversal or pivoting methods

The second kind of vertex enumeration algorithms traverses the graph of a polytope.

DeVnition 3.3. Let P be polytope. We deVne the graph of a polytope G(P ) as the
undirected, Vnite graph consisting of the vertices and edges of P . Thus two nodes u, v are
adjacent in G(P ) if there is an edge in P joining u and v.

Sometimes this graph is also referred to as adjacency graph. By traversing the graph
G(P ) of a polytope P := P (A, b) all vertices of P can be enumerated. One of the graph
traversal algorithms with a good software implementation is the reverse search algo-
rithm.

The reverse search algorithm is due to Avis and Fukuda [AF92] and has an implemen-
tation in [lrs]. The latest improvements of this reverse search algorithm and lrs are
described in [Avi00]. To get a better understanding of how this algorithm works we have
a brief look at linear programming.

Given a polytope P := P (A, b) ⊂ Rd and a vector c ∈ Rd, we call the task of Vnding an
x ∈ P such that 〈c, x〉 is maximal a linear program. One of the most common methods
to solve a linear program is the simplex algorithm that we will brieWy sketch here. The
interested reader may Vnd in [Sch98, Ch. 11] a more formal description.

The simplex algorithm works as follows. Let x ∈ Rd be a vertex of P := P (A, b) where
A ∈ Rn×d and b ∈ Rn. For x we can Vnd an index set B with such that ABx = bB and
AB ∈ GL(R, d). We call B a basis for x. The remaining indices N := {1, . . . ,m} \ B
form a non-basis. We can take one index j ∈ N and put it into the basis and choose k ∈ B
to put in N so that we obtain B′ := (B ∪ {j}) \ {k} and N ′ := (N ∪ {k}) \ {j}. We call
this process pivoting. By pivoting we get from a vertex x ∈ P to an adjacent vertex x′ :=
A−B′bB′ . It may also happen that x = x′ and we will discuss this problem later. By repeated
pivoting following a Vxed pivot rule, the simplex algorithm Vnds a path x0x1 . . . xl on the
graphG(P ) such that the function value increases, i. e. 〈c, xi〉 < 〈c, xi+1〉. If for a node xl
no adjacent node with greater function value can be found, then xl is an optimal solution
for the linear program.

Thus the simplex algorithm traverses the graph G(P ) in order to Vnd a path to an
optimal vertex. The set of all such paths from all vertices of P forms a forest. The reverse
search algorithm traverses each subtree T of the forest, beginning at the root T , which
is an optimal vertex. A depth Vrst traversal of T by reversing the pivot rule enumerates
all vertices of P and thus solves the vertex enumeration problem. Because G(P )-traversal
algorithms are usually based on variations of the simplex algorithms and its pivoting steps,
the traversal algorithms are also often called pivoting methods.

The running time of the reverse search algorithm is proportional to the number of bases
that are computed. For a d-dimensional polytope P with m facets the algorithm Vnds
all vertices in time O(md2) per basis and O(md) space. For non-simple polytopes many
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bases may belong to the same vertex and the traversal stays at a node for longer than
necessary. The number of bases to consider can be reduced by working only with so called
lex-min bases (cf. [Avi00, Sec. 5]). Nevertheless, the number of bases may render very
degenerate instances intractable for a reverse search. However, if P is simple and every
vertex corresponds to a base then the vertex enumeration problem can even be solved in
O(nmd) time (cf. [Avi00, Thm. 6.2]). One big advantage of the reverse search in general
is that it requires only O(md) space.

Another feature of the reverse search algorithm is that it allows estimates of the running
time and the number of vertices. This estimation works by performing a randomized
depth-Vrst traversal of the tree and counting the number of alternative bases and vertices
along the way. The results of several independent traversals can be combined to reduce
the variance of the estimation. To limit the running time of the estimate a maximal depth
for the traversal can be speciVed. The interested reader may Vnd the details in the article
by Avis and Devroye [AD00].

3.2. Enumeration up to symmetries

The action of a group G ≤ Aut(P ) on the face lattice of a polyhedron P induces an
equivalence relation. Two faces F1, F2 are G-equivalent if F1 and F2 are in the same orbit
under the action of G. We say we perform a description conversion up to symmetries
if the output contains one representative of every equivalence class. So before we look at
algorithms for this in the next section we have to solve another problem Vrst. A crucial
part is to actually decide if two faces F1, F2 are equivalent.

We can describe the action of G on the face lattice of P as permutation of the face-
vertex incidences (if P is given as V) or of the face-facet incidences (if P is given as H).
Both cases are equivalent and we only discuss the latter situation. This means that if P is
a polyhedron with n facets, we can regard each face F of P as a subset ΓF ⊆ {1, . . . , n}.
In this notion G is isomorphic to a subgroup of Sn. Thus for the computational aspect of
whether two faces of a polyhedron are equivalent we just have to decide whether two sets
Γ,∆ ⊆ {1, . . . , n} are in the same orbit of a permutation group G ≤ Sn. In this section
we discuss the situation that we know some sets ∆1, . . . ,∆k, corresponding to faces of P .
For other, probably many, sets Γ we have to decide whether Γ ∈ ∆G

i , i.e. Γ is equivalent
to any of the ∆i.

3.2.1. Methods from computational group theory

One way to decide if Γ ∈ ∆G is to explicitly search for such a group element. The
author has already presented ways to search for speciVc elements of a permutation group
in [Reh10], based on [HEO05, Ser03, Leo91]. In this case we look for a representative of a
coset Stab(∆, G)h such that Γ ∈ ∆Stab(∆,G)h. This search has a worst case complexity of
O(|G|), so this might no be our best method for deciding equivalence.

A second way to decide quickly whether Γ ∈ ∆G
i for some i is to explicitly com-

pute the orbits ∆G
i once for every i. We can store S :=

⋃
i ∆

G
i in a set data structure.

Once such a set data structure is built, it allows to test for membership in S in O(log |S|)
time (see [CLRS09, Ch. 13]). The disadvantage is that the full orbit ∆G

i has to be com-
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3.2. Enumeration up to symmetries

puted and the set data structure has to be set up. For every known face ∆ this means an
O(|∆G| log |S|) time eUort. Sometimes worse than time is the amount of memory needed
to store all orbit elements. For large problems we may not be able to store the whole set S
in fast RAM so that searching in the set of orbits would become relatively slow.

An alternative to storing the complete orbit is to store a canonical representative of
each orbit. A canonical map c is a function with the following property. For every orbit
∆G there exists a ∆0 ∈ ∆G such that c(∆′) = ∆0 for all ∆′ ∈ ∆G. A common choice
is to deVne c(∆) := min≺∆G where we use a lexicographic ordering ≺ on the subsets
of {1, . . . , n}. In [Lin04] Linton describes a fast algorithm to Vnd the lexicographically
smallest element of an orbit. This algorithm also has a worst case complexity of O(|G|).
The canonical representative approach is a mixture of the two methods described before.

It may take some time and memory to compute c(∆i) for each i. But once these are known
we only have one expensive computation, namely c(Γ), which can easily be compared to
the known values of c(∆i). In the Vrst method we have potentially k expensive operations
for each Γ because for each ∆i a coset representative may have to be searched.

In the next section we look at invariants, which may be used in combination with any
of the methods discussed in this section to speed up equivalence testing.

3.2.2. Invariants and invariant theory

For deciding whether two faces of a polyhedron P are in the same orbit under a symmetry
group G ≤ Aut(P ) we may use invariants, which are able to distinguish orbits. In our
setting we consider two types of invariants: geometric and algebraic.

Geometric invariants arise when the action of G on P preserves a scalar product be-
tween vectors. This is the case for the restricted symmetries RAut(P ) that we dis-
cussed in the last chapter. For G ≤ RAut(P ) and every x, y ∈ Rd we have xTQ−y =
(Ax)TQ−(Ay) whereA ∈ G is a restricted symmetry (cf. Equation 2.11 on page 14). Thus,
for two faces F1, F2 of P being in the same G-orbit it is necessary that the inner angles of
F1 and F2 are the same with respect to Q−. These invariants are also described and used
in [BDS09].

For algebraic invariants we consider the ring of polynomials Q[x1, . . . , xn] in n vari-
ables over the rational numbers. Then the symmetric group Sn acts on a polynomial
f(x1, . . . , xn) ∈ Q[x1, . . . , xn] by f(x1, x2, . . . , xn)σ := f(xσ(1), xσ(2), . . . , xσ(n)) for ev-
ery σ ∈ Sn. The invariant ringQ[x1, . . . , xn]G of a groupG ≤ Sn is the set of polynomi-
als which are invariant under the action of G: Q[x1, . . . , xn]G := {f ∈ Q[x1, . . . , xn] :
fσ = f}. Every invariant ring is a sub-ring of Q[x1, . . . , xn].

Let S ⊆ {1, . . . , n} be a set. We can associate a characteristic vector χS ∈ {0, 1}n
with S where the i-th component of χS is 1 if i ∈ S and 0 otherwise. Further let f ∈
Q[x1, . . . , xn]G be a polynomial from the invariant ring ofG. If we letG act on S element-
wise, denoted by SG, then we clearly have f(χS) = f(χT ) for every T ∈ SG in the orbit
of S. This gives us a necessary condition to check whether two sets S, T lie in the same
G-orbit.

The easiest way to obtain an invariant f ∈ Q[x1, . . . , xn]G is to take any set
S ⊆ {1, . . . , n} and compute its orbit sum. That means we set f(x1, . . . , xn) =∑

T∈SG
∏

j∈T xj . Clearly, this f is invariant under the action of G.
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3. Description Conversion

It can also be shown that there exist Vnitely many polynomials f1, . . . , fm ∈
Q[x1, . . . , xn]G such that every invariant polynomial g ∈ Q[x1, . . . , xn] can be written
as a polynomial in f1, . . . , fm, i.e. we write Q[x1, . . . , xn]G = Q[f1, . . . , fm]. Theorem 10
of [CLO08, Sec. 7.4] shows that in fact fi(χS) = fi(χT ) for all m invariants fi that gen-
erate the invariant ring is also suXcient for S and T to lie in the same orbit. We can use
the same theory to work with the aXne automorphisms as matrix group and compute its
invariant ring. This has the advantage that the dimension of an interesting polyhedron
is usually much smaller than the number of rays or facets, which reduces the problem
dimension for invariants. At least in theory these invariants are a powerful instrument
to check whether two elements are in the same orbit. The set of generating invariants fi
yields a hash function for orbit membership. We just have to evaluate all m generator
polynomials and compare the values with those of an element of the orbit. In practice,
however, things tend to be more diXcult.

Recent research has created good algorithms to compute generators of invariant rings
of Vnite linear group action and permutation groups, many of which are nicely explained
in [Stu08] and [DK02]. The special case of permutation groups is also described in [Neu07,
Ch. 4]. For a permutation group G ≤ Sn the generating invariants are a combination of
the elementary symmetric function sn = x1x2 · · ·xn and orbit sums of so called special
monomials with degree at most

(
n
2

)
(cf. [Neu07, Thm. 4.22]). Because for our application

we consider invariants as an alternative to storing the whole orbit, the total number and
degree of the generating invariants is a crucial aspect.

Good algorithms that compute polynomials of low degrees involve computations with
so called Gröbner bases. The reader may Vnd an extensive introduction into Gröbner bases
in [BW98] or [CLO08]. Computations with Gröbner bases tend to be computationally
expensive and may be quite slow even on groups of moderate size (see also the experiments
conducted in [Kem99] and [Thi01]).

From these considerations it remains unclear how useful the knowledge of all generators
of the invariant ring is for orbit calculations alone. Nevertheless, if we know at least some
parts of the invariant ring of a group in form of some invariants of low degree we may use
them to speed up same-orbit tests.

3.3. Description conversion up to symmetries

In this section we analyze algorithms to perform a description conversion of a polyhe-
dron up to symmetries. More speciVcally, we consider the following problem: Given
a polyhedral cone P := P (A, 0) and a symmetry group G ≤ Aut(P ), Vnd rays
R := {r1, . . . , rl} ⊂ P such that

P = cone
l⋃

i=1

rGi .

In other words, for every ray r generating P there is an ri ∈ R that is G-equivalent to r.
In the following, we discuss three diUerent methods to solve this task.
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3.3. Description conversion up to symmetries

3.3.1. Direct method

The Vrst algorithm we look at is the most trivial one can conceive. We Vrst perform a full
description conversion, for example with one of the methods described in Section 3.1. We
then Vlter the complete list of rays that we obtained to include only one representative for
each G-orbit.

Input: Polyhedral cone P = P (A, 0), permutation group G
Output: List of G-inequivalent rays R

R← ∅1

compute set of rays R0 such that P = cone(R0)2

forall r ∈ R0 do3

if rG ∩R = ∅ then4

R← R ∪ {r}5

end6

end7

Algorithm 3.1: Direct method for description conversion up to symmetry

Algorithm 3.1 formalizes this method. In line 3 we check if r is equivalent to any other
ray in the output list R. For this check we can use any of the method discussed in the
previous section.

