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TWO-DIMENSIONAL ASYMPTOTIC EXPANSIONS FOR LARGE 
DEVIATIONS OF SPHERICALLY DISTRIBUTED RANDOM VECTORS 

IF THE DOMINATING POINT DEGENERATES ASYMPTOTICALLY 

W.-D. Richter and J. Schumacher 

Abstract. A geometric approach to asymptotic expansions for large-deviation probabilities, developed for the Gaussian law 
by Breitung and Richter [J. Multivariate Anal., 58, 1-20 (1996)], will be extended in the present paper to the class of 
spherical measures by utilizing their common geometric properties. This approach consists of rewriting the probabilities 
under consideration as large parameter values of the Laplace transfoma of a suitably defined function, expanding this function 
in a power series, and then applying Watson's lemma. A geometric representation of the Laplace transform allows one to 
combine the global and local properties of both the underlying measure and the large-deviation domain. A special new type of 
difficulty is to be dealt with because the so-called dominating points of the large-deviation domain degenerate asymptotically. 
As is shown in Richter and Schumacher (in print), the typical statistical applications of large-deviation theory lead to such 
situations. In the present paper, consideration is restricted to a certain two-dimensional domain of large-deviations having 
asymptotically degenerating dominating points. The key assumption is a parametrized expansion for the inverse ~-1 of the 
negative logarithm of the density-generating function of the two-dimensional spherical law under consideration, 
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1. INTRODUCTION 

Asymptotic expansions for large deviations of one-dimensional random variables have been dealt with by many 
authors. Such expansions can be derived for explicitly known distributions by standard methods of asymptotic 
analysis, which were outlined, e.g., in the monographs of Erdrlyi [7], Berg [I], Sirovich [17], Rieksting [15], 
Bleistein and Handelsman [3], Fedoryuk [8], Wong [18] and Breitung [4]. The large-deviation probability 
integrals can be approximated through the values of a suitable, explicitly defined function at well-defined points, 
which will be called dominating points. In typical cases, the integrand attains its maximum over the large- 
deviation domain at the dominating points and the same points have the smallest distance from the distribution 
center among all points from the large-deviation domain. Asymptotic expansions for large deviations of certain 
not necessarily explicitly known probability distributions have been treated, e.g., in the monographs of Petrov 
[10], Saulis and Statulevi~ius [16], and the many papers cited therein. For some classes of known multivariate 
distributions, the existence of asymptotic expansions for large deviations has been discussed theoretically under 
sufficient smoothness conditions, e.g., in Bleistein and Handelsman [3], Fedoryuk [8], and Wong [ 18]. In Breitung 
and Richter [6], it was shown for the Gaussian law how it is possible to explicitly obtain the coefficients of the 
higher-order expansion by studying the behavior of certain surface integrals near the dominating points of the 
large-deviation domain, where the normal density is maximal. Note that this understanding of dominating points 
is not related to convexity as in Ney [9]. 

The general idea behind the approach in Breitung and Richter [6] is to combine considerations concerning the 
global and local geometric properties of both the Gaussian taw and the large-deviation domain. The main steps 
of dealing with the tail probabilities consist of, first, rewriting these probabilities as large parameter values of 
the Laplace transform of a suitably defined function f~, second, making a series expansion of this function, and, 
third, applying Watson's lemma. The function fk is deduced by applying a geometric representation formula for 
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the underlying multivariate distribution to the domain of the large deviations under consideration. Assuming a 
suitable expansion for the function describing the boundary of  the large-deviation domain in a neighborhood of 
the above-mentioned dominating points, the authors derive a series expansion for the function fk. 

In Richter and Schumacher (in print), a large-deviation asymptotic expansion is derived for a specific domain 
of large deviations having an asymptotically degenerated dominating point. Although the large-deviation domain 
considered by the authors is a specific one, their paper can be understood as a typical example for statistical 
applications of large-deviation theory, because dealing with noncentral statistical distributions other than the 
there-considered noncentral chi-square distributions leads to similar large-deviation domains. With respect to the 
general way of deriving an asymptotic expansion, the authors follow the geometric approach of Breitung and 
Richter [6] and extend it to the case where the underlying multivariate distribution is a spherical one. This allows 
us to study the noncentral g-generalized chi-square distributions. The respective function fk is deduced again 
by applying a geometric representation formula for the underlying multivariate spherical measure to the domain 
of large deviations. Let II �9 II denote the Euclidean norm in R 2. Assuming a suitably parametrized expansion 
for the inverse ~-l  of the negative logarithm ~ of the density-generating function g of  the multivariate spherical 
measure in a neighborhood of  ~(llxol12), xo belonging to the set of the above-mentioned dominating points, the 
authors then derive a series expansion for the function f t .  Both this expansion and the resulting final expansion 
tbr the large-deviation probabilities reflect the influence of  the density-generating function g on the asymptotic 
behavior of the large-deviation probabilities under consideration. 

