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Approximating large quantiles

WOLF-DIETER RICHTER

Unwversity of Rostock

ABSTRACT. Asymptotic expansions for probabilities of large
deviations are used to construct an iteration procedure for ap-
proximating quantiles in the far tails of a distribution. Expan-
sions for analytically known distributions are based on Laplace’s
method while quantile approximation for the arithmetical mean
relies on large deviation results of the Linnik type. A compari-
son of quantile approximations based upon the §-method or upon
Cornish-Fisher type expansions with those based upon our large
deviation approach show both formal similarities and substantial
differences.

Key words: Poincaré type expansions, large deviation iteration procedure, large deviations
in Linnik’s zones, skewness-kurtosis adjusted quantiles, adjustments for the arithmetical
mean, refined §-method quantile approximation.



1 Introduction

Quantiles of statistical distributions are needed in many theoretical and practical situa-
tions. From a certain mathematical point of view one can distinguish between four dif-
ferent general situations of quantile approximation. On the one hand side we shall speak
about central quantile approximation (CQA) or tail quantile approximation (TQA) in de-
pendence of whether we are dealing with quantiles from the central part of a distribution
or from its far tails, respectively. On the other hand side we shall speak simply about
quantile approximation (QA) or about asymptotic quantile approximation (AQA) in de-
pendence of whether we are keeping in mind only one fixed distribution or even a (weakly
convergent) sequence of distributions, respectively. Thus we shall distinguish between the
four situations CQA, TQA, ACQA and ATQA.

To recall shortly the idea of CQA let F denote a continuous and strongly monotonous
cumulative distribution function (c.d.f.) and 4 its q-th order quantile, i. e. the uniquely
determined solution of the quantile equation

F(Iq):qv qE(O,]). (1)

The Newton iteration procedure

" W(x,(m))

m s =120

zo(m + 1) = zy(m)

with
U(z) = F(z) - g,z € R

and a suitably chosen initial value 7,(0) will converge to ry under very general assump-
tions as well as other standard numerical algorithms will yield satisfactory numerical
approximations for q from the central part of the distribution.

If, however, g is very small or very large then W'(z,(m)) will be approximately zero
for sufficiently large m and the described algorithms fail more or less. In such situations
one can try to use TQA. Roughly spoken, this method is based upon first approximating
tail probabilities of a distribution by deriving a large deviation asymptotic representation
or even expansion of Poincaré type and second inverting it in some suitably defined
asymptotic sense. This will be outlined in Section 2 in more details.

If on the other hand side instead of a fixed c.df F a weakly convergent sequence
(Fa)n=1.2,. of c.d.f.’s has to be considered then the problem of solving the quantile equation
(1) can be replaced by finding a sequence (Tqun)n=1,0,.. satisfying the asymptotic quantile
relation

Fo(zgn) — q,n — oo, (2)

This is the situation of ACQA which in certain cases can be dealt with the so called
d-method or with the Cornish-Fisher expansion as only to recall two related standard



methods. To be a little more specific assume for describing the first of the just men-
tioned methods that for a sequence (Zn)n=1.2,.. of random variables (r.v.) over a common
probability space the normed sequence (Z./v/M)n=1,,.. converges in probability to zero,

Zﬂ/\/f—l—f;} G,H—PCD

and the corresponding sequence of distributions (B2, . converges weakly to the

standard Gaussian probability distribution 5,
Pén = @51, = oo.

Let f be a function which is strongly monotonous and sufficiently often differentiable in
a neighbourhood of zero. Denote by &on 2 g—th order quantile of the distribution of Zn
and put

Yo = S (2l VR) - F(O)
and
Con = (1 (Cun/ V) - £O).
Then
P5 =88, &9
as well as
'+ O 3)

where z, is the g-th order quantile of @5, i e., for the c.df @ corresponding to the
measure ¢ ; holds

O(z,) =g

Replacing the asymptotic relation (3) by the equation

A (1anl V) - 10)) =, (1)

and inverting (4) yields the so called §-method quantile approximation éw, for &, which
satisfies the quantile approximation equation

bon =g (104 L0 )



Expanding f~' at the point f(0) and suppressing higher order terms results in the quantile
approximation formula

i
where
2 0
TP g (6)

2v/nf'(0)

A more precise §-method quantile approximation formula will be given in Appendix A,
formula (36). The question of how to chose the function f has been discussed for two
special cases in Richter and Gundlach (1990) and in Davids and Richter (1990).