The obvious disadvantage of this direct method to obtain G-inequivalent rays is that all
rays of P have to be computed before. By this requirement we forfeit a possible running
time advantage that we might have because we are not interested in all rays. The following
two methods therefore reduce a ray enumeration problem to smaller ones in order to take
advantage of known symmetries.

3.3.2. Incidence Decomposition Method

The Incidence Decomposition Method (IDM) or Face Decomposition Method
(cf. [BDS09], [CR01]) divides the problem of Vnding a ray description coneR for a poly-
hedron P = P (A, 0) into subproblems. To Vnd R we can also try to compute all rays Ri

that are incident to a facet Fi of P . We then obtain R by merging all Ri for all facets Fi.

If we are interested in rays of P up to symmetries, given by a group G ≤ Aut(P ), we
do not have to consider all facets. Let Fi and Fj be two facets of P that are in the same
G-orbit. For every face H of P that is incident to Fi we can Vnd a face H ′ incident with
Fj such that H and H ′ are in the same G-orbit. This works because every σ ∈ G is a
combinatorial automorphism and thus an automorphism of the face lattice. If two facets
Fi and Fj are in the same G-orbit, then also the incident rays Ri and Rj are in the same
G-orbit. Thus we only have to compute rays for one representative of every G-orbit.

Grishukhin [Gri92] used this decomposition technique to compute all rays of the metric
cone for seven points. The metric coneMn for n points is given by the following 3

(
n
3

)
facet

inequalities

xij − xik − xjk ≤ 0 for all triples {i, j, k} ⊆ {1, . . . , n} (3.1)
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3. Description Conversion

and has dimension
(
n
2

)
. By permutation of the set {1, . . . , n} the symmetric group Sn

acts on the facets of Mn deVned in (3.1). For every two facets xij − xik − xjk ≤ 0 and
xab − xac − xbc ≤ 0 there is a permutation σ ∈ Sn with σ(i) = a, σ(j) = b, σ(k) = c.
Thus all facets ofMn are in the same Sn-orbit. If we want to perform a vertex enumeration
onMn, it is enough to compute all rays that are incident to one arbitrary facet.

x
y

z

F

0

F

r2r1

0

Figure 3.1.: Pyramidal cone with decomposition by facets

Example 3.4. Figure 3.1 gives an example in three dimensions. We see that the pyramidal
cone P on the left is highly symmetric. By 90 degree rotations about the z-axis every
face of P is mapped onto another face. In particular, there is only one orbit of facets. To
compute all rays of P up to symmetries it is enough to compute the rays of a single facet
So we solve the two-dimensional problem on the right-hand side of the Vgure and obtain
two rays r1, r2 for F . Back in P with its symmetry group, we see that r1 and r2 are in the
same orbit and conclude that P has one ray up to symmetries.

We now formalize the Incidence Decomposition Method in Algorithm 3.2. Our goal is
to compute a set R containing allG-inequivalent rays of a polyhedron P := P (A, 0) with
symmetry group G ≤ Aut(P ). We can identify each facet

Fi := P ∩ {x ∈ Rd : 〈ai, x〉 = 0} (3.2)

with the hyperplane normal vector ai, which is a row of the matrix A. For the scalar
product in (3.2) we regard ai as a column. To enumerate all facets we loop over all matrix
rows ai and work with the face according to (3.2). If the matrix-description of P is non-
redundant, then every face Fi is a facet.

For every G-inequivalent facet Fi, which we associate with the matrix row ai, we com-
pute an H-description of Fi based on P . After adding the row −ai to A the polyhedron
P (Ai, 0) contains the equality 〈ai, x〉 = 0. Thus P (Ai, 0) is anH-description of Fi, but it
still may contain redundant rows. Here we call a row redundant if removing it does not
change the polyhedron. We will discuss below how to detect redundancy. After we have
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3.3. Description conversion up to symmetries

removed all redundant rows from Ai, we obtain a (d− 1)-dimensional polyhedron that is
deVned by less inequalities than P . Therefore we can expect that Fi := P (A′, 0) is easier
to work with than P .

Input: Polyhedral cone P = P (A, 0), permutation group G
Output: List of G-inequivalent rays R

R← ∅1

F ← ∅ // list of G-inequivalent facets2

forall row ai ∈ A do3

Fi ← P ∩ {x ∈ Rd : 〈ai, x〉 = 0}4

if FG
i ∩ F = ∅ then5

F ← F ∪ {Fi}6

Ai ← A ∪ {−ai}7

remove redundant rows from Ai8

compute set of rays R0 such that P (Ai, 0) = cone(R0)9

forall r ∈ R0 do10

if rG ∩R = ∅ then11

R← R ∪ {r}12

end13

end14

end15

end16

Algorithm 3.2: Incidence Decomposition Method for description conversion up to sym-
metry

We can identify redundant rows by solving linear programs. Let P be the polyhedron
deVned by them inequalities 〈ai, x〉 ≤ bi for 1 ≤ i ≤ m. To check if a row j is redundant
we can solve the following linear program:

max
x

〈aj, x〉

s.t. 〈ai, x〉 ≤ bi for all 1 ≤ i ≤ m and i 6= j.

〈aj, x〉 ≤ bj + 1

(3.3)

If and only if (3.3) has a solution x0 and the relation 〈aj, x0〉 ≤ bj holds, then aj is a
redundant row for P .

How well the IDM works is mainly inWuenced by two factors: the number of G-orbits
of facets and the number of redundant rows we can identify for the sub-problems. If there
are only a fewG-orbits of facets of P , which also have a much smallerH-description than
P , the sub-problems may in total be a lot faster to complete than the original problem P .

3.3.3. Adjacency Decomposition Method

Another way to divide a description conversion problem into smaller sub-problems is the
Adjacency Decomposition Method (ADM). Instead of searching all rays that are incident
to a given facet, the ADM computes rays that are adjacent to each other. The ADM was
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used in [DFPS01] to compute the vertices of metric polytopes. It was also described in
[CR01] as a more competitive alternative to the IDM. As with all methods before, we only
discuss the case of a polyhedral cone P := P (A, 0) here. It can easily be carried over
to the case of a polyhedron but treating vertices and rays together would blow up the
notation so we stick to the simple cone case here.
The idea of the ADM is again quite natural. We say two rays r, r′ of a d-dimensional

cone P ⊂ Rd are neighbors if there is a 2-face F of P such that r, r′ ∈ F and r 6= r′.
Suppose we are given a cone P with a symmetry group G ≤ Aut(P ) and already know a
setR of (G-inequivalent) rays of P . We compute all neighborsR′ of rays inR and discard
all rays in R′ that are G-equivalent to other rays in R ∪ R′. We add all remaining rays to
R and again compute all neighbors R′ of R. If all neighbors R′ are G-equivalent to rays
in R, then R is a complete list of G-inequivalent rays of P . This holds because the action
of G preserves neighborhood: r,r′ are neighbors if and only if g(r),g(r′) are neighbors for
every g ∈ Aut(P ).
In the dual problem, the facet enumeration, computing adjacent facets is well-known

as gift-wrapping (cf. [CK70]). For the ray enumeration problem the method to compute
neighboring rays is slightly diUerent.

DeVnition 3.5. Let r ∈ P be a ray of a d-dimensional cone P = P (A, 0). We call the
inequality 〈ai, x〉 ≤ 0 active in r if it is strictly fulVlled in r, i.e. 〈ai, r〉 = 0. If an
inequality is not active we call it inactive.

DeVnition 3.6. We deVne the axis aP of a polyhedral cone P := P (A, 0) as

aP :=
m∑
i=1

ai (3.4)

where ai are them columns of AT .

The axis of a full-dimensional polyhedral cone P never equals 0. If P is full-
dimensional, then the interior of P cannot be empty and P must contain a ray r such
that all inequalities are inactive in r. This yields

∑
i〈ai, r〉 = 〈aP , r〉 < 0, so especially

aP 6= 0.

DeVnition 3.7. We deVne the support cone C(P, r) of a ray r in P as

C(P, r) := {x ∈ Rd : 〈aj, x〉 ≤ 0 for all j ∈ I} (3.5)

where I = {i : 〈ai, r〉 = 0} denotes the index set of inequalities active in r.

The support cone C(P, r) of a ray r is a d-dimensional cone because it is a cone and
a superset of P . However, C(P, r) is not pointed because it contains the line rR. To
make it pointed we can intersect it with any hyperplane H := {x ∈ Rd : 〈c, x〉 =
0} that does not contain r. Then we can decompose C(P, r) into the Minkowski sum
rR + (C(P, r) ∩ H). We observe that CH := C(P, r) ∩ H is again a cone and CH
and C(P, r) have the same combinatorial structure. Each k-dimensional face of C(P, r)
uniquely corresponds to a (k − 1)-dimensional face of CH . We will see shortly that it is
advantageous to chooseHP := {x ∈ Rd : 〈aP , x〉 = 0}. The intersection of C(P, r) and
HP is a (d− 1)-dimensional cone C̄(P, r), which we call the reduced support cone of r
in P .
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Lemma 3.8. Let r, r′ be two neighborly rays of the cone P := P (A, 0). Then, after scaling
r′, the diUerence r′ − r is a ray of the reduced support cone C̄(P, r).

Proof. Without loss of generality we can assume that

m∑
i=1

〈ai, r′ − r〉 = 〈aP , r′ − r〉 = 0. (3.6)

Because
∑m

i=1〈ai, r〉 < 0 and
∑m

i=1〈ai, r′〉 < 0, we can always Vnd a suitable representa-
tive r′ such that (3.6) holds.
Let the support cone C(P, r) be given by the d − 1 inequalities 〈a1, x〉 ≤

0, . . . , 〈ad−1, x〉 ≤ 0. Because C(P, r) is the support cone of r, all inequalities are ac-
tive in r. The rays r, r′ are neighbors, so for r′ there are only d − 2 active inequalities,
say 〈a2, r

′〉 = 0, . . . , 〈ad−1, r
′〉 = 0. For the remaining a1 we must thus have 〈a1, r

′〉 < 0.
This together with (3.6) shows that (r′ − r) ∈ C̄(P, r). Because for r′ − r there are d− 2
active inequalities in C̄(P, r), we conclude that r′ − r is a ray of C̄(P, r).

This shows that we can Vnd the neighbors of a ray r by enumerating the rays of the
reduced support cone of r. Every neighbor r′ has to be a combination r′ = r + λs where
s is a ray of the reduced support cone of r and λ ∈ R+. For an inequality 〈aj, x〉 ≤ 0 that
is active in r′ we can solve for λ:

λ = −〈aj, r〉
〈aj, s〉

> 0. (3.7)

Because r ∈ P , we must have 〈aj, r〉 < 0 and thus 〈aj, s〉 > 0. Among all the inequalities
for which (3.7) holds we must pick the one with the smallest λ since r′ ∈ P implies

∀k : 〈ak, r′〉 = 〈ak, r + λs〉 ≤ 0

⇐⇒ ∀k : λ ≤ −〈ak, r〉
〈ak, s〉

where 〈ak, s〉 > 0

For such a minimal λ, there are d− 1 active inequalities in r′ := r + λs. One equality,
〈aj, r′〉 = 0, is given by (3.7). The other d− 2 come from the restricted support cone: s is
a ray of C̄(P, r), hence there are d− 2 equalities

〈ai1 , r〉 = · · · = 〈aid−2
, r〉 = 0

〈ai1 , s〉 = · · · = 〈aid−2
, s〉 = 0

which also hold in r′. Hence, r′ is contained in d− 1 facets and is thus a ray of P .
It remains to show that the set I := {j : 〈aj, r〉 < 0 and 〈aj, s〉 > 0} is not empty

so that we can pick a suitable λ. We remember that s is a ray of the reduced support
cone of r, so in particular 〈aP , s〉 =

∑m
i=1〈ai, s〉 = 0. There is at least one inequality of

the support cone that is inactive in s, say 〈ai0 , s〉 < 0. Hence, there must exist another
inequality j such that 〈aj, s〉 > 0. This inequality j cannot be an inequality of the support
cone and thus 〈aj, r〉 < 0. Therefore the set I always contains at least one element.
Algorithm 3.3 displays the method that we have discussed so far to compute all neigh-

bors of a ray r. We enumerate all rays of the reduced support cone of r and compute
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Input: Polyhedral cone P = P (A, 0), ray r
Output: List N of all neighbors of r in P

N ← ∅1

P ′ ← reduced support cone C̄(P, r) of r2

compute set of rays R′ of P ′3

forall s ∈ R′ do4

I ← {j : 〈aj, r〉 < 0 and 〈aj, s〉 > 0}5

j ← mini∈I − 〈ai,r〉〈ai,s〉6

r′ ← r − 〈aj ,r〉〈aj ,s〉s7

N ← N ∪ {r′}8

end9

Algorithm 3.3: Computing neighbors of a ray in a polyhedral cone

for every ray the associated neighbor of r. We can use this method to compute all G-
inequivalent rays of a polyhedral cone. Algorithm 3.4 formalizes this idea to compute all
G-inequivalent rays of a polyhedral cone. We split the problem of computing the rays of
a d-dimensional cone into several smaller problems of computing rays of cones in dimen-
sion d− 1.