Note that related results, however concerning only the leading term, are obtained in Richter and Steinebach 
[14], where the probability that a spherically distributed random vector falls into a half space having a large 
distance from the origin was considered. 

In the present paper, we consider another type of large-deviation asymptotics, namely, when the dominating 
point degenerates asymptotically. In the multidimensional case, there is a great variety of  ways for the dominating 
point to degenerate. It turns out from what follows that the large-deviation asymptotics will depend quite strongly 
on how the dominating point degenerates asymptotically. That is why we restrict our present study to the much 
simpler two-dimensional case to give a first impression Of what happens. 

Assume that the random vector X follows a two-dimensional spherically symmetric distribution with density 
p(x;  g) = C(g)g(l lxl l2) ,  x ~ R 2, where 

1 -- f r g ( r  2) dr < oo. 
0 < 2~rC(g) 

0 

Denote the cumulative distribution function corresponding to the density p by cl)(A; g), A 6 B 2, where B e 
stands for the Borel a-field in R 2. Let 0 < cr2(L) < aq < c~z for all ~. > 0 and put 

= _ R 2 :  " , a(x)  {(xl ,x,)  E ai-x i" + cr_~(~.)x~/> 1}. 

We consider the large-deviation probabilities 

~(XA(L); g) as X--~ cx), (1) 

allowing that 

O'2(~. ) > O" 1 as ~. ~ ~ .  (2) 

The well-determined set of  dominating points, i.e., of points from the large-deviation domain where the normal 
density is maximal, is {(l/or1,0) T, ( - I / a l ,  0)7}. In the case where (2) actually holds, both dominating points 
degenerate asymptotically as ~. --+ :x). In Section 3, we shall derive an asymptotic expansion for probabilities 
(1) under the more specific assumption (5) concerning the possible asymptotic degeneracy of the dominating 
points. In Section 4, we shall compare the leading term of our expansion with the results of other authors and 
give a certain reformulation of  the main result in this case. Section 2, which follows, deals with a geometric 
measure representation formula for the large-deviation probabilities (1), which will be the starting point for our 
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asymptotic considerations. Concerning the density-generating function g, we shall assume that the conditions 
(D1) and (D2,m) in Richter  and Schumacher (in print) are satisfied, i.e., g admits the representation 

g(r )  = e -~(~, r > 0, (D1) 

with ~ being a function first-order continuously 
assumed that an "artificial" parameter p = p (o~, 
expansion in the form 

~-~(pz + ~O~-I~r~)) 
k2 

differentiable and being invertible for large r ( r  >1%).  It is also 
).) can be chosen in such a way that ~- I  allows a power-series 

i n  

= ~ c jz  j + O(z'"+:),  
j=0 

z --+ 0, (D2,m) 

where m is a natural number,  the coefficients cj = cj (p , ) . )  approach certain constants c~ as ). tends to infinity, 
cj = cj (p , ) . )  --+ c~', ). ~ ~ ,  and c~ > 0. Note that f rom (D2,m) it follows for m = 0, 1, 2, 3 that 

= o? ,  c,_ c ,  = - : c ,  

and 

p: [ I/,"().'-/,,l)l'-] 
c3 - - - ~ c ~  1_[~,().2/o.]) p 3[~,().2/o.~)], , , 

respectively. 

Example  1. Let y > 0, fl > 0, and g(r) = r g-l-~r~'  = rN-% -#r~'tn~. Then ~(r)  = f l r r ' l n r  -- ( N  -- 1) ln r  
and 

~ ' ( r )  = fl? 'r  t '-I lnr  + fir r '-I N -- 1, 
r 

N - - 1  
~ ' ( r )  = fly'(?' - 1)r r-2 l n r  + flrr ' -2(2?'  - 1) + r ~ ,  

2 ( N -  1) 
~,"(r )  = fl?'(?" - 1)(?' - 2)r  • l n r  + flrY-3(3?' 2 -- 6?' + 2) 

r 3 

The function ~--1 satisfies condition (D2,3) with 

2y-2 
�9 or: , ( y  - 1 ) c s ~  • , 

p = 2). 2:/In)., c I -- f ly  , c~ = 2f ly  c1' 

and 

To prove this, note that, for example, 

. 2 ( 2 2 / -  1)a~ v 
c 3 = r215 c*. 

