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For the probabilities of large deviations of Gaussian random vectors an asymptotic expan-
sion is derived. Based upon a geometric measure representation for the Gaussian law the
interactions between global and local geometric properties both of the distribution and of the
large deviation domain are studied. The advantage of the result is that the expansion coef-
ficients can be obtained by making a series expansion of a surface integral avoiding the
calculation of higher order derivatives. � 1996 Academic Press, Inc.

1. INTRODUCTION

In many problems of probability theory, mathematical statistics and
their applications probabilities of large deviations are of interest. Note that
there are both many papers where the large deviation probabilities are
studied for themselves and many papers where the logarithms of these
probabilities are considered. Results concerning the second type of large
deviation asymptotics are sometimes called rough limit theorems whereas
the results of the first type are called sharp limit theorems. In the present
paper we shall derive a third type of results in the form of asymptotic
expansions for large deviation probabilities. These expansions include coef-
ficients describing the local geometric structure of the boundary of the large
deviation domain near the points around which the measure under con-
sideration gives its main influence onto the asymptotics. While the first

article no. 0036

1
0047-259X�96 �18.00

Copyright � 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Received January 26, 1994; revised March 1996.

AMS 1991 subject classifications: 41A60; 41A63; 60F10.
Key words and phrases: Asymptotic expansions, Gaussian distribution, local geometric

properties, geometric representation, large deviations, normal distribution, and Watson's
lemma.



File: 683J 161502 . By:CV . Date:01:08:96 . Time:11:36 LOP8M. V8.0. Page 01:01
Codes: 2630 Signs: 1714 . Length: 45 pic 0 pts, 190 mm

coefficient is a function of the curvatures of the boundary at these points,
the following coefficients in the expansion reflect certain higher order local
geometric properties of the large deviation domain in the neighborhoods of
the just mentioned points.

Here we will consider a Gaussian random vector X=(X1 , ..., Xn) having
a standard normal distribution, i.e. its mean vector is the zero vector
0=(0, ..., 0), its covariance matrix is the n-dimensional unity matrix and its
density is given by

.n(x)=(2?)&n�2 exp(&1
2&x&2)

with &x& the euclidean norm of the vector x. The probability content of a
set A/Rn for this probability measure is denoted by 8n(A). In the fol-
lowing we will study the asymptotic behaviour of the large deviation
probabilities given by

8n(*A)=|
*A

.n(x) dx

as * � �, where we assume that A is a closed set and Ac��the complement
of A��is a neighborhood of the origin in Rn. This means that Ac is an
absorbing set and therefore 8n(*A)=1&8n(*Ac) � 0 as * � �. So here
we have to determine how fast 8n(*A) approaches zero.

We set

a(A)=inf[&z&2 ; z # A]

and have a(A)>0, since the origin lies in the interior of Ac. Let be defined
further

M(A)=A & [x; &x&=- a(A)].

Because A is a closed set, M(A) is the subset of A which consists of all
points with minimal distance - a(A) to the origin. In this paper we shall
exploit a geometric representation formula for 8n given in [10]

8n(A)=
|n

(2?)n�2 |
�

0
F(A; u) un&1 exp(&u2�2) du (1)

with |n=2?n�2�1 (n�2) the surface area of the n-dimensional unit sphere
Sn(1)=[x # Rn ; &x&=1] and F(A; v) is defined by

F(A; v)=Un(v&1A & Sn(1)). (2)

Here Un( } ) denotes the uniform probability distribution on the n-dimen-
sional unit sphere. From Eq. (2) follows that |n F(A; u) is the surface area
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of the central projection of A & Sn(u) on the n-dimensional sphere Sn(1).
The asymptotic behavior of the integral in Eq. (1) was studied, e.g. in [3],
[10] and [11]. For the sets *A we have

8n(*A)=
|n

(2?)n�2 |
�

0
F(*A; u) un&1 exp(&u2�2) du.

Making the substitution u=*v, we get

8n(*A)=
|n

(2?)n�2 *n |
�

0
F(*A; *v) vn&1 exp(&(*v)2�2) dv.

From its definition in Eq. (2) we get F(*A; *v)=Un([*v]&1 } *A & Sn(1))=
Un(v&1A & Sn(1))=F(A; v), this gives

8n(*A)=
|n

(2?)n�2 *n |
�

0
F(A; v) vn&1 exp(&(*v)2�2) dv. (3)

Note that on one side Eq. (3) reflects the global geometric property of
the measure 8n to be invariant with respect to orthogonal transformations.
On the other side it enables one to relate the local geometric properties of
the measure 8n in a fixed neighborhood of the set M(A) with the
asymptotic behaviour of 8n(*A) as * � �. Generally, this approach does
not depend on whether the boundary �A of the large deviation region A is
smooth in a neighborhood of M(A) or not. But if one assumes smoothness
of �A around M(A) then it will be natural to reflect the local geometric
properties of 8n(*A) with the help of the respective differential geometric
tools. In this respect we follow the approach in [5], [7] and [8] where the
large deviation behavior of 8n(*A) as * � � is described, roughly spoken,
by using the main curvatures of �A at the points in M(A).

