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Summary. Exact values of probability integrals for noncentral generalized chi-square distri-
butions are numerically evaluated based upon new geometric representation formulae for these
distributions. Using iterative numerical methods exact quantiles can be calculated then.
Explicit quantile approximation formulae are deduced from an asymptotic expansion for related
probabilities of large deviations. Though this method is originally directed to the construction
of starting values for determining exact large quantiles it is of benefit for simply approximating
large quantiles and for obtaining quantiles from the central part of the distributions, too. The
accuracy of the explicit asymptotic approximation method can be improved by combining it
with the geometric measure representation formulae.
Several numerical studies compare the present results with results of other authors available in
the special case of the classical noncentral chi-square distribution.

As an application, critical test points as well as power functions for expectation tests in ellip-

tically contoured sample distributions are considered and certain problems of sensitivity and

robustness type are discussed.
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1 INTRODUCTION

The well known family of noncentral chi-square distributions has been considered by
many authors. Several methods have been developed for approximating probability in-
tegrals and quantiles of these distributions. We mention here the methods of reduction
to Bessel or Incomplete Gamma functions, asymptotic normal approximations, normal
approximations after suitable transformations, series representations using central distri-
butions, Edgeworth expansions, Cornish-Fisher expansions and continued fractions. For
more details we refer to the results in Fisher (1928), Patnaik (1954), Abdel-Aty (1954),
Sankaran (1959, 1963), Haynam et al. (1982), Farebrother (1987), Ashour and Abdel-
Samad (1990) and Wang and Kennedy (1994).
The family of noncentral generalized chi-square distributions has been studied first in
Cacoullous and Koutras (1984) and then in Hsu (1990). The noncentral g-generalized
chi-square distribution function with k ≥ 2 degrees of freedom (d.f.) and noncentrality
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parameter (n.c.p.) δ2 ≥ 0 can be defined as

CQ(k, δ2; g)(x) = P (‖X + µ∗‖2 < x), x ∈ R

for arbitrary µ∗ ∈ Rk satisfying ‖µ∗‖2 = δ2. The random vector X follows a k-dimensional
spherically symmetric distribution having the density

p(x; g) = C(k, g) g(‖x‖2), x ∈ Rk

with the density generating function g| [0,∞)→ [0,∞) satisfying

0 < Ik,g <∞, (1)

where

Ik,g =

∫ ∞
0

rk−1g(r2) dr. (2)

The norming constant C(k, g) is

C(k, g) = (ωkIk,g)
−1

with

ωk = 2πk/2/Γ(k/2)

denoting the surface area of the unit sphere Sk(1) in Rk.
Spherically symmetric distributions, or more general elliptically contoured distributions
have been studied by many authors beginning with Schoenberg (1938) and Kelker (1970).
Anderson and Fang (1982) studied central distributions of quadratic forms for elliptically
contoured random vectors. For the general theory of elliptically contoured distributions
and their applications to statistics we refer to the monographs of Watson (1983), Fisher
et al. (1987), Johnson (1987), Fang, Kotz and Ng (1990), Fang and Anderson (1990),
Fang and Zhang (1990) as well as Gupta and Varga (1993). A geometric approach to this
class of distributions has been developed in Richter (1991) and Richter (1995).
The aim of the present paper is to demonstrate new methods for numerically evaluating
probability integrals and quantiles as well as for explicitly approximating large quantiles
of noncentral generalized chi-square distributions. The basic idea behind numerically
evaluating probability integrals is to use new geometric measure representation formu-
lae. Such formulae will be derived in Section 2 and exploited in Section 3. The basic
idea behind explicitly approximating large quantiles of a probability distribution is to
exploit suitable theorems on probabilities of large deviations in a suitable way. Namely,
one can use asymptotic expansions for large deviations on combining them with standard
methods of handling asymptotic solutions of asymptotic equations to derive asymptotic
approximations for large quantiles of probability distributions. This general method has
been developed recently in Richter (in preparation). It will be used in Sections 4 and 5
for deriving explicit asymptotic quantile approximation formulae for the concrete distri-
butions considered in this paper. A suitable asymptotic expansion for large deviations of
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noncentral g-generalized chi-square distributions has been proved recently in Richter and
Schumacher (in preparation). It turns out that this new method is of benefit when dealing
with quantiles from the central part of the distributions under consideration here, too.
The power of the explicit asymptotic quantile approximation method can of course be im-
proved numerically by combining it with the geometric measure representation formulae
from Section 2. Several numerical studies in Section 6 compare our related results with
results of other authors available in the special case of the classical noncentral chi-square
distribution.
Let χ2

q = χ2
q(k, δ

2; g) denote the 100q-percentage point of the noncentral g-generalized
chi-square distribution with k d.f. and n.c.p. δ2, i.e. the solution of the quantile equation

CQ(k, δ2; g) (χ2
q) = q, q ∈ (0, 1).

Further, let χ2
q,N be a corresponding solution of the N -th order approximative quantile

equation

CQN(k, δ2; g) (χ2
q,N) = q,

where 1−CQN(k, δ2; g) (χ2) denotes a finite sum including N + 1 terms of an asymptotic
expansion for the large deviation probabilities

1− CQ(k, δ2; g) (c2) as c→∞.

It is known from the large deviation theory that under certain conditions the relative
approximation error in terms of the quantile order,

|1− CQ(k, δ2; g) (χ2
1−α,N)− α|

α
= r(α) = r(α; k, δ2, g, N)

tends to zero when α itself approaches zero. This means that asymptotic quantile ap-
proximations become better the larger the quantiles themselves are.
Typical practical applications of this asymptotic theory, however, do not only concern
the asymptotic quantile behaviour but also fixed quantiles. Besides large quantiles, fixed
quantiles from the central part of the distributions can be dealt with. A suitable method
for controlling the number of approximating terms in 1 − CQN is then to minimize the
relative error r(α; k, δ2, g, N) with respect to N . For doing this one needs to know the
distribution function CQ(k, δ2; g)(x), x ∈ R at least in a neighborhood of x = χ2

1−α. The
geometric measure representation formulae from Section 2 apply again.
We shall prove in Section 2 a new representation formula for the distribution function
CQ(k, δ2; g)(x), x ∈ R for arbitrary k ≥ 2, δ > 0 and g satisfying assumption (1). This
formula will be the starting point as well for our numerical studies in Section 3 concerning
the evaluation of the noncentral g-generalized chi-square distribution functions for several
concrete spherical sample distributions as for controlling the relative approximation errors
of our quantile approximations in Sections 4 and 5. Our geometric representation formula
for the noncentral g-generalized chi-square distribution function in Section 2 is new both
for the Gaussian case, i.e. for the case when the density generating function is

gG(r) = e−
r
2 , r > 0
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and for the general non Gaussian case. We shall make in Section 3 numerical studies of
comparisons between our and other representation, respectively approximation formulae.
As a result, it will be seen in Section 3 that the geometric representation formula from
Section 2 is comparable with the best of other methods for approximating the distribution
functions under consideration and it will be seen in Sections 5 and 6 that the geometric
representation formula from Section 2 is comparable with the best of other methods to
be used for controlling the relative errors when explicitly approximating the respective
quantiles. Note that competing results to both directions of investigation seem to be
known from the literature only in the special case g = gG.

2 GEOMETRIC REPRESENTATION FORMULAE

FOR NONCENTRAL g-GENERALIZED CHI-

SQUARE DISTRIBUTION FUNCTIONS

Let Φ(A; g), A ∈ Bk denote the probability measure corresponding to the density function
p(x; g), x ∈ Rk. Then

CQ(k, δ2; g)(c2) = Φ(A(c); g), c > 0

where

A(c) = {y ∈ Rk : ‖ y + µ∗ ‖2 < c2}, c > 0.