Input: Polyhedral cone P = P (A, 0), permutation group G
Output: List of G-inequivalent rays R

r0 ← one ray of P1

R← {r0}2

T ← {r0} // todo-list of rays3

while T 6= ∅ do4

choose r ∈ T5

T ← T \ {r}6

P ′ ← reduced support cone C̄(P, r) of r7

compute set of rays R′ of P ′8

forall s ∈ R′ do9

compute the neighboring ray r′ of r in direction of s10

if r′G ∩R = ∅ then11

R← R ∪ {r′}12

T ← T ∪ {r′}13

end14

end15

end16

Algorithm 3.4: Adjacency Decomposition Method for description conversion up to sym-
metry
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Figure 3.2.: Pyramidal cone with support cone of its ray r

Example 3.9. Consider again the pyramidal cone on the left-hand side of Figure 3.2. It can
be described by the matrix

A =


1 0 −1
−1 0 −1
0 1 −1
0 −1 −1

 .

From this we compute the axis aP = (0, 0,−4)T . We start the ADM at ray r =

(−1,−1, 1)T and compute its support cone C(P, r) = P (

(
−1 0 −1
0 −1 −1

)
, 0). For the

restricted support cone, intersected with the axis hyperplane H , which is the xy-plane in
this example, we obtain

C̄(P, r) = P (


−1 0 −1
0 −1 −1
0 0 −1
0 0 1

 , 0) ∼= P (

(
−1 0
0 −1

)
, 0).

The cone C̄(P, r) has two rays: s1 = (1, 0, 0)T and s2 = (0, 1, 0)T , thus r has two
neighboring rays. We compute the neighbor of r in direction of s := s1 by Vrst computing
the index set I . A quick calculation shows that only one inequality, a1 corresponding
to F1 in the Vgure, comes into consideration: I = {1} because 〈a1, r〉 = −2 < 0 and
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〈a1, s〉 = 1 > 0. It is easy to Vnd the minimizing hyperplane from I and we obtain the
neighboring ray

r′ = r − 〈a1, r〉
〈a1, s〉

s =

−1
−1
1

− (−2)

1
0
0

 =

 1
−1
1

 .

The last open problem we have to discuss is how we Vnd a Vrst ray of a cone P to start
the ADM. This is also a common problem in linear programming where a vertex is sought
to start the simplex algorithm. For instance, we could minimize the function 〈aP , x〉 over
the non-empty polyhedron P ∩ {x ∈ Rd : 〈aP , x〉 ≥ −1}. Every vertex solution of
this problem corresponds to a ray of P . We could also run one iteration of a pivoting
description conversion method as discussed in Section 3.1.2 to Vnd one ray of P .

At the end of this section we discuss an improvement of the Adjacency Decomposition
Method which may help to reduce the number of support cone calculations. We say a
graph G is d-connected if the removal of any d − 1 vertices, and the edges incident to
them, leavesG connected. With this deVnition and DeVnition 3.3 on page 27 for the graph
G(P ) of a polytope in mind we can state the following theorem due to Balinski.

Theorem 3.10 (Balinski’s theorem [Bal61]). The graph G(P ) of a d-dimensional polytope
P is d-connected.

Proof. See, for instance, [Zie95, Thm. 3.14].

Corollary 3.11. Let P be a pointed d-dimensional polyhedral cone. Then the neighbor-
hood graph of rays is (d− 1)-connected.

Proof. Because P is pointed, we can Vnd a (d − 1)-dimensional hyperplane H such that
P ′ := H ∩ P is a (d− 1)-dimensional polytope. We can apply Theorem 3.10 and identify
the vertices of P ′ and the rays of P .

This means that we do not have to work with all support cones to reach all rays. For
a d-dimensional cone P we can skip the neighborhood computation for d − 2 rays and
still cover P . This fact can be helpful if we may omit the computation of the most diXcult
cones, provided we know (or guess) that they are diXcult to treat. We will come back to
this problem in the next section.

3.4. Recursion

3.4.1. General remarks

We saw in the last section how we can split the description conversion up to symmetries
of a d-dimensional cone into smaller subproblems in dimension d− 1. There may be cases
where one of these subproblems is still too diXcult to be solved with one of the approaches
of Section 3.1. Thus we may consider to apply again one of the decomposition methods to
cut the problem into smaller pieces. The only diUerence is that we have not introduced any
symmetries of the subproblem in the formulations of Algorithm 3.2 and Algorithm 3.4 yet.
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3.4. Recursion

In the following we again consider the description conversion problem up to symmetries
of a polyhedral cone P := P (A, 0) with a symmetry group G ≤ Aut(P ).

In the Incidence Decomposition Method it would be enough to obtain for every facet P ′

a list of G-inequivalent rays. The group G itself is no subgroup of Aut(P ′) so we cannot
use it directly for the subproblem. However, we may choose the maximal subgroup of G
which is also a subgroup of Aut(P ′): the stabilizer Stab(G,P ′) of P ′ in G.

For the Adjacency Decomposition Method the situation is less obvious. We can easily
construct an isomorphism between the action ofG on the faces of P which are incident to
a ray r and the support cone C(P, r). Furthermore, we already have seen that the cones
C̄(P, r) and C(P, r) are combinatorially equivalent. This also means that the actions of
G on C̄(P, r) and C(P, r) are isomorphic.

Let r be a ray of P then two neighbor rays r1, r2 are G-inequivalent if and only if the
2-dimensional faces F1, F2 between r and r1, r2, respectively, are G-inequivalent. In turn,
the two faces F1, F2 ⊂ C(P, r) are G-inequivalent if and only if the two rays s1, s2 ∈
C̄(P, r) are G-inequivalent. Thus for the ADM it is enough to enumerate the rays of
C̄(P, r) up to equivalence under the action ofG. The suitable symmetry group to choose is
the stabilizer Stab(G, C̄(P, r)), which is a subgroup of Aut(C̄(P, r)) and also isomorphic
to a subgroup of G.

We have seen that in both IDM and ADM the subproblems consist of enumerating the
Stab(G,P ′)-inequivalent rays of a (d− 1)-dimensional cone P ′. Thus we can use one of
the methods discussed in the last section 3.3 for P ′. To speed up the computation with P ′

we may even consider to choose a larger symmetry group H with Stab(G,P ′) ≤ H ≤
Aut(P ′). For instance, if P ′ is one highly symmetric facet of a rather asymmetric P we
may solve the problem much more quickly by considering and computing the restricted
symmetries RAut(P ′) as discussed in Chapter 2. We may then use H := Stab(G,P ′) ∪
RAut(P ′) as symmetry group for the computation with P ′.

Suppose we choose a group H  Stab(G,P ′) and obtain a complete list RH of
H-inequivalent rays of P ′. Then we have to transform RH into a complete list of
Stab(G,P ′)-inequivalent rays of P ′. There are at least two ways to solve this problem.
The Vrst one is to compute for every r ∈ RH the full orbit rH and split it into smaller
orbits rStab(G,P ′)

1 , . . . , r
Stab(G,P ′)
l . The second, more sophisticated method is double coset

decomposition as described in [BDS09].

Let r ∈ RH be a ray from the subproblem result list. Suppose we have a set of elements
h1, . . . , hl ∈ H such that

H =
l⋃

i=1

Stab(H, r)hi Stab(G,P ′). (3.8)

Then we can split the orbit of r under H into the required Stab(G,P ′)-orbits by

rH =
l⋃

i=1

r(hi Stab(G,P ′)) =
l⋃

i=1

r
Stab(G,P ′)
i

where ri := rhi are the new orbit representatives. A decomposition into double cosets as
in (3.8) is a well known problem in computational group theory. For instance, [HEO05,

39



3. Description Conversion

Sec. 4.6.8] lists two approaches of how to solve this problem. Double coset decomposition
is also implemented in standard computer algebra software like [GAP] or [Magma].

We will discuss in the experimental section 4.2.4 under what circumstances a group
H  Stab(G,P ′) may help to accelerate the description conversion process.

3.4.2. Recursion and solution strategy

The previous section showed that description conversion up to symmetry can be turned
into a recursive process. We can use the decomposition methods to split a description
conversion problem up to symmetries into smaller pieces that also can be computed up to
symmetries. At all stages we have to decide which of the methods that we looked at in
Section 3.3 we use for the polyhedron. In the following we will discuss some heuristics
which may guide us in the decision process.

If we can solve a problem in reasonable time with a description conversion algorithm
without symmetries, like cdd and lrs from Section 3.1, then we should do without a
decomposition method. For small problems the computational overhead in decomposition
methods will be larger than the potential gain by exploiting symmetries. Thus we may
split the main question, which method to use, into two parts. First, we have to decide
whether we attempt a direct conversion or use a decomposition method. Second, in the
latter case we must decide which decomposition method we use. For the decision of the
core description conversion algorithm without symmetries, i.e. cdd, lrs or something
else, the reader may consider the results of [ABS97].

We begin with the Vrst step: deciding whether to attempt a direct conversion or not.
One of the advantages of pivoting algorithms for description conversion such as lrs is
that they allow an estimation of the expected running time. Although these estimations
are by the nature of their construction not very accurate, they still give an impression
of the magnitude of running time. For more information and experiments with the lrs
estimator the interested reader may consider [AD00]. We should note though that the
estimation itself takes some time. Especially for small problems the time to get an estimate
and the time to solve the problem are of similar order, so this kind of estimation needs
some care, in particular if lrs is not the preferred description conversion algorithm for a
polyhedron.

Another possible indicator of the diXculty of a problem is the incidence number incF
of a face F , which is the number of facets incident to F . The authors of [BDS09] have
experienced that a relatively low incidence number may correspond to a relatively easy
problem. They propose to order the subproblems of a decomposition method by incidence
number ascendingly and solve as much of them as possible by a direct method. We can
combine this ordering with a running time estimate or even time-outs to Vnd the cut-oU
point between direct and decomposing conversion.

If used with the Adjacency Decomposition Method, this ordering also has the advantage
that the problems which are suspected to be the most diXcult may not even have to be
solved. Balinski’s theorem (cf. Corollary 3.11 on page 38) enables us to skip d − 2 sub-
problems of a d-dimensional polyhedron, which we may choose to be the ones with the
highest incidence number. This application of Balinski’s theorem has proven to be useful
for problems arising in the geometry of numbers (cf. [DSV07, BDS09]).
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If we conclude that a problem cannot be solved directly, we can choose between the
Incidence and the Adjacency Decomposition Method. A priori it may again not be clear
which one will work best, but the IDM allows at least a rough estimation. In contrast
to the ADM, all subproblems of the IDM can be determined before one of it is solved
because they do not depend on each other. For a polyhedron P we can easily compute the
number of G-inequivalent facets F1, . . . , Fl. After solving a linear program to determine
redundant rows, we also know the incidence number of each facet incFi. The smaller∑l

i=1 incFi relative to incP , the more promising an incidence decomposition is.
Recursive IDM was used in [DFMV03] to compute parts of the face lattice of metric

polytopes. In [DSV07] recursive ADM was an important ingredient to classify perfect
eight-dimensional forms. However, as [BDS09] observe, no combination of both tech-
niques has been used so far. We will look at the potential of this strategy in Section 4.2.

3.4.3. Adjacency Decomposition Method

At the end of this section we look at a formalization of the ADM into which Balinski’s
theorem (Corollary 3.11) is integrated.