The expansions derived in the following are asymptotic expansions of
Poincare� type (see [4], chapter 1.4). Let be given an finite or infinite so
called asymptotic sequence [gn(x)], n=1, ..., N of functions gn as x � �,
i.e. a sequence of continuous functions with gn+1(x)=o(gn(x)) as x � �
for every n with 1�n�N&1. Following the notation of Bleistein and
Handelsman, the relation

f (x)t :
N

i=1

gi (x), x � �

means that for all n with 1�n�N&1 always

f (x)= :
n

i=1

gi (x)+O(gn+1(x)), x � �

3LARGE DEVIATION PROBABILITY EXPANSIONS
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and if N is finite that

f (x)= :
N

i=1

gi (x)+o(gN(x)), x � �.

Such a relation is called an asymptotic expansion of the function f (x) as
x � � with respect to the asymptotic sequence [gn(x)], n=1, ..., N. Such
expansions need not to be convergent.

In the case that N=1, the relation

f (x)tg1(x), x � �

means that

f (x)=g(x)+o(g(x)), x � �.

or, equivalently,

lim
x � �

f (x)
g(x)

=1.

In the case that A is defined by a twice differentiable function g: Rn � R
by A=[x; g(x)�0], Ac is an absorbing set and there is only one point x0

in M(A), i.e. M(A)=[x0], then we have that the following asymptotic
equation holds

8n(*A)t8(&* } - a(A)) `
n&1

i=1

(1&- a(A) } }i )
&1�2, * � �, (4)

if the minimum of the function &x&2 with respect to �A=[x; g(x)=0] is
regular at x0 (see Appendix). Here 8(x) denotes the one-dimensional
standard normal integral and the }i's are the main curvatures of the surface
�A at x0 . From the fact that at x0 the function &x& has a minimum with
respect to the surface �A follows that }i�1 for i=1, ..., n&1 and the mini-
mum is regular, if }i<1 for i=1, ..., n&1. This result is proved in [5] and
[8]. In the lecture note [7] main results for approximations of multi-
variate integrals by the Laplace method are collected.

In the case that M(A) consists of a finite number of points x1 , ..., xk such
that at all these points the minimum is regular, we get an analogous result

8n(*A)t8(&* } - a(A)) :
k

j=1
_ `

n&1

i=1

(1&- a(A) } }j, i )
&1�2& , * � �

with the }j, 1 , ..., }j, n&1's the main curvatures of �A at xj .
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In this paper we will show the connection between the function F(A; v)
and the local structure of �A near M(A) in the case that M(A) consists of
only one point. This result is generalized easily to the case of a finite
number of points in M(A).

If one assumes an expansion for F(A; v) to hold as v � - a(A), then by
Eq. (3) and Watson's lemma, given below, an asymptotic expansion for the
large deviation probabilities 8n(*A) as * � � can be derived.

Lemma 1 (Watson's Lemma). Let f : (0, �) � R be a locally integrable
function, which is bounded on finite intervals. Further assume to hold

f (t)=O(eat), t � �

for a real number a. For t � 0+ let the function f (t) have the following
expansion

f (t)t :
�

m=0

cmtam,

where Re(am) increases monotonically to +� as m � � and Re(a0)>&1.
Then the Laplace transform of f (t) has the following asymptotic expansion

|
�

0
e&*tf (t) dtt :

�

m=0

cm1 (am+1)
*am+1 , * � �. (5)

A proof is given for example in [4], p. 103�4.
The possibility of asymptotic expansions of multivariate integrals with

boundary maxima is discussed in [4], chap. 8, [9], p. 82, Theorem 4.5 and
[14], chap. IX.5, but no methods for obtaining higher order terms are out-
lined. The following results can be used for this purpose. They show in
which way higher order local geometric properties of the range of integra-
tion near the so called dominating point can be used for determining
respective coefficients c0 , c1 , ... .

2. LARGE DEVIATIONS IN TWO DIMENSIONS

In this paragraph we treat the case of sets A/R2 and show here how the
representation of the probabilities 82(*A) given in Eq. (3) and the
asymptotic approximation given in Eq. (4) are related. A short review
about basic theory of curves and surfaces is given in the Appendix.