The geometric measure representation formula for elliptically contoured distributions in
Richter (1991) says that

Φ(A(c); g) =
1

Ik,g

∞∫
0

F(A(c), ν)νk−1g(ν2) dν (3)

where Ik,g is assumed to satisfy condition (1) and the intersection-percentage function
F(A, ν), ν > 0 is defined as

F(A, ν) = Uk(ν
−1A ∩ Sk(1)), ν > 0

with Uk being the uniform probability distribution on the unit sphere Sk(1). Evaluating
F(A(c), ν), ν > 0, we obtain the main result of this section. We shall make use of the
notations

α∗(ν) = arctan

(
4δ2ν2

(ν2 + δ2 − c2)2
− 1

) 1
2

for ν ≥ 0, ν 6=
√
c2 − δ2,

α∗(ν) = π/2 for ν =
√
c2 − δ2

and

f(ν) =
Γ(k

2
)

π
1
2 Γ(k−1

2
)

α∗(ν)∫
0

(sinα)k−2dα.
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Theorem 1. If assumption (1) is satisfied then

CQ(k, δ2; g)(c2) = I−1k,g

∞∫
0

F(A(c), ν)νk−1g(ν2) dν, c > 0 (4)

with

F(A(c), ν) = I(δ−c,δ+c)(ν)f(ν)

if c ≤ δ and

F(A(c), ν) =


1 : 0 ≤ ν ≤ c− δ,
1− f(ν) : c− δ < ν < (c2 − δ2)1/2,
f(ν) : (c2 − δ2)1/2 ≤ ν < c+ δ,

0 : c+ δ ≤ ν

if c > δ.

Remark 1. Using a recurrence relation in Zeitler (1996) the integral in the function f(ν)
can be simplified for k ≥ 4 :

f(ν) =
Γ(k

2
)

π
1
2 Γ(k−1

2
)

[−(sinα)k−3 cosα

k − 2

]α∗(ν)

0

+
k − 3

k − 2

α∗(ν)∫
0

(sinα)k−4dα

 .

Note that F(A(c), ν) = 0 for ν > δ + c so that the integration in (4) is restricted to the
finite interval (0, c+ δ).

Proof of Theorem 1. Without loss of generality, we put µ∗ = −µ11k, 11Tk = (1, . . . , 1) ∈
Rk, µ > 0. Define the half spaces

Hk(e, r) = {x ∈ Rk : Πex = λe, λ > r}, r > 0

where Πe denotes the orthogonal projection onto e, e ∈ Rk. Let the k-dimensional sphere
with radius ν and centre 0k ∈ Rk be

Sk(ν) = νSk(1), r > 0.

Case 1: c ≤ δ. Following the notation in Richter (1995) for δ − c < ν < δ + c we define
the so called direction type function

eA(c)(ν) = −11k

and the so called distance type function

RA(c)(ν) =
|ν2 + δ2 − c2|

2δ
.
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Then, see Figure 1,

A(c) ∩ Sk(ν) = H(eA(c)(ν), RA(c)(ν)) ∩ Sk(ν). (5)

Figure 1
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Hence, the Borel sets A(c) belong to a system of sets quite similar to that for which it
has been proved in Richter (1995) that

F(A(c), ν) =
ωk−1
ωk

α∗(ν)∫
0

(sinα)k−2 dα,

where

α∗(ν) = arctan

((
ν

RA(c)(ν)

)2

− 1

)1/2

= arctan

(
4δ2ν2

(ν2 + δ2 − c2)2
− 1

)1/2

.

(6)

Further, we have for the remaining values of ν

F(A(c), ν) = 0 if {ν < δ − c} or {ν > δ + c}.

Case 2: c > δ. We consider the complement of the set A(c), A(c)C , for c − δ < ν <
(c2 − δ2)1/2 and the set A(c) for (c2 − δ2)1/2 < ν < c + δ. We define the direction type
functions

eA(c)C (ν) = 11k and eA(c)(ν) = −11k

and the distance type functions

RA(c)C (ν) = RA(c)(ν) =
|ν2 + δ2 − c2|

2δ
.
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Then it holds

A(c)C ∩ Sk(ν) = H(eA(c)C (ν), RA(c)C (ν)) ∩ Sk(ν)

and

A(c) ∩ Sk(ν) = H(eA(c)(ν), RA(c)(ν)) ∩ Sk(ν),

in the respective intervals for ν. Analogously to Case 1, we have

F(A(c), ν) = 1−F(A(c)C , ν) = 1− ωk−1
ωk

α∗(ν)∫
0

(sinα)k−2 dα

for c− δ < ν < (c2 − δ2)1/2 and

F(A(c), ν) =
ωk−1
ωk

∫ α∗(ν)

0

(sinα)k−2 dα

for (c2 − δ2)1/2 < ν < c+ δ with α∗(ν) from (6).
Further we have for the remaining values of ν

F(A(c), ν) =


1 : 0 ≤ ν ≤ c− δ,
1/2 : ν = (c2 − δ2)1/2

0 : ν ≥ c+ δ.

The assertion of Theorem 1 follows now from (3).

Corollary 1. The derivation of CQ(k, δ2; g)(c2) with respect to c2 yields the density func-
tion of the noncentral g-generalized chi-square distribution, which coincides with formula
(2.4) in Fan (1990):

ψ(c2) = C(k, g)ωk−1
1

2δ

∫ c+δ

|c−δ|

(
1− (ν2 + δ2 − c2)2

4δ2ν2

)(k−3)/2

νk−2g(ν2)dν.

Corollary 2. If the k-dimensional sample distribution has a Kotz-type density generator

gK(r) = rM−1e−βr
γ

, r > 0

for certain constants β > 0, γ > 0, 2M + k > 2 then

CQ(k, δ2; gK)(c2) =
2γβ

2M+k−2
2γ

Γ
(

2M+k−2
2γ

) ∞∫
0

F(A(c), ν)ν2M+k−3e−βν
2γ

dν.

If the k-dimensional sample distribution has a Pearson-VII-type density generator

gP (r) = (1 + r/m)−M , r > 0
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for certain constants M > k/2,m > 0 then

CQ(k, δ2; gP )(c2) =
2Γ(M)

mk/2Γ(M − k
2
)Γ(k

2
)

∞∫
0

F(A(c), ν)
νk−1

(1 + ν2

m
)M

dν

where F(A(c), ν), ν > 0 is both times precisely the same function as in Theorem 1.

Remark 2. The norming constants which correspond to the density generating functions
gG, gK and gP are

CG(k, g) = (2π)−k/2,

CK(k, g) =
γβ

2M+k−2
2γ Γ(k/2)

πk/2Γ
(

2M+k−2
2γ

)
and

CP (k, g) =
Γ(M)

(πm)k/2Γ(M − k/2)
,

respectively.

Examples:

1. The Kotz-type density generator gK with M = 1, β = 0.5, γ = 1 generates the
standard Gaussian law.

2. The Pearson-VII-type density generator gP with M = (k + m)/2 generates the k-
dimensional Student distribution withm degrees of freedom which is a k-dimensional
Cauchy distribution if m = 1 .