Input: Polyhedral cone P = P (A, 0) of dimension d, permutation group G
Output: List of G-inequivalent rays R

r0 ← one ray of P1

R← {r0}2

T ← {r0} // todo-list of rays3

while T 6= ∅ do4

nremaining ←
∑

r∈T |rG|5

if nremaining ≤ (dimP )− 2 then6

break // we may ignore d− 2 arbitrary rays7

end8

choose r ∈ T such that the incidence number of r is minimal9

T ← T \ {r}10

P ′ ← reduced support cone C̄(P, r) of r11

H ← Stab(G,P ′)12

compute set of rays R′ of P ′ up to symmetry H13

forall s ∈ R′ do14

compute the neighboring ray r′ of r in direction of s15

if r′G ∩R = ∅ then16

R← R ∪ {r′}17

T ← T ∪ {r′}18

end19

end20

end21

Algorithm 3.5: Adjacency Decomposition Method for description conversion up to sym-
metry with Balinski’s criterion

The main change compared to Algorithm 3.4 on page 36 is in line 4 and following and
lines 11 and 12. The latter change is that we compute the rays of P ′ up to Stab(G,P ′)
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3. Description Conversion

symmetry. The former is the application of Balinski’s theorem. Because T contains rays
up to G-symmetry we have to count all elements in the G-orbits to properly apply the
theorem. It may be worthwhile not to perform this computation explicitly but to use the
orbit-stabilizer-theorem instead:

nremaining ←
∑
r∈T

|rG| =
∑
r∈T

| Stab(G, r)|. (3.9)

One advantages of this is that for every ray r we have the identity Stab(G, r) ∼=
Stab(G, C̄(P, r)) as discussed in Section 3.4.1 on page 39. Because we have to compute
this stabilizer for every ray of the todo-list anyway, we may save every stabilizer that we
compute for (3.9) and re-use it later in line 11 of the so modiVed Algorithm 3.5.

3.5. Extensions

3.5.1. Adjacency graph

In his recent breakthrough paper [San10], Santos disproved the famous Hirsch conjecture
from 1957. To state this conjecture we need one more term from graph theory. For a graph
G the diameter δ(G) is the smallest number such that any two vertices can be connected by
a path with at most δ(G) edges. The Hirsch conjecture is about a bound of the diameter
of the graph G(P ) of a polytope: Hirsch conjectured that for a d-dimensional polytope P
with n facets the following holds:

δ(G(P )) ≤ n− d. (3.10)

This means that for every two vertices u, v ∈ P there exists a path between u and v that
has at most length n− d.
Santos gives an example of a polytope in dimension 43 with 86 facets that violates

the bound (3.10). This polytope is constructed from a polytope P ′ in dimension 5 with
48 facets with δ(G(P ′)) = 6. This P ′ is simple enough so that its adjacency graph up
to symmetry can be computed and veriVed by hand and thus the diameter value can be
proven.

In this section we brieWy discuss the use of the Adjacency Decomposition Method,
which we have looked at in Section 3.3.3, to compute the adjacency graph of a polyhe-
dron up to symmetries. As the ADM already implicitly traverses the adjacency graph of a
polyhedron we can simply record the adjacencies while the algorithm is running. We have
to be careful not to use Balinski’s criterion because this guarantees to Vnd all rays but not
all adjacencies between rays. Therefore Algorithm 3.6 is a modiVcation of Algorithm 3.4
on page 36 to compute all rays and ray adjacencies of a polyhedral cone up to a given
symmetry group.
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Input: Polyhedral cone P = P (A, 0), permutation group G
Output: List of G-inequivalent rays R, list RA of adjacencies in R

r0 ← one ray of P1

R← {r0}2

T ← {r0} // todo-list of rays3

RA ← ∅4

while T 6= ∅ do5

choose r ∈ T6

T ← T \ {r}7

P ′ ← reduced support cone C̄(P, r) of r8

compute set of rays R′ of P ′9

forall s ∈ R′ do10

compute the neighboring ray r′ of r in direction of s11

if r′G ∩R = ∅ then12

R← R ∪ {r′}13

T ← T ∪ {r′}14

RA ← RA ∪
{
{r, r′}

}
15

end16

end17

end18

Algorithm 3.6: Adjacency Decomposition Method for description conversion up to sym-
metry with adjacency graph

3.5.2. Face lattice

For some applications one may not only be interested in the vertices and rays of a poly-
hedron up to symmetries but also in other parts of the face lattice (up to symmetries). We
can use the Incidence Decomposition Method to compute all faces of a polyhedron up to
symmetries. As we have seen before, the IDM splits a polyhedron P = P (A, b) into orbits
of its facets. We can then recursively apply the IDM to the facets and obtain the facets
of the facets of P , i.e. faces of codimension 2. Repeating this process until we reach the
vertices of P yields the full face lattice up to symmetries.
Algorithm 3.7 formalizes this process. The variable i denotes the codimension of the

faces in the todo-list T . All G-inequivalent facets of the faces in T are computed and
stored in T ′, the todo-list for the next iteration. To compute the facets of a face F in
line 9, we can proceed as in the original IDM in Algorithm 3.2 on page 33. For every
inequality 〈ai, x〉 ≤ 0 that is inactive in F we consider F ′ := F ∩ {x : 〈ai, x〉 = 0}. If
dimF ′ = dimF − 1, then F ′ is a facet of F . In this manner we can compute all facets.
The authors of [DFMV03] have used the Incidence Decomposition Method recursively

to compute faces of low codimension of the metric polytope. As they put it, “face lattices
are fat”. This means that the number of bd

2
c-faces of a d-dimensional polytope may be

much larger than the number of vertices or facets. Even reducing the considerations to
orbit representatives of faces often leaves face lattices “fat”. Thus it may not always be
possible to compute the complete face lattice, but only the top layers with faces of low
(co)dimension.
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Input: Polyhedral cone P = P (A, 0), permutation group G
Output: List F of all G-inequivalent faces

i← 01

T ← {P}2

T ′ ← ∅3

F ← ∅4

while i < dimP do5

while T 6= ∅ do6

choose one element F from T7

T ← T \ {F}8

forall facets F ′ of F do9

if F ′G ∩ F = ∅ then10

F ← F ∪ {F ′}11

T ′ ← T ′ ∪ {F ′}12

end13

end14

end15

T ← T ′16

T ′ ← ∅17

i← i+ 118

end19

Algorithm 3.7: Incidence Decomposition Method to compute the face lattice up to sym-
metry
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4. Implementation

4.1. SymPol

The author has developed a software christened SymPol, which implements many of the
concepts presented in this thesis. SymPol is written in C++ to avoid performance barriers.
It uses the renowned C++ library [Boost] for various things, one of the most important
being smart pointers to reduce the risk of memory leaks. All parts that require algorithmic
treatment of groups are handled by the author’s permutation group library [PermLib].
This includes computing matrix automorphisms, set stabilizers, orbits and the like.

Alternatively, the restricted symmetries of a polyhedron may also be computed by
[nauty] and [NTL]. Although this combination is often faster than PermLib as we will see
in the following section, it has not been included in SymPol by default. Because NTL has
its own build system, it is not easy to integrate into other software. The software nauty
is diXcult to include because its software license is not compatible with the open source
license GPL, which is used by lrs and cdd and therefore also for SymPol.

Description conversion up to symmetries is implemented in the three diUerent forms
that were presented in Section 3.3: direct method, Incidence Decomposition Method and
Adjacency Decomposition Method. Unfortunately, the author is not aware of an imple-
mentation of double coset decomposition outside dedicated algebra software like [GAP]
and [Magma]. So SymPol always uses only the stabilizer instead of all linear symmetries
of subproblems. We will discuss below to what extent this is a performance limit.

For the core task of performing a description conversion without symmetries SymPol
can choose between Avis’ [lrs] and Fukuda’s [cdd]. As both lrs and cdd use diUerent
techniques, choosing one or the other may have a huge impact on performance. All com-
putations with polyhedra are performed with the help of the arbitrary precision library
[GMP] to avoid rounding errors.

Internally, all polyhedra are stored in a simpleH-representation in matrix formAx ≤ b.
All faces of polyhedra are identiVed with their facet incidences. This allows storing faces
as bitsets where the elements are row indices of the deVning matrix A. A face lattice auto-
morphism then acts on a face simply by permuting these facet indices. If the dimension of
a face has to be computed, we have to determine the rank of the corresponding sub-matrix
of A. The rank computation is done with a simple Gaussian elimination (cf. [CLRS09,
Ch. 28]).

The interested reader may Vnd a more detailed description of SymPol and its fea-
tures in Appendix B. An alternative to SymPol is the GAP package [Polyh] by Dutour
Sikiric, which oUers a diUerent feature set. It provides the Adjacency Decomposition
Method as only decomposition method, but it computes new symmetries for subproblems
and can use double coset decomposition. This together with a “banking” feature, which
stores the solution of all solved problem parts for further use, enables it to solve large
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instances (cf. [DSV07]). Such a banking feature is especially useful if multiple recursion
levels are necessary for a polyhedron P . In this case a face F ′ of a facet F1 of P occurs
also as a face of another facet F2 of P . Thus F may have to be converted twice if the
result of the Vrst occurrence has not been saved.

4.2. Computational experiments

All experiments were conducted on a server of the Faculty of Mathematics with four dual-
core AMD Opteron 2.8 GHz CPUs and 16 GB RAM, running an OpenSuSE 10.2. All bi-
naries were compiled with the GNU g++ compiler in version 4.1.2. Because of occasional
segmentation faults in the highest optimization setting -O3 with this compiler version, the
binaries were created with -O2 optimization Wags.

4.2.1. Polyhedra test set

To the best of the author’s knowledge there is no existing set of benchmark instances for
description conversion of polyhedra. To evaluate the performance of the algorithm imple-
mentations in SymPol, the author compiled an own set of problem instances from diUerent
areas. Most of these were already used and described by others exploiting symmetries of
polyhedra.
One of the most simple and symmetric geometric object is the d-dimensional cube Cd =

[0, 1]d. It has 2d facets and 2d vertices. All its combinatorial symmetries are also aXnely
realizable and |Aut(Cd)| = d! · 2d. Because all faces of Cd are also cubes and all facets are
in the same orbit under symmetry, the cube is a prime example for the application of the
Incidence Decomposition Method.
Furthermore, we look at polyhedra associated with the geometry of numbers. We deVne

the contact polytopes of C(E7) and C(E8) as the convex hull of the root system of the
exceptional simple Lie algebras E7 and E8. The root system of E7 consists of 126 vectors
in dimension 7, the one of E8 has 240 vectors in dimension 8. These vectors also span
the associated integer lattices E7 and E8. For these lattices we can compute its so called
Voronoi cone, which, for instance, plays an important role in the classiVcation of perfect
quadratic forms. For more information about this topic the interested reader may consider
[Sch09] and [DSV07]. In the latter work the description conversion up to symmetry of
the Voronoi cone V (E8) of E8 was necessary to classify all perfect quadratic forms in di-
mension 8. As the computations with V (E8) using the Adjacency Decomposition Method
took over one year, this cone is not suitable for experiments in this thesis, but we may look
at its smaller cousins, the Voronoi cones of E6 and E7. The cone V (E6) is spanned by 36
vectors in dimension 21, the cone V (E7) is generated by 63 vectors in dimension 28.
Besides these rather geometric instances, we look at some polytopes from combinatorics.

For n ∈ N, n ≥ 3 the metric polytope metn is given by 4
(
n
3

)
inequalities in dimension(

n
2

)
. To deVne the cut polytope we need one term from graph theory. Let G = (V,E) be a

connected graph. A cut of G is a subset S ⊆ E such that (V,E \ S) contains exactly two
disjoint subgraphs of G. LetKn be the complete undirected graph with n vertices and

(
n
2

)
edges. We can identify a cut S of Kn with its incidence vector χ(S) ∈ {0, 1}(

n
2) where

the component ij of χ(S) is 1 if and only if ij ∈ S. For n ∈ N, n ≥ 3 the cut polytope
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cutn is the convex hull of the incidence vectors of all the cuts of Kn. We also have that
cutn is

(
n
2

)
-dimensional. Moreover, the metric polytope is a relaxation of the cut polytope

and we have cutn ⊆ metn. The symmetry of the cut and metric polytope was exploited in
[DFPS01, DFMV03] to gain insights into its combinatorial structure, using the Incidence
Decomposition Method. More polytopes from combinatorial optimization can be found
on [SMA].

For the last class of polytopes in the test set, let B ∈ {0, 1}m×n be a 0/1-matrix. We
say that B has consecutive ones property (C1P) if for every permutation of the columns
of B the rows contain all 1-entries in consecutive order. We can regard every matrix in
Rm×n also naturally as a vector in Rm·n. This allows us to deVne the consecutive ones
polytope Pm,n

C1P ⊂ Rm·n as the convex hull of all m × n matrices with consecutive ones
property. Note that the polytope Pm,n

C1P has about 2mn vertices. For some applications it is
helpful to compute facets of consecutive ones polytopes (cf. [Osw01]).

In the next two sections we analyze experimental results for computing restricted sym-
metries and performing description conversion of these polyhedra.

4.2.2. Restricted symmetries

Based on our considerations from Section 2.3, we can compare three diUerent conVgura-
tions for computing restricted symmetries of polyhedra. First, using vertex-colored graph
automorphisms and the well-known software nauty and NTL. Second, using matrix auto-
morphisms and the author’s own implementation based on PermLib. The third conVgu-
ration via lattice automorphism requires further explanation.