We assume first that A is given in the form A=[x; g(x)�0] with g a
continuous function; the boundary �A is then given by �A=[x; g(x)=0].
Further it is assumed that the following conditions 1�4 are fulfilled:

5LARGE DEVIATION PROBABILITY EXPANSIONS
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1. a(A)=1.

2. M(A)=[x0]=[(0, 1)T].

3. In an open neighborhood V of x0 the function g is twice con-
tinuously differentiable and the minimum of &x&2 at x0 with respect to �A
is regular.

4. There is an open neighborhood U of x0 such that the curve part
U & �A=[(x, y) # U ; g(x, y)=0] can be represented in the form

y=1+ :
�

r=2

kr

r!
xr (6)

by an absolutely convergent power series, i.e. there is an =>0 such that
��

r=2 |kr | =r�r!<�.

The first condition is only a standardization to simplify the derivation of
the next two lemmas. The final result will be given for arbitrary a(A)>0.
Due to the rotational symmetry of the standard normal distribution the
second condition says only that M(A) consists of one point only; by a
suitable rotation we can achieve always that, if a(A)=1 and M(A) is a
one-point set, this point is (0, 1)T. The third condition says that the cur-
vature } of the curve �A at x0 is less than unity. The last condition states
that there is a power series expansion of the curve near x0 . Since at x0 the
function &x&2 has a minimum with respect to the curve U & �A, due to the
Lagrange multiplier theorem the first coefficient k1 in the representation
y=1+��

r=1 (kr�r!) xr must be zero. We have further that k2=&} with }
the curvature of �A at x0 , see Eq. (26) in the Appendix. As x � 0 this gives

y=1+
k2

2
x2+o(x2).

If we use the representation for 8n(*A) given in Eq. (3), we get with
n=2 that

82(*A)=*2 |
�

0
F(A; u) u exp(&(*u)2 �2) du.

Since a(A)=1, we have F(A; u)=0 for all u with 0�u<1. Therefore we
can write

82(*A)=*2 |
�

1
F(A; u) u exp(&(*u)2�2) du. (7)

6 BREITUNG AND RICHTER
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Making the substitution v=u&1 we can write the integral in the form

82(*A)=*2 |
�

0
F(A; 1+v)(1+v) exp(&(*(1+v))2�2) dv

=*2 exp(&*2�2) |
�

0
F(A; 1+v)(1+v) exp(&*2(v+v2�2)) dv.

To get an asymptotic expansion for the probabilities 82(*A) as * � �, we
will show in the following that these probabilities can be obtained as the
Laplace transform of F(A; (1+v)1�2).

For small v the function F(A; 1+v) has under the conditions made
above a simple geometric interpretation. Since only at x0 the domain A has
minimal distance to the origin and g is continuous, for small v the function
F(A; 1+v) is determined by the local structure of A and its boundary �A
near x0 . For v small enough the set A & S2(1+v) is a simply connected arc
on S2(1+v). Since F(A; 1+$)=U2((1+$)&1 A & S2(1)) in this case
F(A; 1+$) is the arc length on the circle with radius 1+$ around the
origin from the intersection point (x& , y&) of this circle and the curve �A
to the intersection point (x+ , y+) divided by 2?(1+$) or the arc length on
the unit circle around the origin from (x&(1+$)&1, y&(1+$)&1) to
(x+(1+$)&1, y+(1+$)&1) divided by 2?. Due to the conditions 1�4 there
exist for $ � 0 exactly two intersection points, which move towards (0, 1)
as $ � 0+. To expand the function F(A; 1+$) we therefore need the posi-
tions of these points.

The arc length can be computed using the first coordinate x as curve
parameter for a part of the unit circle around the origin near x0 . The arc
length is then

F(A, 1+$)=(2?)&1 |
x +(1+$) &1

x&(1+$) &1
[1+y$2(x)]1�2 dx.

Here the function y$(x) is given by

y$(x)=
d(1&x2)1�2

dx
=&x(1&x2)&1�2.