Results concerning the behaviour of statistics which were well studied for the multivariate
Gaussian sample distribution can be interpreted as robustness type results as far as, e.g.,
error probabilities do not change rapidly when the underlying sample distribution changes
within a certain subclass of the class of elliptically contoured distributions. On the other
side, such results can be interpreted as sensitivity type results as far as one is interested
in, e.g., how strong error probabilities for common statistical decisions change when the
density generating function of the sample distribution changes in a well defined way within
the class of admissible density generators. As the examples show, both heavy tails and
light tails are allowed for the sample distribution to occur. Such robustness and sensitivity
type problems can be considered as special questions of model correctness.
It is well known that in many statistical problems such as significance tests or confidence
estimations basic quantities like critical test values or confidence interval limits are taken
from or constructed with the help of respective chi-square distributions if the underlying
sample distribution is a Gaussian one. Corresponding power functions are based upon the
respective noncentral chi-square distributions. The usual assumption however, that the
underlying multivariate sample distribution is a Gaussian one is not always satisfied and
can often be substituted by the assumption that the multivariate sample vector follows
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an elliptically contoured distribution or a more special spherical distribution. One needs
then to consider central and noncentral g-generalized chi-square distributions. This mo-
tivates the following applications of the above results to constructing critical points and
power functions for expectation test in elliptically contoured distributions and to certain
problems of model correctness.
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Application 1 (Inference for the mean in elliptically contoured distributions)

Consider a k dimensional feature vector X = (X1, . . . , Xk)
T and let us be given a sample

of size n of identically distributed vectors Xi = (X1i, . . . , Xki)
T , i = 1, . . . , n. Assume

that

X(nk) = (X11, . . . , Xk1, . . . , X1n, . . . , Xkn)T = µ(nk) + E(nk)

with µ(nk) = 11n ⊗ µ and µ = (µ1, . . . , µk)
T satisfies σ−1E(nk) ∼ Φ(. ; gnk) for some

σ > 0. Note that both the coordinates of the vectors Xi and the vectors X1, . . . , Xn

are uncorrelated but not necessarily independent. Without loss of generality assume
σ2 = 1.
The arithmetic mean of the sample X1, . . . , Xn can be written as

Xn = BTX(nk) where BT =
1

n
11Tn ⊗ Ik .

Using Theorem 2.16 in Fang, Kotz, Ng (1990) and BTµ(nk) = µ, BTB = 1
n
Ik one gets for

X(k) =
√
n(Xn − µ):

X(k) ∼ Φ(. ; gnk,k)

where due to formula (2.23) in Fang, Kotz and Ng (1990)

gnk,k(u) =
πk(n−1)/2

Γ(k(n− 1)/2)
C(nk, gnk)

∞∫
u

(y − u)(nk−k)/2−1 gnk(y) dy, u ≥ 0

is a density generating function satisfying∫
Rk

gnk,k(‖z‖2) dz = 1.

Remark 3. Recognize that the marginals of spherically symmetric distributed vectors have
distributions which depend on the sample size and that these marginals are not independent
except for the Gaussian case. For example, in the case of the Pearson-VII-type density
generator gnk = gP , the marginal distribution depends on the sample size as follows:

gnk,k(u) =
Γ(N − k(n− 1)/2)

(πm)k/2Γ(N − nk/2)
(1 + u/m)−N+k(n−1)/2,

whereas with gnk = gG it holds

gnk,k(u) = (2π)−k/2 e−u/2.

For testing the hypothesis H0 : µ = µ0,k versus HA : µ 6= µ0,k we use the test statistic

T 2 = n‖Xn − µ0,k‖2.

If H0 is true then

T 2 = ‖X(k)‖2 ∼ CQ(k, 0; gnk,k)
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and hence we reject H0 with first kind error probability α whenever it holds

n‖xn − µ0,k‖2 > χ2
1−α(k, 0; gnk,k).

If HA : µ = µ1,k is true then

T 2 = ‖
√
n(Xn − µ1,k) +

√
n(µ1,k − µ0,k)‖2 ∼ CQ(k, n‖µ1,k − µ0,k‖2; gnk,k)

such that the power function of the test is

m(µ1,k) = Pµ1,k(reject H0) = 1− CQ(k, n‖µ1,k − µ0,k‖2; gnk,k)(χ2
1−α(k, 0; gnk,k)),

µ1,k ∈ Rk\{µ0,k}.

Example: Let k = 2l + 1, l ∈ N, µ0,k = (µ0, . . . , µ0)
T ∈ Rk and consider the umbrella

alternative

HA : µ1,k = µ1,k(∆) = (µ0, µ0 + ∆, . . . , µ0 + l∆, µ0 + (l − 1)∆, . . . , µ0)
T , ∆ ∈ R.

Then

‖µ1,k − µ0,k‖2 = ∆2
(
l(l − 1)(2l − 1)/3 + l2

)
and the power function m(µ1,k(∆)) =: m̃(∆; gnk) depends on the alternative only
through ∆.
For a comparison of m̃(∆; gnk) in the cases of Gaussian and Pearson VII density gener-
ating functions gnk, g.e. see Figure 2.

Figure 2 m̃(∆; gnk) for gnk = gG and for gnk = gP with n = 15, k = 5, m = 1,
M = 38, χ2

0.95(5, 0; g15,5) = 1150.79

gG gP
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Application 2 (Sensitivity and robustness)

Let us be given a data vector (y1, . . . , yk)
T = y(k) and let us assume that the data have

been generated by a random vector Y(k) = µ0,k +X(k) where X(k) is distributed according
to the standard Gaussian law Φ(·; gG). Alternatively, keep in mind that the expectation
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IEY(k) of the sample vector Y(k) could be another vector than µ0,k and the distribution
law of X(k) could be a spherical one with a density generating function g different from
gG and a form matrix which will be assumed for simplicity to be the unit matrix Ik.
This means that we allow X(k) to be alternatively distributed according to Φ(·; g) with
g 6= gG. Because we have not assumed that IEY(k) takes values in a certain linear subspace
of the sample space Rk, deviations of IEY(k) from µ0,k are not preferred to act into certain
prespecified directions from the unit sphere Sk(1). A natural way to check the hypothesis
H0 : IEY(k) = µ0,k is therefore to reject it whenever it holds ‖y(k) − µ0,k‖2 > χ2

1−α(k, 0; gG)
for a certain given α ∈ (0, 1). One can think now about several types of sensitivity or
of robustness statements concerning this decision. A first type robustness problem deals
with the question in which way the density generating function g can deviate from gG
such that the probability of rejecting H0,k does not change more than α/5. For solving
such a problem one has to calculate quantities of the type

Φ
({
x(k) ∈ Rk : ‖x(k)‖2 > χ2

1−α(k, 0; gG)
}

; g
)

= 1− CQ(k, 0; g)(χ2
1−α(k, 0; gG))

for g 6= gG. A second type robustness problem deals with the question how much g can
deviate from gG such that the probability of not rejecting H0,k does not change more than
20 percent of the corresponding value when g = gG and IEY(k) = µ1,k 6= µ0,k. For solving
such a problem one has to calculate quantities of the type

Φ
({
x(k) ∈ Rk : ‖x(k) + µ1,k − µ0,k‖2 ≤ χ2

1−α(k, 0; gG)
}

; g
)

= CQ(k; ‖µ1,k − µ0,k‖2; g)(χ2
1−α(k, 0; gG)).

Remark 4. The density generating functions g and gG in the last two relations can be
replaced in more general situations by two arbitrary density generating functions.