Let us shortly review now the other above mentioned standard asymptotic quantile
approximation method in the situation of ACQA. To this end assume that F, is the c.d.f.
of a sum of i.i.d. r.v.’s X1, Xn. Let X, satisfy all conditions such that F, admits an
Edgeworth type expansion

v
uniformly for all z from any finite interval and with the two Q.'s being

Qi(z) = —g1¢"(2)/6

Fa(z) = (2) + 3 Qulz)/n*"2 +0 (L) . (7)

and

Q) = (3¢ ¢"(2) + g} ¢*°)(2)) /72.
Here, ¢ denotes the derivative of ® while
91 =E(X; —EX,)*/ (E(X, - EX,)?)*

and

92 =E(X: —EX,)"/ (E(X, ~EX,)?)* -3

denote skewness and kurtosis of the distribution of Xi. For respective details see, e.g., in
Petrov (1975). Starting from the equations

2= 071(q) = 71 (®(2y,0) + [Fu(24,0) — B(20.0)])

expanding the inverse function ®~! at the point ®(2,) and plugging in the expansion
(7) leads to the asymptotic relation



g9
Zp = Zgn — 6‘\/';(2:'" = I)

1
t o ((8g] —3g,)22 — (14g7 — 992)2,)
1
+U(m), n —; co. (8)

Assuming the series expansion

Zan = 7+ ) (2) ' (9)

to hold, replacing z,, in (8) by its series representation in (9) and suppressing higher
order terms one gets from a comparison of coefficients to n=/2 a.d -1 the Cornish-Fisher
expansion

g
Zgn = 25+ ﬁvlfr—z (z: = 1)

1
+ o5 (392~ 4g)22 — (99, — 10g2)z,)

+o($) - (10)

which holds uniformly with respect to ¢ from [c,d] for all [c,d] C (0, 1), see, e.g., in Fisher
and Cornish (1960) and in Bolschev and Smirnov (1983).

As we have seen above when discussing how to solve the quantile equation (1) for a fixed
distribution one cannot expect in general to get satisfactory numerical approximations for
large quantiles by applying CQA-methods. Additional reasons lead to the circumstance
that one can also not expect that the quantiles Zgn can be represented in terms of the
quantiles z, in a satisfactory way by applying ACQA-methods. To understand this let us
recall that the Edgeworth type expansion (7) plays an essential role in the derivation of
the Cornish-Fisher type expansion (10). If z is very large or very small and n is a fixed
integer then it may happen that

[ Fa(z) = ®(2) = 3" Qu(z)/n*/2 |

is extremly smaller than % for a certain € € (0,00). An application of the asymptotic
relation (7) in the fixed situation that z is very large and n is relatively small fails as well
as it fails if z increases too fast when n approaches infinity. As a consequence, ACQA
fails if = > z(n) for a certain function z(n) satisfying

r(n) — as n — co.



If one exploits a suitable large deviation theorem instead of the Edgeworth type expansion
(7) then one can overcome the described difficulties. To be more specific we shall replace
(7) by a large deviation theorem for Linnik type zones and including two terms of Cramér’s
series. This will be outlined in Section 4 in more details. Note that theoretical and
numerical comparisons of normal and large deviation approximations for tail probabilities
have been made in Field and Ronchetti (1990), Fu, Len and Peng (1990) and Jensen
(1995).

2 Large deviation quantile approximation for analyt-
ically known distribution functions

Methods for approximating large quantiles make usually more or less explicitely use of one
or another type of approximating tail probabilities of the respective distributions. These
probabilities, however, are small. Techniques for approximating tail probabilities which
control relative approximation errors instead of absolute errors are therefore favoured in
dealing with the problem. Such techniques are available from large deviation theory.
Asymptotic expansions for probabilities of large deviations are the most precise results in
this field and will be exploited in this section for deriving quantile approximation formulas
of various orders. This approach will be demonstrated in the present section for a certain
general situation and will be illustrated by some examples in Section 3.