Since (1+y$2(x))1�2=(1&x2)&1�2, we get

F(A; 1+$)=(2?)&1 |
x +(1+$) &1

x&(1+$) &1
(1&x2)&1�2 dx

=(2?)&1 [arcsin(x+(1+$)&1)+arcsin( |x& |(1+$)&1)]. (8)

7LARGE DEVIATION PROBABILITY EXPANSIONS
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Lemma 2. Under the conditions 1�4 the function x+ (resp. |x& |) of $ has
for $ small enough a convergent series expansion in terms of z1�2=
(2$+$2)1�2 in the form

x+= :
�

m=1

;+
m zm�2, resp. |x& |= :

�

m=1

;&
m zm�2

with

;+
1 =;&

1 =(1&})&1�2 (9)

;+
2 =&;&

2 =
&k3

6(1&})2 (10)

;+
3 =;&

3 =
5k2

3

72(1&})7�2&
3}2+k4

24(1&})5�2 (11)

and as $ � 0+

x+=\ 2
1&}+

1�2

} $1�2+o($1�2), resp. x&=&\ 2
1&}+

1�2

} $1�2+o($1�2).

Proof. The point (x+ , y+) is that intersection point of the circle
around the origin with radius 1+$ and the curve �A in the first quadrant,
which has a small positive x-value. Here we assume that $ is so small that
A & S2(1+$) is a simply connected set. Due to condition 4, near x0 the
curve �A can be represented by the absolutely convergent power series
expansion

y=1+ :
�

r=2

kr

r!
xr. (12)

The circle S2(1+$) is defined by the equation x2+y2=(1+$)2. By
squaring Eq. (12), we get again a convergent power series expansion with
coefficients k� r , i.e.

y2=1+ :
�

r=2

k� r

r!
xr

with k� 2=2k2=&2}. To find the point (x+ , y+) we use the two equations
for y2

+, which are

y2
+=1+ :

�

r=2

k� r

r!
xr

+

y2
+=(1+$)2&x2

+.

8 BREITUNG AND RICHTER
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This gives then

(1+$)2&x2
+=1+ :

�

r=2

k� r

r!
xr

+

2$+$2&x2
+= :

�

r=2

k� r

r!
xr

+.

By defining z=2$+$2, we get further that

z= :
�

r=2

k� r

r!
xr

+x2
+=(1+k2) x2

++ :
�

r=3

k� r

r!
xr

+

=(1&}) x2
++ :

�

r=3

k� r

r!
xr

+.

Since }<1 due to assumption 3 the coefficient of x2
+ is larger than zero.

We rewrite the equation

z=(1&}) x2
+ \1+ :

�

r=3

k� rxr&2
+ +

with

k� r=
k� r

r! (1&})
, for r=3, 4, ... . (13)

Taking the square root gives

z1�2=(1&})1�2 } x+ \1+ :
�

r=3

k� rxr&2
+ +

1�2

.

Expanding the square root of the function in the parenthesis into a power
series in terms of x+ gives then

z1�2= :
�

r=1

:~ rxr
+

with :~ 1=(1&})1�2>0. Now, since :~ 1{0, we can invert this series to get
an expansion of x+ in terms of z1�2 , i.e.

x+= :
�

i=1

;+
i zi�2.

The result for |x& | can be derived in the same way.

9LARGE DEVIATION PROBABILITY EXPANSIONS
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To find the first three coefficients, we note first that

y+=1+
k2

2!
x2

++
k3

3!
x3

++
k4

4!
x4

++o(x4
+)

y2
+=1+

k� 2

2!
x2

++
k� 3

3!
x3

++
k� 4

4!
x4

++o(x4
+)

with k� 2=2k2 , k� 3=2k3 and k� 4=6k2
2+2k4 .

From this follows then as above

z=(1&}) x2
+(1+k� 3x++k� 4x2

++o(x2
+)),

or

z
1&}

=x2
+(1+k� 3x++k� 4 x2

++o(x2
+)).

Using Eq. (3.6.18) in [1] for the expansion of the square root of a series
gives then

\ z
1&}+

1�2

=x++
k� 3

2
x2

++\k� 4

2
&

k� 2
3

8 + x3
++o(x3

+).

=b =c

Now using Eq. (3.6.25) in [1] for the inversion of a series, we can invert
this expansion, yielding

x+=\ z
1&}+

1�2

&b }
z

1&}
+(2b2&c) } \ z

1&}+
3�2

+o(z3�2).

Inserting the values for b and c gives then

x+=\ z
1&}+

1�2

&
k� 3

2
}

z
1&}

+_k� 2
3

2
&\k� 4

2
&

k� 2
3

8 +&
z3�2

(1&})3�2+o(z3�2)

=\ z
1&}+

1�2

&
k� 3

2
}

z
1&}

+_5k� 2
3

8
&

k� 4

2 &
z3�2

(1&})3�2+o(z3�2).

Inserting further the values for k� 3 and k� 4 from Eq. (13) gives finally

x+=\ z
1&}+

1�2

&
k3

6(1&})2 z

+\ 5k2
3

72(1&})7�2&
3}2+k4

24(1&})5�2+ z3�2+o(z3�2).