3 TABLES OF PROBABILITY INTEGRALS FOR

NONCENTRAL g-GENERALIZED CHI-SQUARE

DISTRIBUTIONS

Various kinds of algorithms for producing tables of the usual noncentral chi-square dis-
tribution functions are available from the literature. No related tables and algorithms
are known to us, however, for the general case of a noncentral g-generalized chi-square
distribution function when g does not coincide with the density generating function gG
of the Gaussian sample distribution. Based upon the geometric representation formula
in Theorem 1, we are in a position to present now a new unified approach to estab-
lishing probability integrals for all noncentral g-generalized chi-square distributions with
arbitrary density generating function g satisfying assumption (1).
Our algorithm is mainly divided into two steps. The first one realizes the evaluation of the
intersection-percentage function F(A(c), ν), ν > 0 for arbitrary c > 0. To this end, the
representation formula for F from Theorem 1 has been implemented in a Borland Pascal
program using the recursion relation for the function f(ν), ν > 0, stated in Remark 1.
In the second step of our algorithm we use a standard numerical integration method for
evaluating the integrals from the geometric representation formula for CQ(k, δ2; g)(c2) in
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Theorem 1. To be more specific, the integration is performed by Simpson’s rule with
100000 steps.
Computations for realizing our algorithm have been done on a Hewlett Packard Pentium
computer.
Our numerical results following from Theorem 1 for the ”ordinary” case g = gG will
be compared in Table 1 with the four-digit exact and the Incomplete Gamma function
approximative results in Patnaik (1949), see columns Pat.-ex. and Pat.-appr., respectively,
with the Cornish-Fisher type approximation results in Abdel-Aty (1954), column Abd.-
Aty, and with the approximation results using infinite series of Poissonian weighted central
chi-square distributions in Ashour and Abdel-Samad (1990), Ash. & Abd.-Sam. Note that
the upper 5% significance points for k = 1(1)7 and δ = 0(0.2)5.0 have been first published
in an implicit form by Fisher (1928).

Table 1 CQ(k, δ2; gG)(c2)-values

k δ2 c2 Pat.-ex. Pat.-appr. Abd.-Aty Ash.&Abd.-Sam. Theorem 1

4 4 1.765 0.0500 0.0399 - 0.04999937329 0.04999937471
4 10.000 0.7118 0.7191 0.7123 0.7117928156 0.71179281648
4 17.309 0.9500 0.9492 - 0.9499957033 0.94999570938
4 24.000 0.9925 0.9913 0.9925 0.9924603701 0.99246037447

10 10.000 0.3148 0.3178 - 0.3148206466 0.31482065003

7 1 4.000 0.1628 0.1621 - 0.1628330056 0.16283300701
1 16.004 0.9500 0.9499 - 0.9500015423 0.95000154258

16 10.257 0.0500 0.0430 - 0.04999417662 0.04999418181
16 24.000 0.5898 0.5947 0.5894 - 0.58633683948
16 38.970 0.9500 0.9482 0.9500 0.9499992082 0.94999921449

12 6 24.000 0.8174 0.8187 - 0.8173526185 0.81735262555
18 24.000 0.2901 0.2936 - - 0.29004949596

16 8 30.000 0.7880 0.7895 - 0.788001461 0.78800147228
8 40.000 0.9632 0.9626 0.9632 0.9632254713 0.96322547499

32 30.000 0.0609 0.0590 - - 0.06284204877
32 60.000 0.8316 0.8329 - 0.8315634526 0.83156347739

24 24 36.000 0.1567 0.1556 - 0.1567110344 0.15671106200
24 48.000 0.5296 0.5333 - 0.5296283918 0.52962840920
24 72.000 0.9667 0.9656 - 0.9666953909 0.96669542296

For easy comparison, the parameters k, δ2 and c2 in Table 1 are chosen as in Patnaik
(1949) and in the other papers of our comparison study. Let us remark, that at least 6
digits in the columns Ash. & Abd.-Sam. and Theorem 1 coincide and that the first four
digits of these columns (after rounding) coincide with those of the column Pat.-ex. Exact
results with more then four digits can also be obtained in the single case g = gG with
the method of continued fractions as in the recent paper of Wang and Kennedy (1994).
Respective intervals derived there are given in Table 2.
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Table 2 Comparison with Wang and Kennedy (1994)

k δ2 c2 Wang & Kennedy Theorem 1

5 1 9.23636 0.8272918751175547 0.8272918751175549 0.827291875117554810
11 21 24.72497 0.2539481822183125 0.2539481822183127 0.253948182218312659
31 6 44.98534 0.81251987850649685 0.81251987850649695 0.812519878506496969
51 1 38.56038 0.08519497361859116 0.08519497361859120 0.085194973618591190
100 16 82.35814 0.01184348822747822 0.01184348822747826 0.011843488227478234
300 16 331.78852 0.73559567103067085 0.73559567103067095 0.735595671030670804
500 21 459.92612 0.02797023600800058 0.02797023600800062 0.027970236008000565

In the Maple V package one has the possibility to determine the number of floating point
digits used for calculations. For the comparison with the results from Wang and Kennedy
we decided therefore to use the Maple package with 60 digits instead of Borland Pascal to
carry out the same numerical integration algorithm with 60000 steps. Note, however, that
the computations become very time consuming when k or the number of steps increase.
The results in Table 2 following from Theorem 1 coincide at least in 16 digits with the
midpoint-approximations of Wang and Kennedy. In the four underlined cases the results
of Theorem 1 belong to the intervals derived by Wang and Kennedy. By using the Borland
Pascal programme with 100000 steps our results coincided with the values from Wang and
Kennedy at least in 13 digits.
Let us turn now to the non Gaussian case, i.e. to the case g 6= gG. The first step of our
algorithm is not influenced in any way by the special choice of the density generating func-
tion g because in its first step our algorithm exploits only the pure geometric properties
of the underlying spherical sampling distribution. Table 3 contains some typical values of
the intersection-percentage function F(A(c), ν) which have been used for calculating the
values of the column Theorem 1 in Table 1.
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Table 3 Intersection percentage function F(A(c), ν)

ν k = 7, δ2 = 16 k = 4, δ2 = 4
c2 = 10.257 c2 = 24

0.00 0.000000000 1.000000000
0.80 0.000000000 1.000000000
1.00 0.004295470 1.000000000
1.40 0.029695285 1.000000000
1.80 0.049180979 1.000000000
2.00 0.054545474 1.000000000
2.40 0.058260564 1.000000000
2.80 0.055497901 1.000000000
3.00 0.052578892 0.985743021
3.40 0.044979398 0.868003984
3.80 0.036295444 0.727566204
4.00 0.031902881 0.657481179
4.40 0.023519620 0.523144707
4.80 0.016131808 0.399624626
5.00 0.012928522 0.342518821
5.40 0.007629064 0.238351701
5.80 0.003847733 0.148559576
6.00 0.002505124 0.109551019
6.40 0.000792158 0.045034599
6.80 0.000106013 0.003958628
7.00 0.000013900 0.000000000
7.20 0.000000000 0.000000000

Notice that exactly the same values of the intersection-percentage function F as in Table
3 are to be used for evaluating probability integrals of noncentral g-generalized chi-square
distributions in all cases when the geometric representation formula from Theorem 1
applies, i.e. when the sample distribution has a density generating function g satisfying
assumption (1).
In the second step of our algorithm we integrate the weighted intersection-percentage
function F in the sense of Theorem 1. The answer to the question whether the under-
lying sample distribution has light or heavy tails becomes interesting to a certain extent
in this second step of our algorithm. While the first step reflects a certain invariance
or robustness property of our method with respect to changes of the sample distribution
within a certain subclass of elliptically contoured distributions, the second step takes
into account a certain necessarily existing sensitivity of the method with respect to these
changes.

Application 2 (continued)

Table 4 deals with a comparison of results influenced by heavy and light tails of the un-
derlying sampling distribution, respectively. Column gK summarizes probability integrals
CQ(k, δ2; gK)(c2) for the case that the sampling distribution has the considerably light
tail density generating function of Kotz-type from Corollary 2 with parameters M = 1,
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γ = 2 and β = 1, i.e.

gK(r) = e−r
2

, r > 0.

Column gP summarizes probability integrals CQ(k, δ2; gP )(c2) for the case that the un-
derlying sampling distribution has the considerably heavy tails Pearson-VII-type with
parameters M = (k + 1)/2 and m = 1, i.e.

gP (r) = (1 + r)−(k+1)/2 , r > 0.

The last column in Table 4 coincides with that of Table 1.