cl = ~ /~Y t~'-(~) l n k c r i ' /  \~ r i ' /  

-- 2).2~, in k \ai .y_2 ] 1 ln----~- + 2g in--"-'~ 

-1 

(N--'~51)~ 

-1 

i.e., 0c.((,)) C I - - ~  1 1 + O  1 - ~  ' k ---~ e~. 
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One can check similarly that 

0 )2 (~, _ 1)crl4v-2 (1 + O ( l n _ ~ ) )  
c, = - ( \2).~71nL - 2(/:///)2 ' 

and 

0 3cr~• I ( ( 1 ) )  
C3 : (2 -~ - r l n~ )  ~ (y - 1 ) ( 7  - 2) 1 q-O 1-~  

2. THE GEOMETRIC LAPLACE INTEGRAL REPRESENTATION F O R M U L A  FOR THE 
LARGE-DEVIATION PROBABILITIES 

Using the general representation formula for spherical distributions in [12.], we have from assumption (D I) 

OQ 

O(~.A(X): g) = F ( L A ( ~ ) ,  dr, 

0 

with the constant 

f ~ -~ 
18 = re -g(r-~ dr  

0 

and the intersection-percentage function of a Borel set A C R 2 F ( A ,  r) = w ( ( r - l A )  C? S,(1)), r > 0, where 
w denotes the unitbrm probability distribution on the unit circle $2(1) = {(xl ,xl)  r ~ R2: x~ + x~ = 1 and 
S2(r) = {(rxl ,  rx2) v " (xl ,  x2) r 6 $2(1)}. The substitution r = ~.v leads to 

qb(~.A()~): g) = ~ F ( L A ( k ) ,  ~.v)ve -~(z2v2) dv. 

0 

Since F(XA()~),  )~v) -- F(A(~.), v), u > 0, and because of F(A(~.), v) ------ 0 for v 6 [0, 1/at) ,  it follows that 

oo 

f _ ~,'~ U'~ ).2 "F(A().), v)ve  -g( - -) dr .  dP(~.A(~.); g) = -~ 

0 

If v >i 1/al  and )~/> ro/v/-~,  then the relation 

o;(X2v 2) = p y  (3) 

is invertible for all "'artificial" parameters p > 0 and substitution (3) yields 

OG 

qb()~A().); g) _-- 21~ 
ti(z2/~l/p 

Thus, if the density-generating function satisfies assumption (D1), then for X /> r o / x / ~  and all "artificial" 
parameters p > 0, after the change of variables z = y _ ~ ( ~ 2 / ~ ) / p  we get the following geometric representation 
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formula for the large-deviation probabilities under consideration: 

o O  

, , f (  1 _ ) O(LAO.>:g>-- o@e -'~(x-prO F A(L) ,~(g- l (pz+g(X2]al)> g-l'(pz-b~(Xe/crl))e-P:dz. 

l) 

(4) 

This formula, as well as that in the following Lemma 2.1, can also be interpreted as a Laplace integral repre- 
sentation for the large-deviation probabilities under consideration. Our final representation tbrmula follows from 
the just-proved equation (4) by the change of  variables w = z/[cr~ - ag(L)]. 

LEMMA 2.1. If assumption (DI) is satisfied, then for all p > 0 and )~ >1 ro/~/-~ the formula 

�9 (XA(X); g) = 
[a] - r ) / 

2I~ f (L' p' w)e-[a?-~r~-(X)lPw dw 
0 

holds; here 
( 1 ,  ) 

f ( L ,  p, w) = F A()Q, ~ / , ~ -  (u(),, p, w)) ~- l ' (u(L,  p, w)) 

with u(L, p,  w) = [cr~ -- cr~(~.)]pw + ~(LZ/crl). 

Before defining the "artificial" parameter p = p(~,  ~.) more precisely, let us assume that 

Io? : - - a;(3.)]p(g, L) > c~ as 3. --+ c~. (5) 

It turns out from the asymptotic theory of the Laplace integrals that under certain conditions an asymptotic 
expansion for f(~., p, w) as w --> +0  should yield an ~isymptotic expansion for the large-deviation probabilities 
~(LA*(L); g) as L ~ e~. Therefore, for our purposes it suffices to know an asymptotic expansion for the 
intersection-percentage function F(A(L), v) as v ---> 1/~rl + 0 instead of  the whole function F. In Lemma 2.2 
we consider F(A()~), v) for v not much bigger than or equal to 1/(rl. 