The result for |x& | can be derived in the same way. K

10 BREITUNG AND RICHTER
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Using this result, we can find an expansion of the function F(A; 1+$) as
$ � 0+.

Lemma 3. Under the conditions 1�4 the function F(A; 1+$) has an
absolutely convergent series expansion in terms of z1�2=(2$+$2)1�2 in the
form

F(A; 1+$)=F(A; (1+z)1�2)= :
�

m=1

#m zm�2 (14)

for sufficiently small positive $, where

#1=?&1(1&})&1�2 (15)

#2=0 (16)

#3=?&1(;+
3 &;+

1 �2+(;+
1 )3�6). (17)

Here ;+
1 , ;+

2 and ;+
3 are defined in (9), (10) and (11).

Proof. The function F(A; 1+$) is given in Eq. (8). We split it up into
two parts

F(A; 1+$)

=(2?)&1 _|
0

x&(1+$) &1
(1&x2)&1�2 dx+|

x +(1+$)&1

0
(1&x2)&1�2 dx&

=(2?)&1 [arcsin(x+(1+$)&1)+arcsin( |x& |(1+$)&1)]

=(2?)&1 [arcsin(x+(1+z)&1�2)+arcsin( |x& |(1+z)&1�2)]. (18)

Here we used that (1+$)&1=(1+z)&1�2. Since x& and |x+ | have expan-
sions in terms of z1�2 we get by making first a series expansion of
x+(1+z)&1�2 and |x& |(1+z)&1�2 in terms of z1�2 and then inserting these
into the power series expansion of arc sine at zero the result above.

We have

x+(1+z)&1�2=(;+
1 z1�2+;+

2 z+;+
3 z3�2+o(z3�2))(1&z�2+o(z))

=;+
1 z1�2+;+

2 z+(;+
3 &;+

1 �2) z3�2+o(z3�2). (19)

Now, we have for the arc sine function the following expansion (see [1],
Eq. 4.4.40)

arcsin( y )=y+
y3

6
+o( y3), y � 0.

11LARGE DEVIATION PROBABILITY EXPANSIONS
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Inserting in Eq. (19) the last equation gives the result

F(A; (1+z)1�2)=?&1[;+
1 z1�2+(;+

3 &;+
1 �2+(;+

1 )3�6) z3�2]+o(z3�2). K

The last lemma gives an expansion of F(A; 1+$)=F(A; (1+z)1�2) in
terms of z1�2=(2$+$2)1�2. To find now an asymptotic expansion of 82(*A)
as * � � we have to relate this expansion with the probabilities 82(*A)
using Eq. (3).

We replace now conditions 1, 2 and 4 by:

1$. a(A)>0.

2$. M(A)=[x0]=[(0, - a(A))T].

4$. There is an open neighborhood U of x0 such that the curve part
U & �A=[(x, y ) # U ; g(x, y)=0] can be represented in the form

y=- a(A)+ :
�

r=2

a(A)r�2 kr

r!
xr (20)

by an absolutely convergent power series, i.e. there is an =>0 such that
��

r=2 |kr | =r�r!<�.

In the following theorem we derive the relation between the expansions
of 82(*A) as * � � and F(A; (1+z)1�2) as z � 0+.

Theorem 4. Under the assumptions 1$, 2$, 3 and 4$ the probabilities
82(*A) have the following asymptotic expansion

82(*A)t
exp(&a(A) *2�2)

* - a(A) 2?
:
�

i=0

ai (- a(A) } *)&i, * � �. (21)

For even i the coefficients ai&1 are zero and for odd i the coefficient ai&1 are
given by

ai&1=#i 1 (i�2+1) ?1�22(i+1)�2

with #i from Eq. (14) and a0=(1&})&1�2 and a2=3(;+
3 &;+

1 �2+(;+
1 )3�6).

Here } is the curvature of �A�- a(A) at x0�- a(A).

Recall that because of the asymptotic nature of the expansion, the formal
series on the right hand side is not necessarily convergent. This is reflected
by the fact that ai�(*i #i+1) tends to infinity quite fast as i � �.

Proof. We assume first that a(A)=1. The fact that all coefficients ai

for odd i are zero follows from Theorem 4.5 in [9], where the existence of

12 BREITUNG AND RICHTER
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such an expansion under the conditions given above is proved. We have
then

82(*A)=*2 |
�

0
F(A; 1+v)(1+v) exp(&*2(1+v)2�2) dv. (22)

This can be written as

82(*A)=*2 exp(&*2�2) |
�

0
F(A; 1+v)(1+v) exp(&*2(v+v2�2)) dv.

Making the substitution z=2v+v2, we have 1+v=(1+z)1�2 and
dv�dz= 1

2 } (1+z)&1�2. This gives then for the integral

82(*A)=
*2

2
exp(&*2�2) |

�

0
F(A; (1+z)1�2) exp \&

*2

2
} z+ dz.