Table 4 Sensitivity study

k δ2 c2 gK gP gG
4 4 1.765 0.034458 0.025625 0.04999937471

4 10.000 0.993725 0.452918 0.71179281648
4 17.309 1.000000 0.605000 0.94999570938
4 24.000 1.000000 0.672473 0.99246037447

10 10.000 0.409150 0.208772 0.31482065003

7 1 4.000 0.953115 0.178667 0.16283300701
1 16.004 1.000000 0.515594 0.95000154258

16 10.257 0.011781 0.024662 0.04999418181
16 24.000 0.974122 0.379660 0.58633683948
16 38.970 1.000000 0.587635 0.94999921449

12 6 24.000 1.000000 0.428322 0.81735262555
18 24.000 0.907495 0.214391 0.29004949596

16 8 30.000 1.000000 0.405108 0.78800147228
8 40.000 1.000000 0.488109 0.96322547499

32 30.000 0.164262 0.044069 0.06284204877
32 60.000 1.000000 0.455225 0.83156347739

24 24 36.000 0.998728 0.184009 0.15671106200
24 48.000 1.000000 0.327561 0.52962840920
24 72.000 1.000000 0.484215 0.96669542296

Recall that gK and gP generate distributions with lighter and heavier tails than gG, re-
spectively. One might expect therefore to find a certain monotony between the gK-, gP -
and gG-values of an arbitrary row in Table 4 which, however, in fact cannot be detected
there. An explanation of this circumstance becomes obvious when studying the influence
of the noncentrality parameter δ2 onto the distributions under consideration. The graphs
of the respective densities are drawn in Figures 3 up to 5 for selected cases.

16



Figure 3 CQ(4, 4; g)-densities
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Figure 4 CQ(4, 10; g)-densities
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Figure 5 CQ(24, 24; g)-densities
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As an example for analyzing a first type robustness problem we change in Table 5a in
each row one of the three parameters of the Kotz-type distribution as long as it holds

|1− CQ(4, 0; gK)(χ2
0.95(4, 0; gG))− 0.05| ≤ 0.05/5

where χ2
0.95(4, 0; gG) = 0.7107235.

Table 5a First type robustness study

N β γ 1− CQ(4, 0; gK)(0.7107235)

1.110 0.5 1 0.04004512
0.908 0.5 1 0.05999714

1 0.442 1 0.04013002
1 0.554 1 0.05988153

1 0.5 0.940 0.04015277
1 0.5 1.057 0.05991291

For analyzing a second type robustness problem let ‖µ1,k − µ0,k‖2 = 2. Note that
CQ(4, 2; gG)(χ2

0.95(4, 0; gG)) = 0.02060116. Results of changing the parameters of the
Kotz-type distribution as long as it holds

|CQ(4, 2; gK)(χ2
0.95(4, 0; gG))− 0.02060116| ≤ 0.02060116/5

are given in the next table.

Table 5b Second type robustness study

N β γ CQ(4, 2; gK)(0.7107235)

1.376 0.5 1 0.01648713
0.569 0.5 1 0.02471864

1 0.406 1 0.01648303
1 0.611 1 0.02470913

1 0.5 0.920 0.01648835
1 0.5 1.087 0.02472069

The results of a computational experience in Table 6 make the practical stability of our
computer program evident as δ approaches zero. Note that the values for δ = 0 were
computed by means of the geometric representation formula for central g-generalized chi-
square distributions as given in Richter (1991):

CQ(k, 0; g)(c2) = I−1k,g

∫ c

0

νk−1g(ν2) dν.
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Table 6 Stability study: small noncentrality parameters

δ2 k = 15 k = 20 k = 4 k = 10 k = 25
c2 = 25 c2 = 31.41 c2 = 13.28 c2 = 23.21 c2 = 44.31

1.0 0.925056 0.928948 0.971126 0.980030 0.984613
0.5 0.938208 0.939980 0.981702 0.985522 0.987501
0.1 0.947792 0.948073 0.988530 0.989184 0.989522
0.09 0.948021 0.948267 0.988682 0.989267 0.989570
0.08 0.948249 0.948461 0.988834 0.989351 0.989617
0.07 0.948477 0.948654 0.988984 0.989433 0.989664
0.06 0.948704 0.948847 0.989134 0.989516 0.989711
0.05 0.948931 0.949039 0.989283 0.989598 0.989758
0.04 0.949157 0.949231 0.989431 0.989680 0.989804
0.03 0.949383 0.949423 0.989578 0.989761 0.989851
0.02 0.949608 0.949614 0.989724 0.989842 0.989897
0.01 0.949832 0.949804 0.989870 0.989922 0.989943
0.001 0.950034 0.949976 0.990000 0.989995 0.989985
0.0001 0.950054 0.949993 0.990013 0.990002 0.989989
0.00001 0.950056 0.949995 0.990014 0.990003 0.989989
0.0 0.950056 0.949995 0.990014 0.990003 0.989989

4 LARGE DEVIATION APPROACH TO

ASYMPTOTIC APPROXIMATIONS FOR

LARGE QUANTILES

In Sections 2 and 3, we have presented a geometric approach to exact evaluating the distri-
bution functions CQ(k, δ2; g). Combining this approach with standard numerical methods
like the secant method we can obtain quite satisfactory numerical approximations for the
quantiles of these distributions. Besides these we are interested in explicit approximation
formulae for the quantiles of interest. Such formulae yield in addition starting values
for determining quantiles based upon our geometric measure representation formula in
Section 2. Furthermore we are interested in estimations for the occurring approximation
errors.
The type of explicit quantile approximations studied here is based upon exploiting an
asymptotic expansion for large deviations. It turns out that large quantiles can be ap-
proximated in this way especially precisely and it is of some additional interest to know
the properties of the method developed for quantile approximation in the tails when
approximating quantiles from the central part of the distributions. To determine ap-
proximation errors when using explicit approximation formulae we use exact numerical
approximations based upon the results of Sections 2 and 3. Notice that we use these exact
numerical quantile approximations for both large and small quantiles and give tables for
both types of quantiles.
In the theory of large deviations, amongst other things, one tries to describe quite precisely
the asymptotic behaviour of tail probabilities of more or less complicated distributions
when the argument of the distribution function approaches infinity. Assume that one
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could determine an explicitly known function

f = fk,δ2;g|R+ → [0, 1]

such that

1− CQ(k, δ2; g)(c2)

fk,δ2;g(c2)
→ 1 as c→∞. (7)

If the function fk,δ2;g would have an appropriate structure then one could hope to get a
suitable asymptotic approximation for the quantile χ2

q by dealing with χ2
q as the asymp-

totic solution of the asymptotic equation

fk,δ2;g(χ
2
q) = 1− q as q → 1.

For finding such a function fk,δ2;g we shall restrict our attention to the special class of
sample distributions which are generated by the Kotz-type density generating function

gK(r) = rM−1e−βr
γ

, r > 0

with γ > 0.5, β > 0 and 2M+k > 2. Exploiting a large deviation type geometric measure
representation formula for 1−CQ(k, δ2; g)(c2) which can be derived from Theorem 1 and
modifying standard asymptotic Laplace integral technique it has been shown in Richter
and Schumacher (in preparation) that one can take

fk,δ2;g(c
2) =

β
k
2γ

+M−1
γ
− k+1

2 Γ
(
k
2

)
2
√
πγ

k−1
2 δ

k−1
2 Γ

(
k
2γ

+ M−1
γ

)c 3k−1
2
−γ(k+1)+2M−2e−β(c−δ)

2γ

. (8)

Moreover, it has been proved there that the following asymptotic expansion formula for
large deviations is a refinement of the asymptotic relation (7):

1− CQ(k, δ2; g)(c2) = fk,δ2;g(c
2)

[
1 +D1−2γc

1−2γ +D−2γc
−2γ

+D−1−2γc
−1−2γ +D2−4γc

2−4γ +D1−4γc
1−4γ +D−4γc

−4γ +D−1−4γc
−1−4γ

+D−2−4γc
−2−4γ +O(c3−6γ)

]
, as c→∞.