Let R be an open interval on the real line and assume that z, € R. A sequence of
functions (@n)n=01.2,.. will be called an asymptotic sequence as £ — z, in 11 if, for every
n, y is defined and continuous in R and

@n41(z) = ola(z)) as z—Zo

Let f be a continuous function on R and (¢n)n=0,2,.. an asymptotic sequence as
z — 7, in K. Then the formal series

Z arpi(z), 2 €ER
k=0

will be said to be an infinite asymptotic expansion of f as r —+ z, and with respect to
(@n)n=ou 2,... if for n =0,1,2,... holds

n

fz)= Zakcpk(:r) +0(pnt1(x)) as z— 7,

k=0
Following Bleistein and Handelsman (1975) we write symbolically in this case

o

f(z) ~ Zakcpk(z), T =T

k=0



Such kind of asymptotic expansion is said to be of Poincaré type.

Let F be a continuous cumulative distribution function with unbounded support and
denote its g-th order quantile by z,,q € (0,1). For the purpose of approximating large
quantiles of F' we put

and assume that we are given a Poincaré type asymptotic expansion

o0

flz) ~ ) awpi(z), = o0

k=0
with @, po(z) # 0. In view of this expansion and because
Tyog —F 00 iff a—r +0

we are motivated to replace the quantile equation (1) by the N-th order approximative
quantile equation

N
a= Zﬂk @k(Ti—a,n) (11)

k=o

for a suitably chosen integer N. Here, z,_, n will be called the N-th order approximative
quantile. Note that in typical examples F is strongly monotonous for sufficiently large
arguments and even

N

> an

k=o

has this property and is continuous. In this situation Ti_an is uniquely defined by
equation (11) if a is sufficiently small.

Because (11) is a nonlinear equation we cannot expect to solve it explicitely, in general.
Let us rewrite therefore equation (11) as

a =a, Pn(xl—n.N)[l + fN(Il—u.N)]'

Here,

B 2 arpe(z)
fu(z) =3 ==L

= ap.(z)
satisfles the asymptotic relation

fv(z)=0(1) as x — oo.



Consider now the reduced quantile approximation equation
o =a,94(C.) (12)
as well as the iteration procedure which generates C,4; from C, by
@ = a52o(Cnta)[1 + f(Ca)), (13)

n=0,1,2,... . Because the background of the derivation of the iteration procedure (13)
comes from the theory of probabilities of large deviations we shall call (13) a Large Devi-
ation Iteration Procedure having as initial value the solution C, of the reduced equation
(12) or a suitable approximation for it.

Define

Gn(z,a) = a —ap.(z)[1 + fa(z)], N =1,2,...
and put
Golz,0a) = a — a,p.(z).

The N-the order approximative quantile z,_, n is a solution of the equation

Gl e)=0,N =012, .. (14)
The function z = z(«) will be called an asymptotic solution of the equation (14) if

Gn(z(a),a) = o(¥(a)), a — +0
holds for a function ¥ satisfying

Y(a) — 0 as a— +0.

In typical cases the functions C,, = Cy(a) build a sequence of asymptotic solutions of the
equation (14) having the additional property

GN(Crti(a),a) = o(1)Gn(Cr(a),a), a — 0.
If for all sufficiently small @ > 0 holds
Cnla) — Tj_an, B — 00 (15)

then we are well motivated to call z,_, v an asymptotic solution of the so called asymp-
totic equation

Gn(zi—an,a) =0 as a — +0. (16)



Dealing with z,_, 5 as the asymptotic solution of the asymptotic equation means then
practically to approximate z,_, v by C, for a suitably chosen large n. The Large Devia-
tion Iteration Procedure could be stoped, eg., if

| B =8, | 1B 2% (17)

for a given small € > 0.

Let us turn now to the question when the assumption (15) will be satisfied. To this
end we shall assume that the function o is invertable and continuously differentiable for
sufficiently large arguments and rewrite then the equation (13) as

Gt = 93" (af (o[l + fu(Ch)])).