Now this integral is the Laplace transform of the function
F(A; (1+z)1�2) at *2�2. From Lemma 3 we have for F(A; (1+z)1�2) at z=0
the convergent expansion

F(A; (1+z)1�2)= :
�

i=1

#izi�2.

From this we can derive an asymptotic expansion for the Laplace trans-
form using Watson's lemma

|
�

0
F(A; (1+z)1�2) exp \&

*2

2
} z+ dzt :

�

i=1

#i1(i�2+1) 2(i+2)�2

*i+2 , * � �.

Inserting this into Eq. (22) gives then

82(*A)t
exp(&*2�2)

* - 2?
} :

�

i=0

ai *&i, * � �.

This proves the result for a(A)=1. The general case is derived in the same
way by considering instead of A the standardized set A� =A�- a(A). K

3. THE MULTIVARIATE CASE

In this paragraph we consider the general case of a set A in the n-dimen-
sional space. We assume that A is defined by a continuous function
g: Rn � R by A=[x; g(x)�0]. We assume further that the conditions 1�4
hold:

13LARGE DEVIATION PROBABILITY EXPANSIONS
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1. a(A)>0.

2. M(A)=[x0]=[(0, ..., 0, - a(A))T ].

3. In an open neighborhood V of x0 the function g is twice con-
tinuously differentiable and the minimum of &x&2 at x0 with respect to the
surface �A is regular.

4. In the neighborhood V�- a(A) of (0, ..., 0, 1) the surface
�A�- a(A) can be parametrized locally at (0, ..., 0, 1) by using the first n&1
coordinates as parameters in the form

xn=1+f (x*), x*=(x1 , ..., xn&1) # U(0).

Here U(0) is a neighborhood of the origin in Rn&1 and the function f
allows an absolute convergent power series representation such that

xn=1+ :
�

r=2

kr({)
r!

\r,

where \=&x*& is the norm of x* in Rn&1 and {=\&1x* is the unit vector
in the direction of x*. Here the kr({) are continuous functions and there is
an absolutely convergent power series with coefficients kr* such that
max&{&=1 |kr({)|�kr* and for all 0<=�=* with =*>0, i.e.

:
�

r=2

kr*
r!

=r<�.

Here condition 3 means that the matrix

H=(&($ij&|{g(x0)|&1 gij (x0))) i, j=1, ..., n

is positive definite with respect to the constraint ({g(x0))T x=0, see the
Appendix. As shown in the appendix of [5] this is equivalent to the
condition that 1&}i>0, i=1, ..., n&1 with }1 , ..., }n&1 being the main
curvatures of �A at x0 . Therefore the minimum is regular, i.e. the matrix
positive definite under the constraint, if all main curvatures are less than
unity.

In the following we will again relate the representation of 8n(*A) given
in Eq. (3) with the local surface structure of the surface �A. First we
assume again that a(A)=1. We have then

8n(*A)=
|n

(2?)n�2 *n |
�

0
F(A; u) un&1 exp(&(*u)2�2) du.

14 BREITUNG AND RICHTER
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Making again the substitution u2 � z as in the last paragraph gives then

8n(*A)=
|n

(2?)n�2

*n

2
exp(&*2�2) |

�

0
[F(A; (1+z)1�2)(1+z)(n&2)�2]

_exp \&
*2

2
} z+ dz.

To apply Watson's lemma, we have to determine an expansion of the
function in the square brackets as z � 0+. As in the two-dimensional case
the behavior of F(A; (1+z)1�2) as z � 0+ determines the asymptotic
behavior of 8n(*A) as * � �.

Theorem 5. Under the conditions 1�4 the probabilities 8n(*A) have an
asymptotic expansion in the form

8n(*A)t
exp(&a(A) *2�2)

* - a(A) 2?
:
�

i=0

ai (- a(A) } *)&i, * � � (23)

with

a0= `
n&1

i=1

(1&}i )
&1�2.

The }i 's are the main curvatures of the surface �A�- a(A) at x0�- a(A) and
the coefficients ai are determined by the expansion of F(A�- a(A); (1+z)1�2)
at z=0 in the following way. If

F(A�- a(A); (1+z)1�2)(1+z)(n&2)�2=z(n&2)�2 :
�

i=1

#i zi ,

then for even i the coefficient ai&1 is zero and for odd i the coefficient ai&1

is given by

ai&1=#i
1 ((n+i )�2)

1(n�2)
?1�22(i+1)�2.