(9)

For the asymptotic expansion coefficients Di from (9) we refer to Appendix A.
This asymptotic expansion formula for large deviations is our starting point for first
specifying the function CQN(k, δ2; g)(.) occurring in the above mentioned N -th order
approximative quantile equation (see Section 1) in such a way that

1− CQN(k, δ2; g)(c2) = fk,δ2;g(c
2)

[
1 +

N∑
l=1

Al(c)

]
(10)

and second dealing with χ2
q,N(k, δ2; g) as the asymptotic solution of the asymptotic equa-

tion

1− CQN(k, δ2; g)(χ2
q,N(k, δ2; g)) = 1− q as q → 1.
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Here Al(c) denotes the l-th greatest term with respect to the power order of c, arising after

the number one in the parentheses in formula (9). In the case N = 0 we put
N∑
l=1

Al(c) = 0.

In accordance with the choice of the parameter γ in the Kotz-type density generating
function gK we obtain different N -th order approximative quantile equations. We give
some examples to illustrate this fact.

Examples:

1. For the Gaussian case gK = gG, i.e. for γ = 1, M = 1 and β = 0.5, it holds

1− CQN(k, δ2; gG)(c2) = fk,δ2;gG(c2)

[
1+D1−2γc

1−2γ +D−2γc
−2γ

+D2−4γc
2−4γ +O(c3−6γ)

]
.

(11)

2. For the non Gaussian case of the Kotz-type density generating function gK with the
parameters γ = 0.7, M = 1 and β = 0.5 it holds

1− CQN(k, δ2; gK)(c2) = fk,δ2;gK (c2)

[
1 +D1−2γc

1−2γ+D2−4γc
2−4γ

+O(c3−6γ)

]
.

(12)

3. For the non Gaussian case of the Kotz-type density generating function gK with the
parameters γ = 1.5, M = 1 and β = 0.5 it holds

1− CQN(k, δ2; gK)(c2) =fk,δ2;gK (c2)

[
1 +D1−2γc

1−2γ +D−2γc
−2γ +D−1−2γc

−1−2γ

+D2−4γc
2−4γ +D1−4γc

1−4γ +O(c3−6γ)

]
.

(13)

Recall that a general approach to quantile approximations using asymptotic expansions
for large deviations has been discussed in Richter (in preparation). In accordance with the
approach developed there we pass over now from the N -th order approximative quantile
equation to the following Large Deviation Iteration Procedure:
Define Cn+1 from Cn by

α = a0C
3k−1

2
−γ(k+1)+2M−2

n e−β(Cn+1−δ)2γ [1 + A1(Cn) + . . .+ AN(Cn)] (14)

for n = 0, 1, 2, . . ., with the starting value

C0 = δ +

(
− 1

β
ln
α

a0
+

θ

2γβ
ln

(
− ln

α

a0

)
− θ

2γβ
ln β

) 1
2γ

(15)
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and the constants

a0 =
β

k
2γ

+M−1
γ
− k+1

2 Γ
(
k
2

)
2
√
πγ

k−1
2 δ

k−1
2 Γ

(
k
2γ

+ M−1
γ

) , θ =
3k − 1

2
− γ(k + 1) + 2M − 2. (16)

For θ ≥ 0 the starting value C0 is defined for α ∈ (0,min(a0e
−x1 , 1)), where x1 denotes

the uniquely determined solution of the equation

θ

2γ
ln
x

β
= −x .

For θ < 0 we have to distinguish between two cases. If 1 − ln(−θ/(2γβ)) ≥ 0 then the
starting value C0 is defined for α ∈ (0,min(a0, 1)). In the alternative case the starting
value C0 is defined for α ∈ [(0, a0e

−x2) ∪ (a0e
−x1 , a0)] ∩ (0, 1), where x1 < x2 are the

uniquely determined solutions of the above mentioned equation.
The following Lemma 1 reflects our motivation for choosing the starting value C0 as it
has been just defined.

Lemma 1. If x ≥ 1 is a solution of the equation

a0x
θe−β(x−δ)

2γ

= α

then for sufficiently small α > 0 it holds

δ+

− 1

β
ln
α

a0
+

θ

2γβ
ln

(
− ln

α

a0

)
− θ

2γβ
ln β +

θ

β
ln

1 +
δ(

− 1
β

ln α
a0

) 1
2γ




1
2γ

≤ x ≤ C∗0

with

C∗0 = δ +

(
− 1

β
ln
α

a0
+

θ

2γβ
ln

(
− ln

α

a0

)
− θ

2γβ
ln β

+
|θ|2

(2βγ)2
ln(− ln α

a0
)(

− 1
β

ln α
a0

) +
|θ|θ(1)

β(ln α
a0

)
1
2γ

) 1
2γ

,

(17)

where θ(1) denotes a certain positive constant.

For the proof of Lemma 1 see Appendix B.

Remark 5. Obviously, C∗0 ∼ C0 as α→ 0.

Let us consider now the function

φ(c) = δ +

(
− 1

β
ln
α

a0
+
θ

β
ln c+

1

β
ln [1 + A1(c) + . . .+ AN(c)]

) 1
2γ

(18)

for c > 1. The iteration procedure can be equivalently defined then by

Cn+1 = φ(Cn), n = 0, 1, 2, . . .

and taking the starting value C0 as above. From the fixed point theory it follows that the
sequence (Cn) will converge to χ2

q,N(k, δ2; g) if we approximate sufficiently large quantiles
χ2
q(k, δ

2; g), because it then holds |φ′(c)| < 1.
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5 TABLES OF LARGE QUANTILES

The iteration procedure Cn+1 = φ(Cn) with φ from (18) was used to implement a Borland
Pascal Program for the evaluation of the N -th order approximative quantiles χ2

q,N(k, δ2; g)
of the noncentral g-generalized chi-square distribution with Kotz-type density generating
function g = gK . The iteration algorithm stops as soon as for the relative error

εn =
|Cn+1 − Cn|

Cn+1

it holds εn ≤ 10−8.
To check the accuracy of our numerical result additionally in terms of quantile orders we
calculate the c.d.f. CQ(k, δ; g)(c2) at the point c2 = C2

n+1 and the relative error for the
quantile orders,

rn(α) =
|1− CQ(k, δ2; g)(C2

n+1)− α|
α

, α = 1− q.

Table 7 gives a first impression of our computational results in the Gaussian case gK = gG.
For the computations we used the specific representation of the function CQN(k, δ2; gG)(c2)
in the N -th order approximative quantile equation, given in (11). We choose always the
result with the smallest relative error rn(α) among all results of the Large Deviation It-
eration Procedure for different orders N . In all tables the footnotes 0, 1, 2 and S at
the results indicate whether the given value is the N -th order approximative quantile,
N ∈ {0, 1, 2}, or the starting value C2

0 , respectively. For all numerical results given in
Table 7 it holds rn(α) ≤ 0.35. If no result is given at some place in Table 7 this means
that our result did not satisfy the inequality rn(α) ≤ 0.35.