From the fixed point theory it is well known that the iteration procedure (13) converges
to Ti—a,N if

| ¢'(T1-an) [ <1 (18)
holds for the iteration function
?(z) = w7 (o (a[l + fn(z)])).
In typical cases we have even
P'(2)—0 as 0 (19)

so that condition (18) is fulfilled in such situations. The N-th order approximative quantile
Ti_an is then an attracting fixed point satisfying the fixed point equation for the iteration
function ¢, i.e.

z = ¢(z). (20)

We shall not be concerned here with the problem of characterizing the class of distribu-
tion functions F for which all assumptions are satisfied making our algorithm of quan-
tile approximation successful but we shall give in the next section some examples which
demonstrate the usefulness of this new method.

3 Examples
Example 1: Gaussian distribution

Let

F(z) = &(x), TER



be the standard Gaussian distribution function. It is well known ,see e g, in Bleistein and
Handelsman (1975), that 1 — & admits the following Poincaré type asymptotic expansion
as r — oo

==~ 2rzx

_2 = {2k — 1)
e 2 (I +§(g1)“_——12k )

As an illustration of more general properties of the expansion terms note that for, e. g,
* =2 the first six expansion terms are 1/(e?\/27) times

15 105 945

1 1 3
g _ = 0125 = = —2 o e e T
2 0;5; 5 0,125, 2 0,094, 57 0,117, 513 0,205 and 2048 0,461
respectively.
Let N € {0,1,2,...}. The N-th order approximative quantile equation is
e*"f-n.nn
o= == [L4 fy(Tio,)] s
27”:[—0,N
with
N
folz) =0, fn(z) = Zaklpk(x),N =71,2,
k=1
and

(2 - 1)!

awpr(r) = (ﬁl)km i

and whereby z,_, » denotes the N-th order approximation for z,_,. The reduced quantile
equation

L an
V2T

leads to an explicit formula for the initial value C, of the Large Deviation Iteration

Procedure,
Co=+/—2Ina —In(2m).

The iteration function

w(z) = /~2Ina —In(27) —2Inz +2In(l + fn(z)]

has the derivative

L2, )
z " 1+/x(z)

#le) = — )

12



so that because of ZjwaN= @(T1-an) holds

N
ONZ1_an) = —-2i 2, N~ Z(k])*(zk}(% = e [a:,_a_N

k=1

+ ) (=1)k(2k — ;)!.rz;f{;jJJ.

k=1
Since
@' (Z1-an) — —0, a — 40

the attracting fixed point ©,_, u is an oszillating fixed point. Note that, e. g for N =0,
the subsequence (Cats1)k=0, 2,.. monotonously increases. For proving this assume that
CZH-I > Czk_;. Then
C‘;;H_3 = (—2111 a—In (2#) —2In G;UH.QJ]'IZ
=(-2lna~In(2r) - 2In(~2lna — In(2r) - In Caryy )22
>(=2lna—In(2r) - 2In(~2lna — In(27) — In Cax—y)'/?)1/2
=(-2lna—In(2r)—2In Cat) = Coxyps.
It can be shown analogously, that the sequence (Cgg)x=1,2, . monotonously decreases.

Besides using the rule (17) in terms of quantiles for stoping the Large Deviation Iteration
Procedure it is also interesting to control the relative error in terms of quantile orders

rN(a) . [1 - ¢(C;1+l)] T a

in dependence of N and a. The following Table 1 gives some values of rn () while Table
2 gives the related values of the absolute error

an(a@) = [Cry1 — 2124



Table 17 Relative error ry(a)

a [ N=0 N=1 N=2 N=3
10-2 0,1233  0,0737 0,070 _ 0,0654
10-3 0,0810 0,255 00110  0,0077
10-° 0,0470  0,0083  0,0014  0,0013
10-° 0,0256  0,0022 00002  0,0002



Table 27 Absolute error ay(a)

a |  N=0 N=1 N=2 N=3
107* 0,0490 0,068  0,0180  0,0239
1073 0,0151  0,0174  0,0067  0,0122
10-? 0,0009  0,0117 0,009  0,0102
10°% 00058  0,0103  0,0100 0,0100

*)The author thanks J. Schumacher for making the calculations for this table.