Proof. The vanishing of the odd coefficients follows again from
Theorem 4.5 in [9]. We assume first that a(A)=1. Then

8n(*A)=
|n

(2?)n�2

*n

2
exp(&*2�2) |

�

0
[F(A; (1+z)1�2)(1+z)(n&2)�2]

_exp \&
*2

2
} z+ dz.
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To get an asymptotic expansion we have to find first an expansion of the
function in the brackets as z � 0+ and then to use again Watson's lemma
in the same way as in the last theorem.

As z � 0+ the domain (1+z)&1�2 A & Sn(1) is contracting towards the
set [x0]. Since g is continuous, there exists a zV>0 such that for all z with
0<z<zV the set (1+z)&1�2 A & Sn(1) is a simply connected set. We
assume now that z is so small that (1+z)&1�2 A & Sn(1) is a subset of the
set V defined in condition 3. Then using the local parametrization by the
first n&1 coordinates, we can calculate the surface area of the set
(1+z)&1�2 A & Sn(1), which is |n } F(A; (1+z)1�2), by an n&1-dimensional
integral over the set U(0) defined in condition 4

|nF(A; (1+z)1�2)=|
U

1[(x*, h(x*)) # (1+z) &1�2 A & Sn(1)] T(x*) dx*.

Here the surface under consideration is [(x*, h(x*), x* # U], where
x*=(x1 , ..., xn&1) and h(x*)=(1&&x*&2)1�2. The function T(x*)=
(1+�n&1

i=1 h2
i (x*))1�2=(1&&x*&2)1�2 denotes the determinant of the trans-

formation x � (x*, h(x*)), where the hi are the partial derivatives of h with
respect to xi , i=1, ..., n&1.

To reduce this essentially to a two-dimensional problem, we introduce
now spherical coordinates in the set U(0)/Rn&1. The transformation is
x* � ({, \) with {=&x*&&1 x*, \=&x*&; the cartesian coordinates are
obtained from { and \ by x*=\{. The respective transformation determi-
nant is \n&2 multiplied by a product of powers of trigonometric functions.
This trigonometric part will be summarized into an n&2-dimensional sur-
face integration.

We get then T(x*)=T� (\)=(1&\2)&1�2 and

F (A; (1+z)1�2)

=|&1
n |

Sn&2(1) _|
�

0
1[( \{, h(\{)) # (1+z)&1�2 A & Sn(1)] \n&2T� ( \) d\& dsn&2({)

(24)
=I( { , z)

Here dsn&2({) denotes surface integration over Sn&2(1). For fixed {,
the integral I({, z) in the square brackets is a function of z only. Since
(1+z)&1�2 A & Sn(1) is simple connected, this integral has always the form

I({, z)=|
x +({, z)

0
\n&2T� (\) d\

with x+({, z)=max[\>0; (\{, h(\{)) # (1+z)&1�2 A & Sn(1)].

16 BREITUNG AND RICHTER
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The function x+({, z) can be found as in the two dimensional problem
of the last paragraph in the form of an expansion in terms of z1�2, where
now the coefficients ;+

i ({) depend on {; here the condition that the mini-
mum at x0 is regular ensures that always k2({)>1 respectively }({)<1.
This gives with, e.g. ;1({)=(1&}({))&1�2, ;2({)=&k3({) 6&1(1&}({))&2,
etc.

x+({, z)= :
�

i=1

;i ({) zi�2.

Similar as in the last paragraph we have to consider the integral

I({, z)=|
x +({, z)

0

\n&2

(1&\2)1�2 d\.

By making a Taylor series expansion of the integrand, integrating term by
term and then inserting the expansion of x+({, z) we finally get an expan-
sion of I({, z) in the form

I({, z)=z(n&2)�2 :
�

i=1

#i ({) zi�2. (25)

Here, e.g., #1({)=;1({)n&1�(n&1). Inserting the last equation into Eq. (24)
gives then

F(A; (1+z)1�2)=|&1
n |

Sn&2(1) _z(n&2)�2 :
�

i=1

#i ({) zi�2& dsn&2({)

=z(n&2)�2 :
�

i=1

#� i zi�2

with #� i=|&1
n �Sn&2(1) #i ({) dsn&2({).