LEMMA 9 9 If" W E [0,  '~(k2/~ . . . .  -~ , j, then 
p[a~-or 

( 1 , ) 2  ~ - ' ( u O ~ , p , w ) ) - L 2 / c r ~  
F A()Q, -~/~-  (u(L, p, w)) = arcsin (1 - cr;_(~.)/af)g-" " - l(u(L, p, w))" 

Proof. Note that w belongs to the interval given in the assumption of the lemma if and only if 

In this case, the formula 

holds with 

1 o~-](u(~., p, m)) 1 
a f  

1 1 ) 4a 
F A(L), ~ x / g -  (u(~., p, w)) = 2--~ 

X20 
ot ~--- a r c s i n  

x//xr , '  " +xs0  

denote that the intersection point of the where (xlo, x2(i) is to boundary of the set A(L) 
S 2 ( ~ / ~  -I (u(~., p, w))), which belongs to the positive orthant, i.e., (Xl0, x20), satisfies the equations 

and the circle 

"9 "~ ") '7' 

ai-xi" 0 + cr,-0.)x2- 0 = 1 (6) 
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and 

A combination of  (6) and (7) gives  

,, ., 1 ~-1 
xi" o +x2- o = ~_g (u().,  p ,  w) ) .  (7) 

af - - 1  " u "~. " " 
).--5"g t t , P, w))  -- 1 = x~o[a i- -- a; ' ( ) . )] .  

From this equat ion and (7), it fol lows that 

(al/).2)fi,-i(u()., p, w)) i 1 
= arcs in  ( ( a l  _ a~_(~.))/i.z)~o_~(u(~. ' P, w)) 

3.  M A I N  R E S U L T S  

In the spirit o f  Watson's  l e m m a  combined  with L e m m a  2 . t ,  a main  step in deriving an asymptot ic  expansion 
for the large-deviation probabil i t ies  qb(1.A(~.): g) as )~ --+ oo will be to derive an asymptot ic  expansion tbr the 

intersection-percentage function F(A().),  ~2~/~o-l(u()~, p, w))) as w ~ + 0 .  

LEMMA 3.1. If" the densi~. -generating fimction g satisfies assumption (D2,m), then under (5) 

( l 1 ) 2v/'~a~( + ( ~ + A  [a, ) g A(~.), -s (u(~., p ,  w)) -- 7r wl12 1 " -- a~().)] w 312 

w'l + + t{Cl~176 -aT(~.)]_ + A,[cr r _  " -- a~(k)]'-_ + 40 ] " '"  

as u, --+ +0, where 
, ,) A! = ~ ClO'f 

A2 = ~ 4c 7 2 + 

alld 

Prof, ' .  Note that (5) ensures that  the upper bound for w in the assumpt ion  of L e m m a  2.2 tends to zero as 
), ~ ~ .  We now rewrite the result  o f  L e m m a  2.2 with z = w[a~  - a~( ; . ) ]  as 

( 1 ) "~ 7 g-l(Pz-k-g(~'2/a~))/)'2--1/a~ 
F A(X), 7 ~ / ~ - ' ( u ( X ,  p ,  w)) = ~- arcsin , ~ __, 

(i -- af.().)/af)g (p= + ~ ( X 2 / a ~ ) ) / k  2 

and get from assumpt ion  (D2,m) with m ~> 1 for z --~ 0 that 

F A().), l(u()~, p, w)) = - - a r c s i n  
(1 -~,~_00/~) ~7=oejzJ +o(:"+b 

(1+ z ;2  + ,  + o(:..D el'-, 
2 arcsin 

= ~- (1 "~ "~ 1 (1 " + O ( z " + ' ) )  - aS()~)/~;) U + ~2;=~ c;zJ~ 
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From the well-known expansions 

X X 2 
~ / l + x =  1 + - - ~  

2 8 

x 3 1 x 
~ = 1 - ~ + - -  

+ ~'6 ~ ' ' "  ~ / l + x  - 

3x 2 5x 3 

8 16 
. . . ,  

it follows that 

( 1-l-Z f=2 cj"J-l-l-O(S.m) )1/2 ( 
r ~, 1 ") 

, ,n O(: ' '+l = 1 + [c2z +c~z- + " ' ]  
1 + a'( Y~j=1 cjzJ + ) ~cl  " 

!4[C'~: "1-"" "12 "1- " " " t T I c I Z  "1- C2= 2 "1-"" "] "1- T [ C I =  "1- " " -1" " " " 
8c T - 

( C ' )  ( C~I C~ ) .) O'i-C ' O ~, . ..2 
= l + ~ - ~ z +  8cTZ% - - + " "  1 - -  -~ z +  - +  ~ + " -  

= 1 + A)z + A2z 2 n t- - - - .  