Table 7 Large or small quantiles: approximated values for the N -th order approxima-
tive quantiles χ2

q,N(k, 1; gG) when rn(α) ≤ 0.35

α \ k 2 3 4 5 6

0.1 6.2726471 - - - -
0.01 12.422780S 13.802919S 15.6635810 17.6437330 19.7290940
0.001 18.289315S 19.899377S 21.8742780 23.9385250 26.0841560
0.0001 23.970570S 25.727201S 27.7879630 29.9214880 32.1224760
0.00001 29.529460S 31.394053S 33.5241080 35.7161810 37.9664030

If we use a preliminary stage from the derivation of the asymptotic expansion (9) with

f̃k,δ2;g(c
2) =

γβ
M−1
γ

+ k
2γ Γ(k/2)

2
√
πδ

k−1
2 Γ
(
M−1
γ

+ k
2γ

) (1− δ/c)2M−2+kc 3k−1
2
−γ(k+1)+2M−2(

βγ(1− δ/c)2γ − M−1
c2γ

) k+1
2

e−β(c−δ)
2γ

(19)

instead of fk,δ2;g(c
2) and

b̃1 =
(1− δ/c)k

(k − 1)δ
k−1
2

(
γβ(1− δ/c)2γ − M−1

c2γ

) k+1
2

(20)

instead of b1 we obtain a slightly modified Large Deviation Iteration Procedure. With
starting value C0 from (15), we compute corrected values χ̃2

q,N(k, δ2; gG) for the N -th
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order approximative quantiles χ2
q,N(k, δ2; gG). For the values given in Table 8 it holds

rn(α) ≤ 0.05.

Table 8 Large or small quantiles: corrected values for the N -th order approximative
quantiles χ̃2

q,N(k, 1; gG) when rn(α) ≤ 0.05

α \ k 2 3 4 5

0.35 3.2869582 - - -
0.3 3.6753752 - - -
0.2 4.8434472 - - -
0.1 6.7964642 - - -
0.05 8.6729452 10.3260040 - -
0.03 10.0254782 11.7106460 13.3061412 -
0.025 10.5033862 12.2002200 13.8113692 -
0.01 12.8740542 14.6279220 16.3095412 -
0.005 14.6388752 16.4327760 18.1604582 -
0.0025 16.3838012 18.2147530 19.9837142 -
0.001 18.6648602 20.5405460 22.3582422 24.1872682
0.0005 20.3738382 22.2805220 24.1314992 25.9867882
0.0001 24.2963942 26.2672310 28.1862592 30.0984342
0.00001 29.8157911 31.8683230 33.8682632 35.8523192

The empty places in Tables 7 and 8 (as well as in Table 9 below) indicate that the
asymptotic behind our formulae depend in some way on the interrelation between the
dimension k and the quantile order α. Namely the results make it evident that we are
dealing with large quantiles.
Note that Ai(c) = 0, i = 1, 2 for k = 3. The 0-indexed values of the column for k = 3
coincide therefore with the respective 2-indexed values.
Our geometric representation formula for the distribution function CQ(k, δ2; gK)(x),
x ∈ R, given in Corollary 2, Section 2, enables us to calculate numerically more ex-
act approximations χ2

q,∗ = χ2
q,∗(k, δ

2; gK) for the quantiles χ2
q = χ2

q(k, δ
2; gK) by using the

secant method for approximating the solution χ2
q of the equation

1− CQ(k, δ2; gK)(χ2
q) = 1− q.

In accordance with Press et al. (1989), p. 282 the algorithm of the secant method stops
as soon as for the increment with respect to the latest value

dC2
n :=

(C2
n − C2

n+1)CQ(k, δ2; gK)(C2
n+1)

CQ(k, δ2; gK)(C2
n+1)− CQ(k, δ2; gK)(C2

n)

it holds |dC2
n| < 10−13 or 1−CQ(k, δ2; gK)(C2

n+1) = 1− q. The values of the distribution
function CQ(k, δ2; gK)(χ2

q,∗(k, δ
2; gK)) coincide with q at least for 12 digits. In this way,

we can compute the possibly more interesting relative approximation error

ε∗n(α, k) =
|C2

n − χ2
q,∗(k, δ

2; gK)|
χ2
q,∗(k, δ

2; gK)
.

If we use this relative error instead of rn(α) for controlling our corrected quantile approxi-
mations χ̃2

q(k, δ
2; gG) we obtain Table 9. In this table it holds ε∗n(α, k) ≤ 0.02 for all given
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values.

Table 9 Large or small quantiles: corrected values for the N -th order approximative
quantiles χ̃2

q,N(k, 1; gG) when ε∗n ≤ 0.02

α \ k 2 3 4 5 6

0.35 3.2869582 - - - -
0.3 3.6753752 - - - -
0.2 4.8434472 - - - -
0.1 6.7964642 - - - -
0.05 8.6729452 10.3260040 11.8740002 - -
0.03 10.0254782 11.7106460 13.3061412 - -
0.025 10.5033862 12.2002200 13.8113692 15.5151072 -
0.01 12.8740542 14.6279220 16.3095412 18.0466902 -
0.005 14.6388752 16.4327760 18.1604582 19.9253612 -
0.0025 16.3838012 18.2147530 19.9837142 21.7766092 23.7150792
0.001 18.6648602 20.5405460 22.3582422 24.1872682 26.1311132
0.0005 20.3738382 22.2805220 24.1314992 25.9867882 27.9386592
0.0001 24.2963942 26.2672310 28.1862592 30.0984342 32.0761652
0.00001 29.8157911 31.8683230 33.8682632 35.8523192 37.8742892

For a comparison of the N -th order approximative quantiles χ2
q,N(k, 1; g) with the cor-

rected values χ̃2
q,N(k, 1; g) we give in Tables 10 up to 12 for several density generating

functions g both values with their relative approximation errors ε∗n(α, k) and the results
of the application of the geometric measure representation formula combined with the
secant method, χ2

q,∗(k, 1; gG), too. For the computations of the approximations we used
the specific representations of the function CQN(k, δ2; gK)(c2) in the N -th order approx-
imative quantile equations, given in (12) for γ = 0.7 and in (13) for γ = 1.5, respectively.
Notice that in the Gaussian case, restricted to the range of Table 10, the corrected values
χ̃2
q,N(k, 1; gG) have for d.f. smaller than 5 a smaller relative approximation error ε∗n(α, k)

than the N -th order approximative quantiles χ2
q,N(k, 1; gG). For d.f. 5 and 6 we observed

for large values of α that the asymptotic expansion is better and for small α that the
preliminary stage is better. For d.f. 8 and 10 the asymptotic expansion has the smaller
relative error.

Table 10 Comparison of approximations for the quantiles χ2
1−α(k, 1; gG)

k α χ2
1−α,N (k, 1; gG)(ε∗n(α, k)) χ̃2

1−α,N (k, 1; gG)(ε∗n(α, k)) χ2
1−α,∗(k, 1; gG)

2 10−1 6.272647221(0.1986528) 6.796464122(0.0038897) 6.77013045
10−2 12.323485491(0.0408692) 12.874054172(0.0019813) 12.84859769
10−3 18.182134091(0.0249444) 18.664860182(0.0009428) 18.64727974
10−4 23.866453841(0.0171785) 24.296394632(0.0005265) 24.28360971
10−5 29.430020961(0.0127647) 29.815790861(0.0001761) 29.81054242
10−6 34.905470271(0.0099784) 35.256029200(0.0000355) 35.25728201
10−7 40.313307121(0.0080864) 40.636620630(0.0001312) 40.64195334
10−8 45.75411880S(0.0048414) 45.982067972(0.0001165) 45.97671294
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k α χ2
1−α,N (k, 1; gG)(ε∗n(α)) χ̃2

1−α,N (k, 1; gG)(ε∗n(α)) χ2
1−α,∗(k, 1; gG)

3 10−1 7.094329710(0.4747291) 8.414189100(0.0215007) 8.23708570
10−2 13.802919380(0.0520500) 14.627922290(0.0046091) 14.56081028
10−3 19.899377060(0.0294528) 20.540546580(0.0018188) 20.50325620
10−4 25.727201430(0.0196455) 26.267231280(0.0009327) 26.24275474
10−5 31.394053130(0.0143369) 31.868323080(0.0005535) 31.85069342
10−6 36.950534280(0.0110757) 37.377843620(0.0003606) 37.36437110
10−7 42.425247490(0.0088998) 42.816939140(0.0002506) 42.80621232
10−8 47.836232950(0.0073606) 48.199751600(0.0001826) 48.19094967