Note that for starting the iteration procedure one can use several asymptotically more
precise initial values than C,. Consider

@(Co) = /=2lna—In(2r) —2InC, + 2In 1 + fn(C,)]

and deduce from here by plugging in C, and suppressing higher order terms

Cila) =+/—2Ina —In(4r) —In(—Ine)
as a new initial value.

Lemma 2.1 If a — 0 then
210 = C(a)[1 4+ O(In(=Ina)/(In a)?)].
Proof: It follows from the above considerations that for @ — 0 holds
L= ®(z1-a) = (2m)7%27],  exp(=2]_o/2)(1 +0(z72,)).
The solution z,_, ¢ of the zero-order approximative quantile equation
a=(2n) 2l exp(-zi_,0/2) (21)
satisfies therefore the asymptotic relation
Zia = (1 + o(zl__zu])xl_(,_a ,a—+0.
It has been shown in Richter (1987) that the solution h(y) = h of the equation
hexp (h*/(2C%)) = y,y > yo > 0 (22)
satisfies the asymptotic relation
h(y) = Cllny* — In(2C?) - Inlny]'*[1 + O(ln ln y/(In y)?)]

as y — oo. Notice that (22) is equivalent to the zero-order approximative quantile equa-
tion (21) if

C=ly=1/(V2ra)and h = z,_4p0.
Consequently,

T1—ap0 = [~ In(27 &®) — In2 — ln(— ln[v27a])]'/?
[L4+0(In(=Ina)/(lna)?)], e—=0

Example 2: Inverse Gaussian distribution (IGD)

16



Let F(z) = Fy(x),z € R denote the c.d.f. of the standard IGD, i.e.,
Rla) = 1z > 0) [0((z = s)/VE) + /0 (z + 1/v%)/y5)].

This distribution has been obtained by Schrédinger 1915 when studying first passage times
of the Brownian motion. In Tweedie (1957) essential properties of this distribution have
been discussed. In Wasan and Roy (1969) are given tables of quantiles of this distribution
and in Folks and Chhikara (1978) main knowledge about the IGD is reviewed. Lehmann,
Thiele and Tiedge (1989) discuss technical applications of the IGD.

The following considerations have been startet in a slightly other form in Richter and
Nicol (1990). Our large deviation assumption will be formulated as

(z = 1/v}) /v — 0. (23)
Using the results from Example 1 we can replace the quantile equation
FU(aﬁ) =0

by the N-th order approximative quantile equation
1= 8= (2n)"% exp (—y}/2)(fn(w1) — S (y2))

where

Yy = (aa—lf’”z)f Qﬁ. Y2 = (§g+1/v2)/\/6§.
1 o (=1)%(2k — 1)
fN(I)=;+§mTL—,

and in the case N =0 weput fy(z)=1/z.
Because of the condition (23) we can assume that

Qp = 1/v* + 6 for some § = §(8) > 0.
We rewrite now the N-th order approximative quantile equation as

1—-8=(2m)"exp (—yi/2) fn(n) KN (6)

with
§v?
K38 =1- 5,
age oy B((2/0? 48— (1/v% 4 )
K0 =1~ T s (e s 5)’
ki) = 1 - SR8 = (0 521/ +8) + 31/ + 57)

(2/0% + 8)5(8% — 82(1/v2 + &) + 3(1/0% + 8)2)

17



The reduced quantile equation is as in the preceding example
1-8= (21)_'/20”‘?‘“"2
and leads here to the formula
y10 = v/—2In(1 — 3) — In(27).
Using this formula or its refinement

Yio=+v/—2In(1 - B) — In(4w) — In(—In(1 — B))

we get the initial value C, (or C;) for approximating aﬁ with the help of the Large
Deviation Iteration Procedure by solving the equation

vio=(C, - l/vz)[\/(?_a.
The corresponding initial value &, for approximating & is then
8o = C, — 1 /0%,
The iteration function for approximating y; is