On combining the resulting representation for the intersection-percentage function 

F (A(L), 1 1 ( . (x ,  p, 
\ 

) = - - a r c s i n  ~-----~ ( t + A 1 z + A 2 z - + . . . )  
Jr r  r 

") " - -  ~ l p " '5 ") 
= " a r c s i n  ( ~ C l O [ w  -(1 -t- Altt'[o" i" - -  o'ff()-)3 '1- A2w-[crf - cr~(~.)l 2 + . . .  )) 

Jr 

with the expansion 

we get 

x 3 3x 5 
arcsinx = x + -~- + ~ + - - . ,  Ixl < 1, 

F (A(L),  1 1 w))) (u (x, p, 

= ~ ( v / ~ a ~ w l / 2 ( l  + AlW[cr] -c ry)Q]  + A2w2[a l -  a~O.)] 2 + . - .  ) 

, )3 
1 3/2 6 3/2t W[O" i" --O'~(~.)] @ ' ' "  + g C l  a lW t l + A l  

+ )5+ ) 

= 2 ~ / ' ~ C r l ( w l / 2 + w 3 / 2 ( A l [ t r 2 - - c r Z ( X ) ] + ~ )  

Cl ~7 4 . ~ v 
+ W 5/2 (A2[o" 1 - o-22(X)]2 + ---~--Alto-i--  cr2(L)] + 3 c l c r 1 8 ) + - - " ) .  

We are now in a position to expand the function f = F ~-l , .  

LEMMA 3.2. If the densi~-generating function satisfies conditions (D1) and (D2,m), then under (5) 

[ I )] f ( X , O , w ) _  2x/~crlL2 blWl /2+b2w3/2+b3wS/2+. . .+bmw ? ~  + 0  w ~-+1 , 
rrp 
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where the first coefficients are 

and 

bl = el, 

b2 = lc~r4 + (c,A, + 2c2)[a 1 0 

b ~ = 3 a S c 3 + ( 2 a a l C ~ A l + ~ a ~ c l c 2 ) [ c r l - a ~ ( L ) ] + ( C l A 2 + 2 c 2 A l + 3 c 3 ) [ c r  1 .  40 I 1 - - _~ 2. 

Proof. We start with the definition of f ,  

( ' , ) f ( L ,  p, w) = F A*(L), - ~ / ~ -  (u(L, p, w)) g-I'(u(~., p, u,)) 

and plug in both the expansion for F from Lemma 3.1 and an expansion for , .~-lt  which follows from (D2,m) 
using the continuous differentiability of ~-t: 

THEOREM 3.3. 

with 

and 

f (X,  p ,  w) -- - -  2v/77a~(wl/2+(6a4cl+Al[al-a~-()Ql)w3/2jr 

+(~cr~c~+~cr4c lA l [c r~ -c r~ ( ) v ' ]+Az[a~-c r~ ( ) v , ]2 )w  51" 

+ ' "  -4- -c2w[a 1 --aff(k.)] -}- 3c3w-[a? -- a2(k.)] 2 -}--..) 
l t - "  

2 v / 7 7 a l L e [ C l w l / 2 + ( I c l a 4 + ( c l a t + 2 c e ' [ c r l - - a ~ - ( L ) ] )  

{ 3 a 8 c 3  ( ~ a 4 c l A l +  l a 4 c l c 2 ) [ a  e -- a2(~-)] + ~ 4 0  1 1 "[- 

2c A,+ +... ]. 