To obtain an expansion of F(A; (1+z)1�2)(1+z)(n&2)�2, we make an
expansion of (1+z)(n&2)�2 and multiply it by the expansion of
F(A; (1+z)1�2) given above. Then we have finally

F(A; (1+z)1�2)(1+z)(n&2)�2=z(n&2)�2 :
�

i=1

#i zi�2= :
�

i=1

#iz(n+i )�2&1.

Here the coefficients #i are obtained from the multiplication of the two
series. Using again Watson's lemma gives the result of the theorem. The
value of the first coefficient a0 follows from the results in [5] and [8],
Corollary 2.

The general case for arbitrary a(A)>0 is derived by considering the
standardized set A� =A�- a(A). K
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4. SUMMARY

In this paper a method for deriving asymptotic expansions for large
deviation probabilities is outlined. Theoretically the existence of such
expansions under sufficient smoothness conditions is known from [9] and
[14], but here it is shown, how it is possible to obtain higher order coef-
ficients by studying the behaviour of surface integrals near the points where
the normal density is maximal; this avoids the calculation of higher order
derivatives. The main idea behind is to combine considerations concerning
global and local geometric properties of Gaussian laws and large deviation
domains.

Such results can be generalized in various directions. For example, it is
possible to consider the case of more complicted shaped sets M(A), i.e.
manifolds. Related results for normal vectors are proved in [12]. Some
heuristic approaches for generalizations of such type results to non-normal
random vectors are given in [6].

APPENDIX: SOME BASIC FACTS ABOUT SURFACES

A curve C in R2 is defined by a function g: R2 � R by C=[(x, y);
g(x, y)=0]. If g is twice continuously differentiable, at a point x0=
(x, y) # C, the curve has two important characteristics. The normal n(x0) at
x0 is defined by

n(x0)=&{g(x0)&&1 \g1(x0)
g2(x0)+ ,

where g1 , g2 denote partial derivatives of g with respect to x and y respec-
tively. The curvature }(x0) describes a certain deviation of the curve form
a straight line. It is given as

}(x0)=
&g2

1(x0) g22(x0)+2g1(x0) g2(x0) g12(x0)&g2
2(x0) g11(x0)

(g2
1(x0)+g2

2(x0))3�2 . (26)

An n&1 dimensional surface G in the n-dimensional space Rn is defined
by a continuously differentiable function g: Rn � R by G=[x; g(x)=0];
here it is assumed that {g(x){0 for all x # G. Then for such a surface
a normal vector field is defined by n(x)=&{g(x)&&1 {g(x), x # G.
The tangential space Tx of G at x # G consists of all vectors y+x with
yTn(x)=0.

The Weingarten map Lx : Tx � Tx , defined by y [ Lx(y)=&{yn(x),
y # Tx , measures the turning of the normal as one moves through x on the

18 BREITUNG AND RICHTER
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surface G with the tangential vector y as speed vector. When &v&=1, then
the number

}(v)=Lx(v) } v

is called the normal curvature of G at x in the direction v. The n&1 eigen-
values of the Weingarten map are called the main curvatures of G at x and
denoted by }1 , ..., }n&1. Their corresponding unit eigenvectors v1 , ..., vn&1

are called the main curvature directions. The normal curvature at x in the
direction v is given by

}(v)= :
n&1

i=1

}i (v
T } v i )

2= :
n&1

i=1

}i cos2(%i )

with %i=arccos(vT } vi) the angle between v and vi . Further details can be
found in [13], chap. 12.

We give a short review of necessary and sufficient conditions for extrema
on surfaces. Let G be a surface in Rn defined by a twice continuously dif-
ferentiable function g: Rn � R by G=[x; g(x)=0]. Further let be given
another twice differentiable function f : Rn � R. The Lagrange multiplier
theorem (see [2], p. 25) states that, if at x0 # G the function f has a local
extremum with respect to G, then there exists a *{0, the so-called
Lagrange multiplier, such that

{f (x0)=*{g(x0),

i.e. the both gradients are parallel at x0 . This is a necessary condition.
A sufficient condition is given in [13], p. 98�100. A function f has a local

maximum (minimum) with respect to the surface G at a point x0 , if:

1. There is a * # R with { f (x0)=*{g(x0).

2. The matrix H(x0)=( fij (x0)&*gij (x0)) i, j=1, ..., n is negative (posi-
tive) definite under the constraint ({g(x0))T x=0, i.e. xTH(x0) x<0 (resp.
xTH(x0) x>0) for all vectors x with x{0 and ({g(x0))T x=0.

In the second condition appears a modified Hessian of the function f to
take into account the curvatures of G at x0 . An extremum at point x0 of
a function f with respect to the surface G is called regular, iff the matrix
H(x0) is definite under the constraint (n(x0))T x=0.
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