¢(z) = v/=2In(1 — ) —In(27) + 2In [n(z) + 2In KN(z — 1/v?)

and has similar properties as the function @ from the preceding example. Convergence of
the iteration procedure

Yinpr = (1), n =0,1,2,...

for approximating y,, however, is equivalent to convergence of the sequence (Cp)nzy g,
for approximating g, where C, is defined by

Yin = (cn - ]/”2) /\/(Tn

As we have seen in Examle 1, the value Y1 corresponding to the quantile @3 can be approx-
imated with a small relative approximation error if the considerations concern quantiles
from the far tails of the distribution. If we are dealing, however, with quantiles from the
more central part of the distribution, then the Large Deviation Iteration Procedure may
still yield initial values for standard numerical iteration procedures.

Example 3: Generalized gamma distribution (g.g.d)

Let F'(z) = Fup,(7), € R denote the c.d.f. of the g.g.d. with parameters a > 0,b > 0
and p > 0, i.e.

abrle

[“n‘b‘p(l‘) = [{.1‘ > O)W

/y"‘lfﬁ"udy, € R.

o

18



The following Poincaré type asymptotic expansion for large deviations has been shown
in Richter and Schumacher (1990) based upon a much more general result in Fedoryuk

(1977):

a bPle o —
1 — Fapplz) ~ ZPe~" cefz?H) 1 5 0
o)~ Ty T 2
with
= (ab)™?
k
=(ab)* [[(p—ia)k=1,2...
i=1

where in the case that p/a is an integer the infinite sum becomes finite and includes only
terms up to the summation index k = p/a — 1. Under the assumtion that N < pfa — 1
if p/a is an integer the N-th order approximative quantile equation is

= bpa —bQ Folk+1)
B=t07a) Z %/Q

where @5 denotes the N-th order approximation for the 100- percentage point QF' W of
Fa4p The reduced quantile equation

leads to the explicit formula for the initial value C, of the Large Deviation Iteration

Procedure
co_b”a( In(1-8) - (2) + (2 -1 )mbf

The iteration function is
N

g bl% (<1n(1 =)~ 1nT(2) + (B~ 1)Inb 4 plnz 4 1n Y e /ol o,
k=0
From
A —a(k+1) —a(k+1)
p'(z) = bacp{::)"‘ ch (k+ 1)z /Zcz

19



it follows that
@iz) — 0 as T — 0.
Hence,

| 2(Q5") <1

for sufficiently large quantile order 3 < 1. Consequently, Q;‘b'p is an attracting fixed point
for sufficiently large 8 < 1.

Further examples of large deviation quantile approximation are discussed in Ittrich,
Krause and Richter (in preparation) based upon an asymptotic expansion for large devi-
ation probabilities derived in Richter and Schumacher (in preparation). Note that these
papers concern large deviations for noncentral distributions which lead to the basic diffi-
culty that the so called dominating points from large deviation theory degenerate asymp-
totically.

4 Large deviation quantile approximation for the stan-
dardized arithmetical mean

Assume that a r.v. X has expectation p, dispersion o” and satisfies the Linnik condition
Eexp (| X [*®)) < o (24)

for some « € (0,1/2). For a discussion of condition (24) see, e.g., in Petrov (1975). Let
X1.. X, be independent r.v.’s which are distributed as X and denote by F, the c.d.f. of
the standardized arithmetical mean

T,

$

where

>
Il

|
=
+
+
e
2L

Define the functions

1 2?2 23 S z \F
n,s = 8 e = 1
fra(z) = 5= eap ( 2 \/HZH “ (vfn)
where s is the uniquely determined integer satisfying

5 s+1
2s4+2)




—1
3 =0, and ay is the k<A order coefficient of Cramér’s powers series. From Petrov (1975)
k=0
we have, e.g.
= g1/6 and a; = (g, — 397)/24,

whereby
E(X —p)'/o' —3

=E(X —pu)’/o® and g, =
X, respectively. In Petroy (1975) it

denote skewness and kurtosis of (the distribution of)

has been proved that if
T — o0, z=o0(n") as n — oo (25)
then Linnik’s asymptotic relation
1= Fa(z) ~ fas(z), n — oo (26)
holds.
Lemma 4.1 If condition (24) is fulfilled for some
23
Y € (1/6,1/4] and p(z) = 6\/_ O( )
then the asymptotic quantile correction formula
(27)