I f  assumptions (D1), (D2,m), and (5) are satisfied, then for k --+ oo we have 

c~/2 al )~2 - ~ " [ Dl.1 
e -gIk-/a[) 1 q- , - - - - ,  

qb(LA(k.); g) = ~ ~ P3/2[1 _ a~_(L)/a?] 1/2 u p[a; - aS(&) ] 

DL2 D2.1 D . .  D2.3 -] + + , -'- + + . . .  
p [p[o .  i. O.~(~.)]]2 "1- " 2 J 

- _ p-[ (71 - ~ (x ) ]  p -  

c la  4 15 c2 3 
DI.I = 4 ' D i , 2 -  4 cl -~Cla?, 

D,_.~ = ~ C l ,  0,_.2 = (7~,~,_ - 3o1 c;) ,  

15 7 ~ +  ~ c2o?+ c~o 
D2.3 ~ ~ \ Cl 4 c i 
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P r o o f .  From Lemmas 2.1 and 3.2 we have 

r  g) = 
(a~ - c~_ (X) )p exp{-~(X2/0-~)} 

2re 

f ~ ~ "~ 

, q Cl 0-i-)~.- -, ,~ x (bl w 1/2 + b2w3/2 + b3w5/2 +. . . )eDf-erS(Xllow dw. 
7rp 

0 

Applying L e m m a  3.4 we get 

~ ( L A ( L ) ;  g) = 
,/570-i~.210-i - cr#(~.)] exp{_~(X~/al)} 

Jr I~ 
b~ 1-'(3/2) b21-'(5/2) b3F(7 /2 )  

X ( [ o . ? - - ~ p ) 3 / 2  + ([(9"?- cr~().)]p) 5/2 + ( [ 0 - 1 -  0-~_(X)IP) 7/2 

~,/bS0-~X210-1 - 0-#(X)] exp{_~(X2/a~)} 
rr I~ 

3#-~- (~c,0-, + ( c , a l  + ,-c2)[~F - 0-#(x)l) C I V / -  ~ I 2 4 3 "~ 

x 2([o.1 ._- 2 2 ~ ) ] p ) 3 / 2  --F 4([0-i _ cr~(X)lp)5/2 
3 8 3  I 4 2  1 4 2 15v/~-(~0-1 c~ + (~0-1  cIAI --F .~0-1 CLC2)[0-1 - 0 - f f ( ) ' ) ] )  

+ 

8( Io -  I - cd_(X)lp?r- 
15,,,/~(cl A2 + 2c2A] + 3c3)[0-i - 0-#(),.)12 

8([0-1 -- 0. 2 (~.)1p)7/2 
3/2 , .~  

C I 0-i" A -  ~ ~ 

= 2~,/-~i~p3/210-~ - 0-~_(L)]1/2 exp{ -g(k - /0 -F)}  

] 

I 3 1 2 4  (~c,0-, + (c,a, + 2c,_)t0-~ -0-~_(x)l) 
x 1 +  o " _  _ 

, . t ip[o-; o'~()Q] 

/ 3  0 .8  3 1 4 2 l~?clC,~) "~ 15 t~'3 , Cl at- (50-1 c I A '  - F  _ to'i" -- o'~()~.)1) 
+ 

4clp2Icr? - -  o ' 2 ( ~ . ) 1 2  

((c,A2 + 2c2A, -t- 3c3)[cri -- 0-~(L)I 2) 
+ 

4C1,02 [0-1 -- o'# (~.)]2 
3/2  ~ ,  

c I o'i-~.- e x p { _ ~ ( L 2 / 0 - ~ ) }  
2~/~l,~p3/2[al -- 0-~(~.)11/2 

"Cl0- 4 3(ClAI + 2c,)  9 o" 1 c T 

• 1 + 4P[ai" 0-~(X)] + 2c lp  " + 3-'2 9 , - _ p - [ ~ ;  - a~(x)]2 

5(30-~ClAl + 20-~*c2) 15(clA2 + 2c2Al + 3c~) "] 

+ 80210-1 -- 0-~(~.)] + 4clp2 " + . , . j  " 

§ ] 

The proof  is completed by plugging in the expressions  for A i and A2 given in L e m m a  3.1. 

Remark.  Note that the ordering of the expans ion  terms depends on the behavior o f  0-i -- 0-2 (3-) as ~, ~ e~. 
To give an example,  we compare D1.2/p and D 2 A / ( p 2 [ a l  - 0-_~(~.)]2). We have 

O2, 
"~ .~ - - 0  

P-[0-i" - 0-#(X)]  2 
)~ ----> 0<2, 
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and 

if = 1 _ ) ,  o o ,  - ~ r z ( ~ ) ) ,  - - +  
- o (x)l 

D2. j D i.2 

p-(o 7 - o - ~ ( x ) ) 2  p 
~. -----> OG, 

as well as 

I ~ ,.} 

( Dl'-----!2 = o 

p _ o2(x))= / 
k -+ oo, 

, ( , ) 
~t a 7 - a ~ O . )  = o ~ - a 3 ( x ) )  ' 

- p ( a f  _ 
~. --+ (x). 