The author is unaware of any implementation using the described lattice automorphism
approach to compute symmetries of polyhedra. An own implementation would have gone
beyond the scope of this thesis. Nevertheless, we may use the existing software [AUTO]
for a proof of concept. The package AUTO computes lattice automorphisms only. To ob-
tain symmetries of polyhedra from these, we have to compute a stabilizer in the lattice
automorphism group, which is also a non-trivial task in general. For some polyhedra from
the discussed test set, however, the stabilizer is easy to compute by taking the element-
wise absolute value of the generating matrices. Before we discuss these cases, we compare
PermLib and nauty/NTL.

Table 4.1 displays the running times for polyhedra from the test set. The fastest result
is marked with a gray background. For all instances except the consecutive ones poly-
topes nauty is one magnitude faster than PermLib. A performance diUerence was to be
expected and is likely to be caused by two things. First, the implementation is not very
optimized for the problem but uses the generic partition backtrack framework of PermLib.
Second, the algorithm used is very generic and does not make much use of the knowledge
about the graph automorphism problem, which it still is.

Although there is a big relative diUerence between the running times of the two conVgu-
rations, the absolute diUerences currently do not matter much. This is because the current
implementation of SymPol computes symmetries only once at the beginning and this is
still fast compared to the description conversion. When a double coset decomposition
implementation is available, the situation has to be re-evaluated.
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Table 4.1.: Running times in seconds for computing restricted symmetries with graph
automorphisms

polytope PermLib NTL/nauty
C15 0.08 0.02
C17 0.14 0.03
V (E6) 0.22 0.02
V (E7) 1.10 0.06
C(E7) 0.36 0.10
C(E8) 1.37 0.19
met5 0.06 0.00
met6 0.45 0.03
met7 2.74 0.12
cut5 0.01 0.00
cut6 0.10 0.01
cut7 0.70 0.03
P 3,3
C1P 10.90 5.95
P 3,4
C1P 1874.08 8001.98
P 4,3
C1P 1921.34 21886.70

It remains unclear where the performance diUerence for P 3,4
C1P and P

4,3
C1P comes from. The

conversion from edge-weighted to vertex-colored graph increases the number of vertices
from about 3900 by a factor of 13 to about 50000. Virtually all the running time is spent
in nauty, so probably the diUerence in the number of vertices causes the measurable
performance diUerence.

From the absolute numbers we can see that computing RAut(Pm,n
C1P ) with a graph or

matrix automorphism approach quickly gets infeasible because we have to invert a matrix
with about 22mn entries and compute its automorphisms. Even for small parameter values
likem = 4 and n = 5 the matrix is too large to Vt into memory. Because Pm,n

C1P admits an
integer lattice representation, we can try to compute RAut(Pm,n

C1P ) with a lattice automor-
phism approach in dimension m · n. As already stated above, not for all polyhedra from
the test set the corresponding stabilizer in the lattice automorphism group can be com-
puted easily. For the tested consecutive ones polytopes this stabilizer is trivially obtained.
Thus we may compare the running times for these instances with the graph and matrix
automorphism solution in Table 4.2.

From this table we can see that the lattice automorphism calculations based on AUTO are
much faster than the other approaches discussed before. A detailed analysis of the running
time also reveals that almost all the time is spent on computing the lattice gram matrix, i.e.
summing all vectors up in Q =

∑
v∈V vv

T . The actual lattice automorphism computation
takes still well below 50 milliseconds for P 4,5

C1P. This shows that there is at least one class
of interesting polyhedra for which the lattice automorphism approach performs very well.
An implementation beyond this ad hoc proof of concept may help to Vnd symmetries in
other relevant polyhedra with many vertices or facets in low dimension.
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Table 4.2.: Running times in seconds for computing restricted sym-
metries with lattice automorphisms

polytope |V | dimension PermLib NTL/nauty AUTO
P 3,3
C1P 506 9 10.90 5.95 0.01
P 3,4
C1P 3916 12 1874.08 8001.98 0.05
P 4,3
C1P 3940 12 1921.34 21886.70 0.06
P 3,5
C1P 29498 15 ?a ?a 0.41
P 5,3
C1P 30218 15 ?a ?a 0.42
P 4,5
C1P 747196 20 ?a ?a 12.40

a not tested because graph/matrix is too big

4.2.3. Description conversion

In this section we compare several strategies for performing a description conversion up to
symmetries on the polyhedra from the test set. As a reference all polyhedra were treated
with the direct conversion method (cf. Algorithm 3.1) with both lrs and cdd. Because
this thesis is not about a comparison of these two codes (for a case study see [ABS97])
always the code with the fastest direct results was used for decomposition strategies. As
decomposition strategies we can think of three types: (recursive) ADM, (recursive) IDM
and a combination of both techniques.

It turns out that most polyhedra from the test set are quite easy to solve so that recursive
decomposition strategies produce more overhead than they help. Therefore Table 4.3 lists
results for non-recursive ADM and IDM. DiXcult instances with one recursion step (two
levels of ADM in total) are marked separately. Besides these “pure” strategies the table also
contains the running times for a mixed IDM/ADM strategy. For this, after one application
of IDM one level of ADM was applied, so this is usually one recursion level more than
the pure strategies use. A diUerent one with ADM Vrst and IDM second turned out to be
always inferior on all tested instances, so it is not listed. Each test had a timeout of two
days, which was hit for the larger instances with direct conversion. The timeout was not
due to the Vnal symmetry Vltering part, which is usually fast, but occurred during the lrs
or cdd run.

Table 4.3 shows the running times for the description conversion of all polyhedra from
the test set with all discussed strategies. The best direct and best decomposition run is
marked with a gray background, the absolute best run is printed in bold letters. Looking
at the columns for the direct conversion times, we identify three rather diXcult instances,
V (E7),met6, cut7. The rest could also be solved with cdd or lrs in less than Vve minutes.

For these easy instances the best results were almost always obtained with ADM. Ap-
plying this decomposition often improves the running time by one order of magnitude. A
special case occurs with cubes where a combined IDM/ADM solution is best according to
Table 4.3. However, the table entries are somewhat misleading as no recursive IDM has
been included in the test setup. This imposes no restriction for most of the polyhedra from
the test set because there are too many facet orbits on the Vrst recursion level to yield an
improvement by recursive IDM. For cubes this condition does not hold because for every
cube face CF there is only one orbit of facets of CF up to symmetry. Thus a recursive IDM
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Table 4.3.: Running times in seconds for description conversion

polytope given as direct (lrs) direct (cdd) ADM IDM IDM-ADM
C15 H 7.75 52.73 2.07 4.61 1.73
C17 H 39.90 866.52 9.93 23.42 8.38
V (E6) V 40.97 150.43 2.79 23.71 5.16
V (E7) V ?a ?a 9891.55b ?a,c 13574.20
C(E7) V 2.52 1.36 0.84 2.06 1.98
C(E8) V 56.20 52.64 2.82 3.80 2.76
met5 H 0.45 0.10 0.11 0.16 0.16
met6 H 772.92 3.57 1.34 1.56 1.53
met7 H ?a ?a 524.05b 12440.20 284.69
cut5 V 0.02 0.04 0.02 0.02 0.02
cut6 V 2.44 0.74 0.36 0.73 0.53
cut7 V 44600.00 30122.10 69.46b 10095.30 43.37
P 3,3
C1P V 253.05 12.64 11.56 91.97 17.23
P 3,4
C1P V ?a 317.73 50.46 32098.60 1191.67

a aborted after 172800 seconds (2 days)
b with two levels of ADM
c with two levels of IDM

should be particularly suitable for cubes. With k − 1 recursion levels of IDM for Ck the
running times for C15 and C17 can be lowered to 1.21 and 6.01 seconds, respectively. This
bound cannot be decreased substantially in SymPol because of necessary group calcula-
tions.

For the three diXcult instances V (E7),met7, cut7 using a decomposition method aUects
the running time tremendously. Again we distinguish two cases: V (E7) on the one hand
andmet7, cut7 on the other. The Voronoi cone V (E7) could not be solved directly within
two days. With one recursive ADM application, two levels in total, this problem can be
solved in less than three hours. A combination of IDM and ADM was signiVcantly slower
and using IDM alone rendered the problem again unsolvable within the time limit. This
happens because there are too many and too diXcult facet orbits of V (E7) and its Vrst
recursion level.

The polyhedra met7 and cut7 also proVt enormously from adjacency decomposition.
But the conversion of these polyhedra can be performed even faster by combining IDM
and ADM. The facet structure of met7 and (cut7)∆ is such that there is only one facet
up to symmetry (cf. the metric cone from Section 3.3.2). Thus an initial application of the
IDM is able to improve performance.

Except the very easy polyhedra met5 and cut5 all polyhedra from the test set got a
signiVcant performance improvement by the Adjacency Decomposition Method. Success-
fully using the Incidence Decomposition Method needs more care as its running time
depends on the number of facet orbits. For some polyhedra one (metric and cut polytopes)
or more (cubes) facet “layers” can be cut oU with the IDM because there is only one facet
up to symmetry. After this reduction ADM may be employed to further reduce the run-
ning time. Other combinations were not useful for the polyhedra from the test set. This
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is partly because the instances are rather easy and most them require only one level of
decomposition. The other reason is that IDM is only helpful if there are only very few
orbits of facets, which happens rarely during recursion. At least the last factor might me
mitigated to some extent by exploiting more symmetries of subproblems, which the next
section explains in more detail.

4.2.4. Symmetries of subproblems

When an Incidence or Adjacency Decomposition Method is applied to a polyhedron P ,
SymPol does not compute the restricted symmetries RAut(P ′) for a subproblem P ′. In-
stead, it uses only Stab(G,P ′) as the symmetry group for P ′ where G is a known part
of the symmetry group of P . If a subproblem P ′ is to be solved directly and without de-
composition, then it does not matter whether its symmetry group used is Stab(G,P ′) or
something bigger. For the direct method symmetry Vltering is performed after a descrip-
tion conversion without symmetries so we cannot expect any improvements by larger
groups. Thus the SymPol implementation does not suUer as long as zero or one recursion
levels are used.
Since the available test set of polyhedra contains only one instance which needs a con-

siderable amount of time with two recursion levels, an implementation of sub-problem
symmetry computation was not attempted for SymPol. But we may evaluate the potential
of using larger symmetry groups in an ad-hoc manner at the polyhedron V (E7).
The cone V (E7) took about 10000 seconds and two levels of ADM to be solved and thus

is by a wide margin the most diXcult polyhedron of the test set (cf. Table 4.3 on page 50).
The restricted symmetry group G := RAut(V (E7)) has order |G| = 1451520. In the
following we consider the 157 sub-problems which arise from the Vrst ADM level. The
symmetry group used for them is the only one to have a performance impact because the
second level polyhedra are solved with the direct method.
For every Vrst level sub-problem P ′ we can compare the order of the stabilizer

Stab(G,P ′) with the order of the symmetries RAut(P ′). The stabilizers are often very
small with an average of about 360 over all 157 sub-cones. More than two third have of
these have order less than or equal to 4. The symmetry groups are several magnitudes
larger with an average order of about 1018.
Most of these cones are rather trivial but there is one particular sub-cone P1 which is

responsible for about two thirds of the total running time and is used to Vnd almost all
rays of V (E7). Its stabilizer Stab(G,P1) has order 1920 and RAut(P1) has order 61440.
This diUerence is not as huge as the average diUerence. Nevertheless, using RAut(P1) as
a symmetry group the time needed for P1 is reduced from 6560 to 250 seconds.
Although there currently is no way to exploit these larger symmetry group in SymPol

to solve V (E7), we may get an estimate of the performance gain. An improved imple-
mentation for V (E7) would still need to solve the same 157 sub-cones. By solving these
separately and adding up their running time we know roughly how fast an integrated so-
lution could be. All 157 sub-cones were solved in 370 seconds. Transforming the sub-cone
results from RAut(P ′)- to Stab(G,P ′)-symmetry was very fast when performed on ran-
dom samples with the help of double coset composition in GAP. So an improved version
of SymPol solving the original cone should not be much slower. This means that the total
running time for V (E7) can be reduced further from about 10000 seconds with ADM to
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about 400 seconds by computing and exploiting restricted symmetries of sub-problems.
This result is in line with the experience of the authors of [DSV07] who state that com-
puting symmetries of sub-problems was necessary to succeed a description conversion of
V (E8).
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5.1. Summary

In this thesis we have discussed diUerent aspects of performing a description conversion
of polyhedra using symmetries. We started with a look at the hierarchy of geometrical
and combinatorial symmetries that we can look for at polyhedra. Because the task of a
description conversion implies that only partial knowledge of a polyhedron is available, we
could not expect to compute the full combinatorial symmetry group, which is the maximal
symmetry group. Thus we had to settle for less and discussed restricted symmetries, which
can be computed if either all rays and vertices or all facets are known.