I = Fi(z + p(z)) ~ fao(z)y m — o

holds for x satisfying assumption (25)

Proof:  Under the assumption (25) holds
as n — oo.

p(z) = o(z)

From (26) follows therefore
L= Fulz +p(2)) ~ far(z+ p(z))

and
) (x+p()® &
l = Fi(z+p(z)) ~ \fQ_sz {——45—-4-6\61
,72_1;@,”,{_? #pls) +67=+0(I)} "

21



Lemma 4.2. If X satisfies assumtion (24) for some

z? 3gy — 4g}) z* zt
¢ (1/4,3/10] and p(z)= glw+ gﬂ;ﬁ)f+0 (;3—)

then formula (27) holds for all x satisfying assumtion (25).

Proof: Analogously to the proof of Lemma 1,

! (z+p(z))? o s, 92— 34}
onz exp {—T + m(i +p(z))" + W(I + P(x))‘}

2 2.4 A4 2.4 _ 3.2 5
T st b))

1 — Fu(z + p(z)) ~

1
a V2rx

Definition 4.3  Any quantity z,_,(x)(s) admitting the representation

2 2n 2n 36n 24n

2
1

(s) #1-a(n) f b Zi_a(n) L 0 B (28)
Zi—a(n){8) = Zi—an) + k41 ( ) + (_(,Hm
\/E k=-1 \/H n

as n —+ oo with constants

bo=g1/6 and by = (3g2 —4gi) /72

will be called a skewness or a skewness-kurtosis adjusted (1 — a(n))-quantile of the dis-
tribution of T, in dependence of whether s =1 or s = 2.

Remark 4.4  Assume that

lim 2{_,/vn >0

n—+oo

The special quantile approximations for T,
& . Qi 2
zl—n[n)(l} = Z1-a(n) + m (Zlfa(ﬂ] - 1)
and
" . 1
zl—n(n}(g) - Zl—a(n](l) + Ton ((392 - 49?)3?—0(@ — (992 — ]0912)31—0(")) )

corresponding both to the Cornish-Fisher expansions from (10) and to the é-method
quantile approximation formulas, satisfy Definition 4.3. If, e.g.,a function f(z,n) which

is strongly monotonous and sufficiently often differentiable in a neighbourhood of z =0
satisfies the assumption

f2:(0,12) - zzll—n(n] ;
___f,((],n) ==% +0 (T" asn — oo (29)

(V]
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then & . from (6) for this f satisfies Definition 4.3.

Definition 4.5 The zero-sequence (@(n))n=12,.. will be said to fulfil the Osipov type
condition of order v, y¢(0, 1/2) concerning its speed of convergence to zero as n approaches
infinity if

a(n)n” exp {nz"/Z} — ooasn — oo, (30)

For a discussion of condition (30) we refer to Richter (1990). We are now in a position
to formulate the main result of this section dealing with precise asymptotic quantile
approximation for (the distribution of) T,.

Theorem 4.6  Assume that the random variable X satisfies the Linnik condition (24)

for some v = 4(s)e (2:+41 ;‘f;’g) with se{1,2} and let the sequence (a(n))n=12... be chosen

such that the Osipov type condition (30) is fulfilled for this 4 = 7(s). Then

I_Fn(zl—a(n)(s)) ¥ 0(”)‘ n — oo

for any skewness or skewness - kurtosis adjusted quantile Z1—a(n)(s) satisfying the repre-
sentation (28).

Proof:  Condition (30) means
[fro(m")) ™! (1 = 8(21-0m)) — 0, n = oo.
This relation is equivalent to
(Fre(@)7 fro(21-atm) — 00, n = oo,
which is the same as
Zi—am) =o0o(n"), n = oo.