As a consequence,  it is not possible, in general, to replace the dots in the assertion of  Theorem 3.3 by the 
remainder  te rm O(p-2). A hl"h ~" J 'm  "~, , , - m  ensional treatment needs a much more systematic study at this point. 

The following lemma is a modification of  Watson's lemma given in Richter and Schumacher  (in print). 

LEMMA 3.4 (modified Watson's lemma). Let f :  (0, oo) x2 -+  R satis#" thejbl lowing assumptions: 

(i) f ()., .) is locally integrable for  every. ). > 0 and uniformly (with respect to ~.) bounded on finite intervals; 

(ii) f (~. ,  y)  = O(e~Y), y ~ oo, uniformly in )~; 

(ii) for  y --+ 0+, the function f allows the expansion 

fO. ,  Y) = )_s c)y"J + O(y "m+') 
j=O 

uniformly with respect to ~., where the sequence (aj) increases monotonically to + ~  as j --~ oo, a) > - 1  
and cj = cj (~.) = O(1),  ). ~ cx~. 

Then 
O0 

f + ~. --* oo. (8) 

m F(aj + 1) 
f ( ) . ,  t )e  -x '  dt = 0 ( ~  -(a,,,+l +1)), cj ).,j+l 

0 j=0 

4. D I S C U S S I O N  OF T H E  L E A D I N G  T E R M  

If one suppresses the higher-order  expansion terms in Theorem 3.3, one gets the following conclusion. 

COROLLARY 4.1. Under (D1), (D2,0), and (5) we have 

*( ) .A(k ) ;  g) ~ 2 ~r(1 - ~() . ) / er l ) l~  (g,' ()-2/~r~)) 3/2 0- /~1)"  
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Remark. Under the assumptions of Corollary 4.1, we have 

a) It" gO(X) --+ 0, then r  - 0.~(X)/off "-- 1, X --~ oo, and hence 

1 e - ; ( s176  ~ 
r g) --- 

2x/~-I~ (,~, (k2/0.~)) 3/2 (X/oh) 

b) Assumption (5) implies 

191/2 
�9 (XA(X); g) = o(1) Z(o~,(X2/0.~))3/2 e -~(s 

Proof. From Theorem 3.3 it follows that 

as ~.---+ r 

�9 (XA(X): g )  --- - -  

as 

c~/20.1 ~.2 exp{-g, (XZ/0.~)} 

2ff-~l~ ,03/2(1 - -  0 "  2 (~ ' ) /0 .1)1/2 

as ;~ --> oo. From the general representation formula for cz we have 

p312 
C~/2= X3(~,(~.2/0.1))3/2 " 

0.~ (1 - 0.ff(X)/0.~)-1/2 exp{-~(X2/0.])} 
�9 (XA(X): g) ~, 

X --+ oo. 

Consequently, 

2,,/-~- 1~ (o~'(~.2/0.1))3/2 

Example 2. If ~(r) = fir e for some fl > 0, y > 0, then assumption (D1) is satisfied, 

(~,(s = ( / ~ z ) s r _ _ _  
X3G,-1) 

assumption (D2,0) is satisfied with p = L 2r, 

�9 (LA(2.); g) ,~ 

0.3(?-1) ' 

F(1/),) 
I ~ -  2yfil /v,  

and therefore under (D2,m) 

U 1 (t)  = ( t / f i )  l / r ,  

as ~. --> ~ .  
Note that in this case (5) is equivalent to 

for some function R(k) with 

,/7 q(x)/q 

R ( X )  
0.~(x)  = 0.~ 

- ~2v 

R(X) ,~ c~ as ~.--~ cx~. 

(9) 
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In the special case g(r) = go(r)  ----- e - ' /2 ,  it follows under 

that 

as X --+ oo. H e n c e ,  under (10) 

and if a~(~.) ~ 0, then 

r  g<;) "-. 

~. "---~ OO, 

e x p { - L z / ( 2 a t ) }  

~ r l ~  O'ff (~.)/O'? "q/=~=(~'/O'l ) 

qb(XA(~.); gG) = O(1) e-z-f l -a i ) ,  

exp{--X2/(2a~)} 
�9 (LAO.): gG) "" 2 

4TY( /ot) ' 

(lO) 

),. --.~ oo, (11) 

X --+ o~. (12) 

g' (L2/al )  = fly/~2\/:~2\{L~}v-' n {.ZT} + fl / ~,') \|L~.}r'-' N - I  
\ a F /  \ a ~ /  \ a ~ /  X2/cr~" 

(a~ - a~(~.))k 2v In L > cx~, L --~ c~:~, 

a~ y-2N ~.2N-3y exp ,.~. ~ In 

qb(XA(X; g) ",~ 25/2/_~i~(fly)3/2 [In \~ . , ' 3  ( x )]3/2 ~. --~ oo. 