We looked at two methods to compute restricted symmetries of polyhedra. The Vrst,
well-known method uses a transformation to a graph problem to compute polyhedral
symmetries as graph automorphisms. We considered a reduction of the graph to a ma-
trix automorphism problem, Vtted into the partition backtracking framework described in
the author’s thesis [Reh10] and implementation [PermLib]. The second, novel method
regards polyhedral symmetries as lattice automorphisms. This does not work in all cases,
but we have seen problem classes which are infeasible for the graph-based approach and
work well with the lattice-based approach in practice.

Knowing a subgroup of the combinatorial subgroup, we analyzed diUerent algorithms
to exploit these symmetries in a description conversion process. We discussed two de-
composition schemes, the Adjacency Decomposition Method (ADM) and the Incidence
Decomposition Method (IDM), which split a polyhedron into sub-polyhedra, leading to a
recursive solution.

Although both methods have been used separately for some years, a combination of
them seems not to have been attempted yet. The author’s C++ implementation SymPol

accompanying this thesis implements both techniques and allows to mix them. Further-
more, SymPol allows to compute restricted symmetries of the polyhedra with the pre-
sented graph/matrix-based approach.

We looked at several experiments with SymPol that compared the performance of dif-
ferent algorithms for computing symmetries and description conversion. The comparison
between the author’s graph automorphisms code (which is actually stated as a matrix
automorphism code) in PermLib and the dedicated graph automorphism solution nauty

revealed that the latter is on most instances quite a bit faster but curiously not on all.
The proposed algorithm based on lattice automorphisms could not be tested on all in-
stances because no complete implementation is available. Despite that, we saw a problem
class, consecutive ones polytopes, which is infeasible for the graph-based algorithm and
on which the new method proves its potential.

In the description conversion part, recursive application of either ADM or IDM exploit-
ing symmetries improved the performance measurably. For some instances using symme-
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tries decreased the running times by one or more orders of magnitude, otherwise hitting
the time limit with conventional description conversion techniques. Whether ADM or
IDM is more suitable depends on the polyhedron. The ADM generally performs very well,
the IDM needs special conditions to work fast. In some cases a combination of using IDM
on the Vrst computational level and ADM on the second further increased performance
over a pure ADM recursion strategy.

5.2. Outlook

SymPol has already proven to be eUective for real-world computations. For instance,
it helped the author to prove an open conjecture about the symmetry of permutation
polytopes (cf. Appendix A). Moreover, Kumar uses it in his upcoming paper [Kum] to
shorten an otherwise lengthy description conversion process. To make it an even more
useful tool and to extend the possible application areas there is room for improvements in
at least two directions.
As the computational experiments have shown, using the dedicated graph automor-

phism software nauty is often faster than the author’s own implementation currently used
in SymPol. The software nauty is not included in SymPol due to software license incom-
patibilities. If obtaining symmetries turns out to be a performance bottleneck in some in-
stances, one could also try other graph automorphisms implementations with open source
licenses like [bliss]. Other improvements that have not been implemented in SymPol yet
include computing symmetries of sub-polyhedra and double coset decomposition to make
use of them, and a banking feature to store diXcult solved sub-problems. These features
have already proven to be useful for huge problems (cf. [DSV07]).
Another line of further research and implementation is the lattice automorphism ap-

proach to compute symmetries of instances where they cannot be computed with a graph
transformation. An implementation would need an extension of the author’s PermLib for
matrix groups and new code to cope with lattices. This eUort seems worthwhile especially
since an ad hoc construction in this thesis has been successful.
It would also be of interest to implement and analyze concepts from invariant theory.

We have seen that the invariant ring has very nice theoretical properties, which perhaps
could also lead to improvements in practice.
For other application areas it may be useful to investigate whether and how symmetries

can be found on slightly inaccurate input. In computational biology, for instance, large
polyhedra occur whose input are rounded Woating point values (cf. [LP10]). Exploiting
symmetries in those kind of polyhedra may also boost the range of feasibly computable
instances.
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A. Permutation Polytopes of Finite
Abelian Permutation Groups

A.1. Permutation polytopes

Consider a Vnite permutation group G ≤ Sm and the canonical representation r : G →
GL(R,m). That means r(σ) for σ ∈ G is an m × m matrix with exactly one 1 in each
row and column: We set r(σ)i,j = 1 if σ(i) = j and r(σ)i,j = 0 otherwise. We can
regard these m ×m matrices also as vectors in Rm2

. Thus we deVne in accordance with
[BHNP09] the permutation polytope P (G) of G as

P (G) := conv{r(σ) : σ ∈ G} ⊂ Rm2

.

As an example we consider the cyclic group Cm := 〈σ〉 ≤ Sm where σ :=
(1 2 3 . . . m). For this group we have P (Cm) = conv{r(σ0), r(σ1), . . . , r(σm−1)}. This
polytope in dimensionm2 is actually a polytope in dimensionm. To see this we note that
them−1 last rows of r(σi) are linearly dependent on the Vrst row due to the cyclic group
structure. Denoting the Vrst row of r(σi) by (x1, x2, x3, . . . , xm), the k-th row is given by

(xm−k+2, xm−k+3, . . . , xm, x1, x2, x3, . . . , xm−k+1)

for k ≥ 2. This holds because σ(k)− σ(1) ≡ k − 1 (mod m) by deVnition of σ.

Let π : Rm2 → Rm be the projection onto the Vrst row. We set P ′m := π(P (Cm)) =
conv{π(r(σ0)), . . . , π(r(σm−1))} ⊂ Rm. Because of the linear dependence we can Vnd
a linear map T : Rm → Rm2

such that T (P ′m) = P (Cm). Since T is an injective linear
function, P ′m and P (Cm) must have the same combinatorial structure. Because π(r(σi))
is the (i + 1)-th unit normal vector in Rm, the polytope P ′m is an (m − 1)-simplex Tm−1

in dimensionm. Thus also P (Cm) ∼= Tm−1.

As an extension we consider 〈τ〉 ≤ Sm for an arbitrary permutation τ . Let Ω :=
{1, 2, . . . ,m}. We write supp(τ) := {x ∈ Ω : τ(x) 6= x} for the support of τ ∈ Sm.
We can decompose τ into disjoint cycles κ1, κ2, . . . , κl. Suppose that supp(κi) is element-
wise smaller than supp(κj) for i < j and |κi| ≥ 2 for all i. Then r(τ) has a block-diagonal
structure r(τ) = diag(A1, A2, . . . , Al) with blocks Ai ∈ R|κi|. For our considerations of
P (〈τ〉) we can eliminate by projection all components of r(τ i) oU the diagonal, which
are always 0. In each block we can project onto the Vrst row as the remaining rows of
each block are linearly dependent on it. By these projections we obtain a polytope P ′ in
dimension

∑l
i=1 |κi| that is combinatorically equivalent to P (〈τ〉).
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A.2. Abelian permutation groups

The main tool to work with Vnite Abelian groups is the well-known classiVcation theorem,
which is given in Theorem A.1. Proofs can be found in many algebra books, for instance,
[Ros09, Ch. 7.2].

Theorem A.1 (Basis Theorem for Finite Abelian Groups). Every Vnite Abelian group G is
isomorphic to a direct product of cyclic groups.

With the help of this classiVcation result, we can prove the following theorem, which
gives a positive answer to Conjecture 5.4 of [BHNP09, p. 450]. Remark A.3 gives a hint for
why the symmetries of permutation groups are less obvious than one might think.

Theorem A.2. Let G be a Vnite Abelian permutation group with |G| > 2. Then the order
of the aXne automorphism group Aut(P (G)) of P (G) is larger than |G|.

Proof. We prove this theorem in several steps. First we check whether |G| = 2d for some d.
In this case Lemma A.7 shows that |Aut(P (G))| > |G| and we are done.
Otherwise, we note that |G| has a prime factor p ≥ 3. We proceed by decomposing G

into a direct product of cyclic groups using Lemma A.6. We can combine the bounds of
the automorphism groups of the permutation polytopes of these factors to get a bound on
|Aut(P (G))| by Lemma A.5.
At least one of these cyclic group factors H has order divisible by p ≥ 3. For this H ,

Theorem A.4 implies |Aut(P (H))| > |H| because p! > p. Thus we have shown that
|Aut(P (G))| > |G|.

Remark A.3. A permutation polytope depends on the representation of the group. We
have P (C6) ∼= T5 � T1 × T2

∼= P (C2 × C3) although C6
∼= C2 × C3 as groups.

Theorem A.4. Let G ∼= Cn be a Vnite cyclic permutation group of order n. Consider a
factorization n =

∏l
i=1 ki where each ki is a power of a prime pi and pi 6= pj for i 6= j.

Then the order of the aXne automorphism group Aut(P (G)) of P (G) is at least
∏l

i=1 ki!.

Lemma A.5. Let G = H1 ×H2 be the direct product of two permutation groups H1, H2.
Then |Aut(P (G))| ≥ |Aut(P (H1))| · |Aut(P (H2))|.

Proof. ForG = H1×H2 the canonical representation r ofG decomposes into a direct sum
r = r1 ⊕ r2 of canonical representations r1, r2 of H1, H2. Let A1 be an aXne symmetry
of P (H1) and A2 be an aXne symmetry of P (H2). Then A1 ⊕ A2 is an aXne symmetry
of P (G) and the bound on the automorphism group order follows.

Lemma A.6. Let G be a Vnite Abelian group. Let a ∈ G be an element with maximal
order. Then G = 〈a〉 ×H for a subgroup H ≤ G.

Proof. This follows from Theorem A.1. See, for instance, [Ros09, Ch. 7].

Lemma A.7. Let G ∼= (C2)d for some d ∈ N. Then P (G) is aXnely isomorphic to a
d-dimensional cube and |Aut(P (G))| = d! 2d.

Proof. [BHNP09, Cor. 3.6] shows that P (G) is aXnely isomorphic to a d-cube if |G| = 2d.
Thus also |Aut(P (G))| = d! 2d.
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A.3. Proof of Theorem A.4

A.3.1. Preliminaries

Before we prove Theorem A.4, we study permutation polytopes of conjugated groups. Let
G ≤ Sm be a Vnite permutation group and τ ∈ Sm be a permutation. We consider Gτ :=
{τ−στ : σ ∈ G}, the conjugate of G under τ . We have P (Gτ ) = conv{r(τ−στ) :
σ ∈ G} = conv{r(τ−)r(σ)r(τ) : σ ∈ G}. Thus for a Vxed τ there exist bijective linear
maps Sτ , Tτ : Rm2 → Rm2

, corresponding to the matrix multiplication in GL(R,m), with
P (Gτ ) = SτP (G)Tτ . Hence Aut(P (G)) and Aut(P (Gτ )) are conjugated as well.
This allows us to choose an appropriate setting for the proof. For the rest of the section

let G ∼= Cn of order n, embedded in a symmetric group Sm for some m. Let σ ∈ G be
a generator of G of order n. We consider the decomposition of σ into non-trivial disjoint
cycles κ1, κ2, . . . , κq. Let ci := |κi| be the order of κi, which is the length of the cycle.
We now construct a permutation τ ∈ Sm such that the conjugate στ := τ−στ is in a

canonical form. First, we Vnd a τ such that supp(στ ) = {1, 2, . . . ,
∑q

i=1 ci}. Second, we
modify τ so that supp(κτj ) =

∑j−1
i=1 ci + {1, 2, . . . , cj} =: Kj , where we build the sum of

the scalar and the set element-wise. Third, we order each cycle and modify τ such that

κτj (k) =

{∑j−1
i=1 ci + (1 + bk + 1ccj) if k ∈ Kj

k otherwise
. (A.1)

Here we write bacm short for a mod m, the unique solution of a ≡ x (mod m) for
x ∈ {0, 1, . . . ,m − 1}. Equation (A.1) is nothing but a formal way to state that each κj
under conjugation with τ is a translate of the canonical cycle generator (1 2 3 . . . cj−1 cj).
For our considerations of the order of Aut(P (G)) we may thus assume that for G =
〈σ〉 the generator σ consists of cycles κj with property (A.1) without loss of generality.
As we have seen in the Vrst section, it is enough to work with a projection of the full
P (G) ⊂ Rm2

onto RM with M :=
∑

i ci. In the following we thus only work with
P ′(G) := conv{v0, v1, . . . , vn−1} ⊂ RM where vi := s(σi) and s is a combination of the
canonical representation r and a suitable projection.
By our assumption these vectors have a block structure. The Vrst c1 components of each

vi contain exactly one 1. After this Vrst block, the next c2 components of each vi contain
exactly one 1, and so on. For instance, for the cyclic group 〈(1 2 3)(4 5 6 7)〉 ≤ S7, which
is isomorphic to C12, we obtain c1 = 3, c2 = 4, and

v0 = ( 1 0 0 1 0 0 0 )T

v1 = ( 0 1 0 0 1 0 0 )T

v2 = ( 0 0 1 0 0 1 0 )T

v3 = ( 1 0 0 0 0 0 1 )T

v4 = ( 0 1 0 1 0 0 0 )T

v5 = ( 0 0 1 0 1 0 0 )T

...
v10 = ( 0 1 0 0 0 1 0 )T .
v11 = ( 0 0 1 0 0 0 1 )T .