This means that z, —a(n) Satisfies the assumtions (25). The theorem follows now from
Lemmas 4.1 and 4.2 W

5 Large deviation approach to skewness and kurtosis
adjusted mean value statistics

Let
o —p _9Ta
a "
and
1 =)y B0~ STy

72n
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denote skewness and skewness - kurtosis adjusted mean statistics, respectively.

Theorem 5.1 If the assumptions of Theorem 4.6 are fulfilled then
P(T¥) > zy_am) ~ a(n),n =
for se{1,2}.
Proof:  Let us start from
P(T¥ > z1oam) ~ P (3va/(gip(n) 2 T > 21a(m)

where p(n) denotes a function approaching infinity sufficiently slowly as n — oo. For
sufficiently large n, the functions

To — T = TEN(T,),5€{1,2}

are monotonously in the regions of arguments under consideration. The corresponding
inverse functions can be represented as follows:

- Iz -2 o k+1 r,+2
(s)-1 =
I (z)=z + G ;:;E_l b1 (—ﬁ) + 0 (n(!+1}/2)'

Hence, for some © with | © | < oo,

P(T,SJ) > Zl_a(ﬂ)) ~ P(T" > Tfi'}_l(zl_a(,‘))) =P (T,, > Zlvu(n)(s) + @szi(n)/n(’“)

Because of

Ay /1 = 0(21am(s))  m = o0

Linnik’s formula (26) applies so that

P(T > zi_a@m) ~ fas (21-ag)(3) + © zi_gm)/nt+1?).

From
Jrns (24 gns(z)) ~ fas(z)in = o0
for
GralE) = o(:r_(“'”), n — oo,
it follows

P(’]‘y(;s’ > zl—o{n)) ~ Jnis (-H-a{n](‘-"))‘
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Because of
fns[zl—o[n)(s)) -+ fn.o(zl-n(n)); n = o0

and
JrolZizam)) ~ a(n), n = oo

the proof is finished W

Appendix
Refined é-method quantile approximation
Using the notations and assumptions from Section 1 define

_w, . [OEZE | fr0)EZ
Ut =2+ Sp)vm * oo

and
- f1(0) a 2
Una = V(Za) + 5 7= (EZ? - EZ,EZ?)

[( L0 (o2 - e

S

2/(0)
il () 3
+ 4700 (€23 -E2,82))|.
Expanding f in the zero point we get
L 20 Z
=%+ 9r) \f e

Taking expecation yields

)TL—')OO.

1
IEYn= n
‘1-1'0(”\/;

From (31) follows

2 g2 w Z (
A O { 277(0)

n

3/'(0)
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f”(O)) f”’{O)] i
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and from (32) follows

EY,) = (E7,) 4 L QEZ.EZ;
(E¥) = (B2%) + =t oyva

+

]_ f"(U]EZ;‘:)z fﬂf((])lEZn]EZ: O(L) . o
n[( 2f(0) ) T 370) ]* nva) T

Consequently,

and therefore we have
Yn_Un.l Y *EY +O(7-

VUna \/V(Y )+0(2=)

Because of P = &, we get

p(Yn—Un,llf'\/Un.z = @0.1 .

Let F; denote the c.d.f. of (Y, — Upn1)/+/Un2

and put
Con = [VR (Sl V7)) = £(0)) /£(0) = Uns] //Tnz-
Then
F3(Cin) = P(Z < &) = ¢ = Bau(z).
Hence,

Crn — 2,0 =+ 0. (33)

Replacing the asymptotic relation (33) by the equation
(V3 ($Enti = 10)) 170 = V] 15 = (34)

and inverling (34) yields the refined 4-method quantile approximation E,',_n for €;» which
satisfies the quantile approximation equation

= Vaf! (f(O) + % [Um + q\m]) : (35)
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For expanding f~! recall that
W) = U W)

and

W) = = U )/ U ).

Suppressing higher order expansion terms we get the following refined 8-method quantile
approximation formula

Eq.n B Uny+ 2,3/Una — ﬂ% [Un,l + 244/ Un.2 ‘

or

A _ S0V
Eq-n = lil: Uﬂﬂ (1 f’(ﬂ)\/r_l )] e Un.l
O [0, + #20,)
2/'(0)v/n

(36)
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