Our final considerations concern  a further interpretation o f  condit ion (5) stated above. 

LEMMA 4.2. The boundary of  the large-deviation domain A (X) has the same curvature, 

,.1 ,~ 

K(Xoi ) = (75( ,k ) /G{ ,  i = 1, 2, 

at its two dominating points, XOl = (1 /a l ,  0) :r and x02 = ( - l / a l ,  0) r .  

Proof. Recall  the definition o f  the curvature of  the boundary OA(X) of  the set A(X), 

A(L) = {(Xl,X2) r : g(xl ,X2) <~ 0}, 
") ") ") 9 

g(xl ,  x2) = 1 - afx~ - aS(k)x2-, a20-)  < al ,  

then 

Hence, if 

satisfies assumption (D2,0) with p = X 2v In L 2 and 

~(r) = fi re l n r  -- (N -- 1) ln r  

Example 1 (continued). From Example 1 we know that the function 

Note that exp{--X- / ( . a  i-) } and (2zr)-  1/2 (L /a ) -  t e x p { -  L z / (2o-~) } describe the order  and the exact speed at 
which the Gaussian measure o f  the complement of  a large ball and of  a halt-space with large distance from 
the origin tend to zero, respectively. Related results for  higher  dimensions and the general Kotz- type density- 
generating funct ion can be found in Richter and Schumacher  (in print). 
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at the point x0: 

where 

0 

K(xo) = 

gi = ~xi  g(X l , X2)Iix,..~_,~r=.,-o, 

The assertion of the lemma now follows immediately. 

--gTg22 + 2glg2gl2 -- gsgll  
(gr + g~_)312 

0 2 

gij -- /9 x j/k--------7 g x i  (X l, x2 ) I( .~ ,. x_, )r =so. 

Condition (5) can be reformulated because of Lemma 4.2 as 

(1 - tc(xo i ) )p(g,  X) ...'~ eX). (13)  

This means that the dominating points can be allowed to degenerate asymptotically as k approaches infinity, 
but "not too fast." Concerning the role of the curvatures of the boundaries of large-deviation domains, for our 
purposes we refer to [4-6]. Note that in the cited works it is not allowed that the dominating points degenerate 
asymptotically. In Richter and Schumacher (in print), the authors deal with an asymptotic expansion for large- 
deviations concerning a certain type of asymptotically degenerated dominating points. Here we deal with an 
asymptotic expansion for another type of dominating points. Recall that similar asymptotically degenerated dom- 
inating points have been already considered in [2] and [11] but only for deriving simple zero-order asymptotics. 
The asymptotic degeneracy of the dominating points has been expressed in these papers in terms of g"(0), 

d 2 ,~ 
where g " ( f )  = ~ f _ R - ( f )  and {If, R(f)]  r, f ~ | describes the boundary OA(X) of A(X) with [0, R(0)] r 
corresponding to the dominating point ( l /e l ,  0). 

LEMMA 4.3.  

2 
g"(O) = "-w(1 - x(xoi)) .  

e i" 

Proof.  Put 

X l ( f )  = e( f )  cos  f ,  x z ( f )  = R ( f )  sin f 

and consider the boundary 

3A(L)  { ( x l , x2 ) r :  " " + " "> } = eFx~ e ; ( Z ) x ;  = 1 

of A(X). The points from aA(X) satisfy the equation 

1 = oT_ (x )R ' - ( f )  + - e T _ ( x ) ) R : ( f )  c o s  > f .  

By differentiating this equation twice and using the relation R(0) = 1/el, we get R'(0) = 0 and then 

R" (O) -  R(O)(a~-  e~(L)) = (1 a2~-? ) I / e l  
"1  " 

e i" e i- / 

T h u s ,  

g " ( o )  = ei" 

In a slightly different situation than the one considered above, in [2], following a way of Fedoryuk [8], it 
had still been assumed that ~.2(1 -K(xo l ) ) / Ink  ~ c~, whereas this assumption could be weakened in [11] to 
k2(1 -K(xm))  --+ co due to the geometric approach created there. 
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