In the remainder of this section we will explicitly construct symmetries of P ′(G) for arbi-
trary n.
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A.3.2. Finding symmetries

Our goal is to Vnd symmetries of the permutation polytope of a cyclic groupG = 〈σ〉with
|G| = n. Let n =

∏l
i=1 ki be a factorization where each ki is a power of a prime pi and

pi 6= pj for i 6= j. The reason to look at this decomposition is thatG ∼= Ck1×Ck2×· · ·×Ckl
by Theorem A.1 and further factoring ki leads to another, non-isomorphic group.

Lemma A.8. For the cycles of length c1, c2, . . . , cq of which σ consists, we note that we
must always have lcm(c1, c2, . . . , cq) = n. Especially, c1, . . . , cq consist of the prime
factors p1, . . . , pl that make up k1, . . . , kl.

Proof. We know that lcm(c1, c2, . . . , cq) = |σ| = n because the cycles κ1, . . . , κq are
disjoint by our assumption.

We choose an arbitrary b ∈ {1, . . . , l} and t ∈ {2, . . . , kb}. For these we deVne the
permutation π of the set {0, 1, . . . , n− 1} as follows:

πb,t(r) =


br + scn if r ≡ 0 (mod kb),

br − scn if r ≡ t− 1 (mod kb),

r otherwise,

(A.2)

where s ∈ {0, 1, . . . , n− 1} is the unique solution of

s ≡ t− 1 (mod kb)

s ≡ 0 (mod ki) for i 6= b.
(A.3)

This unique solution s exists due to the well-known Chinese remainder theorem because
the ki have greatest common divisor 1 (cf. [CLRS09, Sec. 31.5]).

Lemma A.9. πb,t is a well-deVned permutation of {0, 1, . . . , n− 1}.

Proof. To show that πb,t is bijective it suXces to show that it is injective, We observe
that r ≡ 0 (mod kb) implies br + scn ≡ t − 1 (mod kb) by construction of s in (A.3).
Likewise r ≡ t − 1 (mod kb) implies br − scn ≡ 0 (mod kb). We also know that
fc(x) := bx+ ccn is bijective for x ∈ {0, . . . , n − 1} Because either r ≡ 0 (mod kb)
or r ≡ t− 1 (mod kb), the function πb,t is injective and thus a well-deVned permutation
of {0, 1, . . . , n− 1}.

We can think of the πb,t as permutations of the set of vectors v0, . . . , vn−1. In the
following we will construct linear functions Ab,t such that Ab,tvi = vπb,t(i) for every i. We
will accomplish this by giving a coordinate permutation ρb,t so that the j-th component of
vπb,t(i) is the ρb,t(j)-th component of vi for every i and j. Such a permutation can naturally
be realized by a linear function.

It is easier to construct ρb,t block-wise. For every 1 ≤ i ≤ q we deVne ρ(i)
b,t by

ρ
(i)
b,t(j) =


bj + scci if j ∈ R0,

bj − scci if j ∈ Rt−1,

j otherwise,

(A.4)
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where we use Rx := {brcci : r ∈ {0, . . . , n− 1} and r ≡ x (mod kb)}. To make sense
of this deVnition, we observe that vr has a 1 in its i-th block only at position brcci . Hence
Rx contains all possible positions of a 1 at rows with indices congruent x modulo kb. The
permutation ρ(i)

b,t shifts this position by s or −s where necessary. We have to show two

things: Vrst, that ρ(i)
b,t is well-deVned, and second, that ρ(i)

b,t actually realizes πb,t.

Lemma A.10. ρ(i)
b,t as given in (A.4) is a well-deVned permutation of {0, 1, . . . , ci − 1}.

Proof. If s ≡ 0 (mod ci), we have nothing to show as ρb,t is the identity. So let bscci > 0.
It again suXces to show that ρ(i)

b,t is injective. We observe that j ∈ R0 implies bj + scci =
br + scci for some r ≡ 0 (mod kb). Thus r+ s ≡ t− 1 (mod kb) and bj + scci ∈ Rt−1.
Analogously, we see that j ∈ Rt−1 implies bj − scci ∈ R0.

It remains to show that R0 and Rt−1 are disjoint for t > 1. If j ∈ R0 ∩Rt−1, then there
exist r, r′ such that br′ − rcci = 0 and r′ − r ≡ t− 1 (mod kb). We have pb | ci because
otherwise bscci = 0 by construction of s in (A.3) and Lemma A.8, which states that ci
consists of some of the primes p1, . . . , pl. The Vrst relation yields pb | r′− r and thus t− 1
has to be a multiple of pb. This implies s ≡ t− 1 ≡ 0 (mod kb) because kb is a power of
pb. This can only be true for t = 1. Hence R0 and Rt−1 are disjoint for t > 1 and ρ(i)

b,t is
well-deVned and injective.

Lemma A.11. The permutation ρ(i)
b,t deVned in (A.4) realizes πb,t. That is,

bπb,t(r)cci = ρ
(i)
b,t(brcci) (A.5)

for all rows r ∈ {0, . . . , n− 1} and all blocks 1 ≤ i ≤ q.

Proof. The only cases we have to evaluate in detail are r ≡ 0 (mod kb) and r ≡ t − 1

(mod kb). In all other cases ρ(i)
b,t and πb,t are the identity and we have nothing to show.

First, let r ≡ 0 (mod kb). Then πb,t(r) = br + scn and bπb,t(r)cci = br + scci because
ci | n. We also have ρ(i)

b,t(brcci) = br + scci , thus for this case (A.5) holds.

Second, let r ≡ t − 1 (mod kb). Analogously, we obtain ρ(i)
b,t(brcci) = br − scci =

bπb,t(r)cci . Thus for all r and i equation (A.5) is satisVed.

Corollary A.12. Let πb,t be deVned as in (A.2). Every element of the group 〈
{
πb,t : b ∈

{1, . . . , l}, t ∈ {1, . . . , kb}
}
〉 corresponds to an aXne automorphism of P (G).

Proof. Lemma A.11 states in other words the following: Let r ∈ {0, . . . , n − 1} be an
arbitrary row. The position of the 1 in each block i, given by brcci , is moved by ρ(i)

b,t on
the same place as in row πb,t(r). Thus every permutation of the vectors v0, v1, . . . , vn−1

by πb,t(r) can be realized as a linear transformation Ab,t. This Ab,t permutes the compo-
nents of its input according to ρ(1)

b,t , . . . , ρ
(q)
b,t . Hence also every concatenation of πb,t(r) for

diUerent values of b and t is induced by a linear transformation.

To Vnish the proof of Theorem A.4 we have to count the number of distinct automor-
phism we get from combinations of some πb,t.
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A.3.3. Counting symmetries

Lemma A.13. For Vxed b the group 〈πb,2, πb,3, . . . , πb,kb〉 is isomorphic to Skb .

Proof. Because πb,t(r) = πb,t(brckb) modulo kb, it is enough to study bπb,t(r)ckb for r ∈
{0, 1, . . . , kb − 1}. We observe that bπb,t(r − 1)ckb + 1 is the transposition (1 t) on r ∈
{1, . . . , kb}. Thus 〈πb,2, πb,3, . . . , πb,kb〉 ∼= 〈(1 2), (1 3), . . . , (1 kb)〉 = Skb .

Lemma A.14. Let Hb := 〈πb,2, πb,3, . . . , πb,kb〉. Then |H1H2 · · ·Hl| =
∏l

i=1 |Hi| =∏l
i=1 ki!.

Proof. We show that πi, π′i ∈ Hi and π1π2 · · · πl = π′1π
′
2 · · · π′l implies πi = π′i for every i.

Together with Lemma A.13 this yields the stated size of H1H2 · · ·Hl.
So let q be the Vrst index such that πq 6= π′q. For i ∈ {1, . . . , l} let si ∈ {0, . . . , n− 1}

be the solution of

si ≡ 1 (mod ki)

si ≡ 0 (mod kj) for j 6= i.
(A.6)

Then every πi moves each point r by bλi(r)sicn for some λi(r) ∈ Z. Similarly, π′i moves
each point r by bµi(r)sicn for some µi(r) ∈ Z. Thus for each r we have

l∑
i=1

λi(r)si ≡
l∑

i=1

µi(r)si (mod n). (A.7)

By our assumption there exists one r such that not all λi(r), µi(r) are zero. We write
λi := λi(r) and µi := µi(r) for this r.
Because of (A.7) we know that kq |

∑l
i=1(λi − µi)si. We observe that kq | si for all

i 6= q and kq - sq by construction of sq in (A.6). Hence kq | (λq − µq). Consider the
permutation πqπ′−q ∈ Hq. It moves r by b(λq − µq)sqcn. Because (λq−µq)sq is a multiple
of n = k1k2 . . . kl, it does not move r at all. Thus πqπ′−q is the identity, which contradicts
our assumption that πq 6= π′q. Hence we must have πi 6= π′i for all i.

Lemma A.14 together with Corollary A.12 yields the desired lower bound on the number
of aXne automorphisms of P (G).

A.4. Conclusion

In this chapter we have proven a result on the symmetries of a special class of permutation
polytopes. For permutation polytopes P (G) of Vnite Abelian groups G we could show in
Theorem A.2 that the group of aXne automorphisms is larger thanG for |G| > 2. We used
the classiVcation theorem for Vnite Abelian groups and a new, explicit lower bound on the
number of aXne automorphisms for P (G) where G is cyclic (cf. Theorem A.4). This gives
a positive answer to an open conjecture in [BHNP09]. Computations with SymPol suggest
that the lower bound given in Theorem A.4 is probably sharp with a candidate being the
direct product of Cki for pairwise coprime ki.
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B.1. Overview

SymPol computes restricted automorphisms of polyhedra and performs polyhedral de-
scription conversion up to a given or computed symmetry group.

This document will give you a step-by-step introduction to the usage of SymPol. You
can Vnd a very compact quick start guide in Section B.8 on page 68.

B.2. Compile and install

B.2.1. Software requirements

SymPol comes already bundled with patched versions of [cdd] and [lrs] to actually per-
form polyhedral representation conversion. It also contains a copy of [PermLib] for com-
putations with permutations. To use and compile SymPol the following external software
is required:

Parts of the [Boost] library are required by both PermLib and SymPol. Boost has to
be installed in version 1.34.1 or higher with its program_options library. cdd, lrs and
SymPol also make use of the arbitrary precision arithmetics library [GMP], both in its C
and C++ version. Building SymPol (see also the next section) is most easily accomplished
with the [CMake] conVguration system.

So on a Debian/Ubuntu-based computer you would install the following packages:

• libboost-dev

• libboost-program-options-dev

• libgmp3-dev

• libgmpxx4ldbl (GMP C++ interface)

• cmake

B.2.2. Building SymPol

Compiling and installing

If CMake, Boost and GMP are installed, SymPol can be compiled as follows:

~/sympol$ mkdir build && cd build

~/sympol/build$ cmake -DCMAKE_BUILD_TYPE=Release ..

~/sympol/build$ make
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You can then use SymPol directly from the build directory and, for instance, print the
command line help with

~/sympol/build$ ./sympol/sympol -h

SymPol v0.1 and PermLib 0.2 with lrs 4.2c and cddlib 0.94f

Allowed options:

-h [ --help ] produce help message

[...]

You can also build SymPol from any other directory by calling

cmake -DCMAKE_BUILD_TYPE=Release /path/to/sympol-source

If you want to install SymPol you can call make install as root. This
will install SymPol into /usr/local. To choose a diUerent preVx add
an additional argument -DCMAKE_INSTALL_PREFIX=/your/prefix/here after the
-DCMAKE_BUILD_TYPE=Release. On Linux systems you may have to call ldconfig
as root afterwards so that the system knows about the new shared libraries (cddgmp and
lrsgmp).
Assuming that the default installation directory is in your $PATH, you can check that

SymPol is correctly installed and view the command line help by issuing

$ sympol -h

Optional libraries

SymPol can use [nauty] and [NTL] for a possibly faster computation of polyhedral sym-
metries, but for several reasons these are not bundled with SymPol but have to be compiled
and installed separately (see section B.4). Assuming that you have downloaded and com-
piled both nauty and NTL, the following is required for use with SymPol.

• Copy libntl.a from the NTL-src-directory and the complete include-directory
into external/NTL of SymPol.
• Please note that nauty is not open source and imposes usage restrictions.
First you have to create a static library by ar rcs libnauty.a naututil.o

nauty.o nautil.o nautinv.o naugraph.o rng.o. Then copy libnauty.a

and nauty.h into external/nauty of SymPol.

If both NTL and nauty libraries are installed like this, run cmake from the build directory
as described above.

B.3. Input format

SymPolmainly builds on the .ine/.ext Vle format as established by [cdd] and [lrs]. How-
ever, SymPol imposes one restriction and oUers one extension to the format.
Regardless of the Vle format, the input Vlename has to be speciVed by the command-line

argument -i <filename>. In most cases the -i can be omitted and ending the command
with a Vlename suXces.
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B.3.1. H-representation

A polyhedron in H-representation, i.e. given by m inequalities in n − 1 variables, can be
represented in an .ine Vle with the following format

H-representation

begin

m n rational

{ list of inequalities }

end

Every inequality is expected to be in the form a0+a1x1+a2x2+· · ·+an−1xn−1 ≥ 0. Such
an inequality then is denoted in the .ine Vle as line a0 a1 a2 . . . an−1. So, for instance, a
two-dimensional triangle deVned by

x1 ≥ 0
x2 ≥ 0

x1 + x2 ≤ 1

can be represented by the Vle

* 2-dim triangle

H-representation

begin

3 3 rational

0 1 0

0 0 1

1 -1 -1

end

Here, the Vrst line denotes a comment, introduced by a starting ’*’ character.

B.3.2. V-representation

Similarly, if a polytope is given by m rays and vertices in dimension n − 1, it can be
represented by an .ext Vle according to

V-representation

begin

m n rational

{ list of vertices }

{ list of rays }

end

Every vertex v gets a line 1 v1 v2 . . . vn−1 and every ray r a line 0 r1 r2 . . . rn−1.
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B.3.3. DiUerences to cdd and lrs

As extension to this basic format, SymPol allows to include the automorphism group of
the polyhedron, or parts of it, into the Vle. The user may specify after the end of the H- or
V-representation a permutation group section as follows:

...

end

permutation group

p

{ list of #p group generators }

q

{ #q base points separated by whitespace }

The p group generators are to be given in cycle form, where commas separate cycles. The
value q may be set to zero if no base of the group is known. A deVnition of a group base
and what it is good for is explained in [Ser03], [HEO05] or [Reh10]. So to denote a group
G = 〈(1 3)(4 5), (2 6 5)〉 with two generators and no base one would write:

...

end

permutation group

2

1 3,4 5

2 6 5

0

If you want to use 1, 2, 4, 5 as a (potentially partial) base the section should look like

...

end

permutation group

2

1 3,4 5

2 6 5

4

1 2 4 5

In contrast to cdd and lrs, in SymPol every inequality (H-representation case) or vertex
and ray (V-representation case) has to be in exactly one line. At least lrs tolerates parts
of an inequality or vertex spread over multiple lines, which SymPol currently does not
support. However, SymPol comes with a Perl script that converts an .ine or .ext Vle into a
suitable format (see Section B.9).
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B.4. Computing restricted automorphisms

If no or only a few automorphisms are known a priori, the user has the possibility to
compute restricted automorphisms of a polyhedron. These automorphisms may not be the
full (combinatorial) symmetry group of the polyhedron, but it can be computed without
full knowledge of both descriptions. We refer to [BDS09] for further details. SymPol

oUers two diUerent implementations. One is a straight-forward implementation using
a standard matrix inversion algorithm (cf. [CLRS09, Ch. 28]) and PermLib to compute
matrix automorphisms (cf. [Reh10] and Section 2.3 of this thesis).

The other one relies on [NTL] for matrix inversion over integers and [nauty] for graph
automorphisms. This approach is usually a bit faster, but is included only as an compile-
time option for two reasons: nauty is not released under a proper open source license,
so it cannot be distributed with SymPol. The NTL library is GPL licensed but not easy to
integrate into SymPol automatically. Section B.2.2 contains a description for the advanced
user of how to activate this implementation.

To just compute and print the restricted automorphism group of a polyhedron use the
command-line switch �automorphisms-only.

B.5. Description conversion

In order to perform a description conversion of a polyhedron SymPol oUers several al-
gorithms. One of the following has to be chosen at the command-line as an automatic
strategy selection currently is work in progress.

B.5.1. Direct conversion

The most straightforward way is to compute the complete complementary description
and Vlter up to symmetries afterwards. The user can choose between [lrs] and [cdd] to
perform the description conversion task. One may also estimate the diXculty of a problem
by using the estimation feature of lrs.

The command-line switch -e enables the estimation mode. In this mode only a diXculty
estimation is made by lrs and the program exits. To perform a polyhedral representation
conversion up to symmetry for “easy” polyhedra you can use the -d switch for direct
conversion. What “easy” means is hard to specify but experiments so far suggest that
polyhedra with an estimation of 40 or below are good for the direct conversion technique.
More diXcult problems should be treated with one of the recursive methods shown be-
low. Note that the absolute value of the estimation depends on the speed of the computer
on which the estimation is performed, so these numbers are not necessarily comparable
between diUerent machines.

You also can choose between cdd and lrs for the core polyhedral computations (diX-
culty estimation so far only by lrs). Both programs may behave quite diUerently on the
same input so it may be worthwhile to try both options for diXcult problems. By default
lrs is used. To replace it with cdd use the �cdd command-line switch. The interface to
cdd is still a bit experimental and may not work in all cases.
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B.5.2. Recursive methods

More sophisticated algorithms are recursive Adjacency Decomposition Method (ADM)
and Incidence Decomposition Method (IDM), described in [BDS09] and Section 3.3 of this
thesis. If the estimation of a problem exceeds 40 one of the following methods should be
used.

The ADM is selected by the command-line argument -a <threshold>. For problems
and arising subproblems whose estimation is below the given threshold the representation
conversion is performed directly. Problems whose diXculty exceeds the threshold are
broken into smaller sub-problems with the Adjacency Decomposition Method.

For some polyhedra it seems to be advantageous to also use the Incidence De-
composition Method in combination with ADM. The �idm-adm <thresholdIDM>

<thresholdADM> command-line argument selects this strategy. This works like the pure
ADM strategy before with an ADM threshold with one addition: Before a problem is
estimated by lrs a heuristic IDM metric is computed.

Problems with an IDM metric value below the given IDM threshold are treated with
IDM. If they exceed this threshold lrs computes an estimation. Then based on the ADM
threshold either ADM or direct conversion is applied. The IDM metric is still being de-
veloped but for the current implementation an IDM threshold of 10 is recommended. As
mentioned above, for the ADM threshold a value of 40 seems reasonable.

Alternatively, the strategy can be made depending on the recursion level with the
�idm-adm-level <levelIDM> <levelADM> command-line argument. This will use
IDM for the Vrst levelIDM levels (may be 0 to turn oU IDM) and ADM up to level leve-
lADM, if IDM is not used. After levelADM direct computation will be used. This strategy
helps to avoid expensive diXculty estimations.

B.5.3. Examples

Direct conversion

sympol -d -i input-file

ADM

sympol -a 40 -i input-file

IDM and ADM combined

sympol --idm-adm 10 40 -i input-file

# use ADM for the first two recursion levels

sympol --idm-adm-level 0 2 -i input-file

# use IDM for the first, ADM for the second level

sympol --idm-adm-level 1 2 -i input-file
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B.5.4. Memory usage and other parameters

The memory usage of SymPol is dominated by the number of orbit elements it is allowed
to store in RAM. Storing orbits in RAM allows to decide fast whether a new vertex/ray is
equivalent under symmetry to one computed before. If not all orbits can be stored a quite
expensive calculation is started to check for equivalence [Reh10, Ch. 3]. Thus the memory
limit for orbits, speciVed by the command-line argument �conf-compute-orbit-limit
<number>, should be chosen as large as possible. The default value 1024 means that
SymPol will pre-compute orbits as long as it occupies less than 1024 megabytes of RAM.
If this memory limit is exceeded vertex/ray equivalence will be computed by other means.

B.5.5. Combinatorial features

SymPol can compute the adjacency graph of the description conversion result, up to the
used symmetries. Construction of the adjacency graph requires the use of the ADM at
least at the Vrst recursion level. In this case the command-line option �adjacencies

activates the adjacency graph computation. The adjacency graph is printed in a format
suitable for visualization with [Graphv]. The vertex numbers correspond to the position
of the vertex/facet in the output list above.

Example

sympol --adjacencies --idm-adm-level 0 1 -i input-file

If you copy the adjacency part of the output into a textVle adjacencies.dot and have
[Graphv] installed you can generate, for instance, a PNG graphic adjacencies.png of
the graph by

neato -Tpng -o adjacencies.png adjacencies.dot

B.6. Output format

The output format follows the .ine/.ext format. The only diUerence is that the data section
contains only rays/inequalities up to symmetry. The computed automorphisms group and
the base used are printed, following the description in Section B.3.3.

B.7. Other program options

By default SymPol prints usage statistics about used processor time and RAM and warn-
ings and errors. If you want a more verbose output you can specify the -v parameter,
followed by a number which represents the logging level: INFO (1), DEBUG (2), DEBUG2
through DEBUG5 (3–6).

The command-line switch -t enables time measurement and prints the CPU time used
at the end of the computation.
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B.8. Quick Start Guide

Install If [CMake], [Boost] and [GMP] are installed:

~/sympol$ mkdir build && cd build

~/sympol/build$ cmake -DCMAKE_BUILD_TYPE=Release ..

~/sympol/build$ make

# as root or in su/sudo shell

~/sympol/build$ make install

Then the SymPol binary will be installed in /usr/local/bin. On Linux systems you
may have to call ldconfig as root afterwards so that the system knows about the new
shared libraries (cddgmp and lrsgmp).

Compute the restricted automorphism group

sympol --automorphisms-only input-file

Estimate the diXculty of a representation conversion

sympol -e input-file

Do a representation conversion For “easy” input (see estimation, probably estimation
below 40), try:

sympol -d input-file

For “diXcult” input, try one or more layers of ADM

sympol --idm-adm-level 0 1 -i input-file

Compute the adjacency graph after conversion

sympol --idm-adm-level 0 1 --adjacencies -i input-file

If you copy the adjacency part of the output into a textVle adjacencies.dot and have
[Graphv] installed you can generate, for instance, a PNG graphic adjacencies.png of
the graph by

neato -Tpng -o adjacencies.png adjacencies.dot

B.9. Directory overview

After you extract a SymPol distribution package, you will Vnd the following directories:
• contrib contains scripts to manipulate .ine/.ext Vles.
• data contains various example polyhedra in .ine/.ext Vles.
• external contains all third-party software used by SymPol: [cdd], [lrs],
[PermLib].
• sympol contains the source code of the SymPol application
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B.10. License

As both cdd and lrs are published under GPL2, SymPol is also available under GPL2. The
complete text of the license is available from http://www.gnu.org/licenses/gpl-2.

0.html.
Parts of the source code come with a more liberal license: The author’s PermLib is BSD

licensed.
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Nomenclature

aff V aXne hull of V , page 2

coneV conical hull of V , page 2

conv V convex hull of V , page 2

bacm the rest of a modulom, short for a mod m, page 57

homog(P ) homogenization of a polytope P , page 3

g− inverse of g ∈ G, page 5

|G| order of group G, page 5

OP(Ω) set of all ordered partitions of Ω, page 10

Π ∧ Σ intersection of two partitions Π, Σ, page 11

RAut(P ) group of restricted symmetries of a polyhedron P , page 13

Stab(G,P ) setwise stabilizer of a set P in the group G, page 39

supp τ support of the permutation τ , page 55

Gτ conjugate of the group G with permutation τ , page 57

G[i] pointwise stabilizer of the i− 1 Vrst base elements, page 9

P∆ polar of the polytope P , page 4

xG orbit of x ∈ Ω under g ∈ G, page 5
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of Graphs by T. Junttila and P. Kaski. http://www.tcs.hut.fi/Software/
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[Boost] Boost free peer-reviewed portable C++ source libraries. http://www.boost.
org/.
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[CMake] CMake – Cross Platform Make. http://www.cmake.org/.
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[GMP] GMP, The GNU Multiple Precision Arithmetic Library. http://gmplib.

org/.
[Graphv] Graphviz – Graph Visualization Software. http://www.graphviz.org/.
[lrs] lrs by D. Avis. http://cgm.cs.mcgill.ca/~avis/C/lrs.html.
[Magma] MAGMA Computational Algebra System. http://magma.maths.usyd.

edu.au/.
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http://cs.anu.edu.au/~bdm/nauty/.
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[PermLib] PermLib, a C++ library for permutation computations, by T. Rehn.

http://www.mathematik.uni-rostock.de/lehrstuehle/geometrie/

software/.
[Polyh] Polyhedral: A package for handling polytopes and lattices by M. Dutour

Sikiric. http://www.liga.ens.fr/~dutour/Polyhedral/.
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