4 10−1 8.779577710(0.3272683) 9.886705912(0.0244904) 9.65036473
10−2 15.663580880(0.0341762) 16.309541492(0.0056541) 16.21784458
10−3 21.874278390(0.0194037) 22.358242092(0.0022918) 22.30711968
10−4 27.787963020(0.0129564) 28.186259582(0.0011913) 28.15272218
10−5 33.524107580(0.0094561) 33.868263312(0.0007127) 33.84414107
10−6 39.138924780(0.0073024) 39.445240502(0.0004669) 39.42683364
10−7 44.664148040(0.0058642) 44.942248152(0.0003258) 44.92761241
10−8 50.119753170(0.0048466) 50.375843422(0.0002382) 50.36384829

5 10−1 10.666204560(0.1188386) 11.790486262(0.2157233) 11.02543135
10−2 17.643732580(0.0005866) 18.046689782(0.0121399) 17.83023266
10−3 23.938524940(0.0053071) 24.187268232(0.0050287) 24.06624588
10−4 29.921488070(0.0032500) 30.098434522(0.0026445) 30.01904880
10−5 35.716180910(0.0022094) 35.852319482(0.0015939) 35.79526706
10−6 41.381705730(0.0016060) 41.491763592(0.0010493) 41.44827284
10−7 46.951694910(0.0012233) 47.043746972(0.0007348) 47.00920206
10−8 52.447412600(0.0009646) 52.526335822(0.0005388) 52.49805162

6 10−1 12.711818970(0.0275142) 13.740115400(0.1106328) 12.37142944
10−2 19.729093780(0.0166664) 20.441106822(0.0533571) 19.40567026
10−3 26.084155520(0.0115361) 26.131113192(0.0133571) 25.78667865
10−4 32.122476460(0.0086629) 32.076164522(0.0072087) 31.84659272
10−5 37.966402950(0.0068504) 37.874288602(0.0044076) 37.70808815
10−6 43.675884870(0.0056132) 43.559237872(0.0029275) 43.43209098
10−7 49.285482550(0.0047206) 49.155086602(0.0020624) 49.05391984
10−8 54.817221650(0.0040494) 54.679029372(0.0015183) 54.59613810

8 10−1 17.157833040(0.1439895) 18.025049910(0.2018107) 14.99824398
10−2 21.57800150S(0.0395892) 24.810997360(0.1043076) 22.46747022
10−3 28.60417087S(0.0180614) 31.125907340(0.0685060) 29.13030580
10−4 35.05992212S(0.0096482) 37.174272440(0.0500767) 35.40148157
10−5 41.20251459S(0.0055576) 40.55870092S(0.0210964) 41.43278223
10−6 47.14278971S(0.0033045) 46.56631968S(0.0154922) 47.29908845
10−7 52.93964427S(0.0019591) 53.663958712(0.0116960) 53.04356291
10−8 58.729453122(0.0006102) 59.210340322(0.0088033) 58.69364118

10 10−1 21.947039480(0.2497895) 22.693258400(0.2922834) 17.56058924
10−2 24.56655253S(0.0341694) 29.482369190(0.1590953) 25.43567384
10−3 31.99185082S(0.0116178) 35.844316780(0.1074034) 32.36789385
10−4 38.71601015S(0.0033001) 37.690623430(0.0296976) 38.84420165
10−5 45.06083225S(0.0004132) 44.166580360(0.0194404) 45.04221993
10−6 51.16339664S(0.0022332) 50.361723430(0.0134707) 51.04939559
10−7 57.09583591S(0.0031588) 56.363840310(0.0097021) 56.91604755
10−8 62.90118277S(0.0036231) 62.223987620(0.0071819) 62.67410804
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Table 11 Heavy tail effects: comparison of the approximations for the quantiles χ2
1−α(k, 1; gK)

with parameters M = 1, γ = 0.7 and β = 0.5

k α χ2
1−α,N (k, 1; gK)(ε∗n(α)) χ̃2

1−α,N (k, 1; gK)(ε∗n(α)) χ2
1−α,∗(k, 1; gK)

2 10−1 14.864931082(0.0138557) 15.039707102(0.0044661) 15.07378935
10−2 34.198736212(0.0114173) 34.345228542(0.0071826) 34.59370194
10−3 56.860257722(0.0074745) 56.869744032(0.0073089) 57.28846018
10−4 82.137308122(0.0052510) 82.256937562(0.0038022) 82.57088609
10−5 109.656776892(0.0039086) 109.768864362(0.0028904) 110.08706075
10−6 139.169731742(0.0030313) 139.276045342(0.0022697) 139.59287967
10−7 170.493365172(0.0023906) 170.595053952(0.0017955) 170.90191646
10−8 203.485756592(0.0016130) 203.583619012(0.0011328) 203.81450020

3 10−1 20.488962270(0.0728529) 19.975994830(0.0960652) 22.09893365
10−2 44.615800280(0.0220916) 44.260056120(0.0298889) 45.62369965
10−3 70.878414510(0.0108747) 70.577532890(0.0150736) 71.65767114
10−4 99.247008840(0.0065600) 98.976919090(0.0092424) 99.90236631
10−5 129.546273910(0.0043943) 129.296785400(0.0063227) 130.11804641
10−6 161.619168040(0.0031652) 161.384814530(0.0046106) 162.13234805
10−7 195.335288950(0.0023427) 195.112722690(0.0034795) 195.79397925
10−8 230.586299180(0.0013308) 230.373286170(0.0022533) 230.89356607

4 10−1 30.997589650(0.0488901) 29.779619580(0.0076767) 29.55275239
10−2 55.016527431(0.0318210) 58.104341370(0.0225182) 56.82474969
10−3 84.764521861(0.0140760) 87.701803280(0.0200885) 85.97470181
10−4 116.094815351(0.0076020) 118.981831510(0.0170767) 116.98413171
10−5 149.048744061(0.0045731) 148.246526751(0.0099308) 149.73350183
10−6 183.564158361(0.0029344) 182.822862521(0.0069609) 184.10439473
10−7 219.563073061(0.0019022) 218.867902951(0.0050624) 219.98153002
10−8 256.970070131(0.0006834) 256.311468621(0.0032446) 257.14581454

5 10−1 44.441106500(0.1888110) - 37.38281904
10−2 75.793762470(0.1110184) 74.435777640(0.0911125) 68.22007379
10−3 108.208701850(0.0786034) 107.039858640(0.0669526) 100.32297939
10−4 129.460343991(0.0335465) 141.012349630(0.0526921) 133.95403325
10−5 165.326864321(0.0223372) 176.422629920(0.0432778) 169.10418118
10−6 203.03064098S(0.0130377) 213.243328270(0.0366077) 205.71266184
10−7 240.796593391(0.0118989) 238.944917361(0.0194972) 243.69630082
10−8 280.409964091(0.0085487) 278.708408071(0.0145649) 282.82777037

8 10−2 140.554094510(0.3564826) 137.953158890(0.3313811) 103.61658162
10−3 180.531445840(0.2544111) 178.210456790(0.2382838) 143.91728970
10−4 221.422168890(0.1981045) 219.286548940(0.1865488) 184.81039331
10−5 263.349656780(0.1621323) 261.349093950(0.1533040) 226.60902167
10−6 306.349601250(0.0220107) 304.453503110(0.0280638) 313.24433489
10−7 350.422558380(0.0207536) 348.610642240(0.0258170) 357.84923716
10−8 395.553789170(0.0135255) 393.811765330(0.0178700) 400.97721882

Recall that we choose always the result with the smallest relative error rn(α) among all
results of the Large Deviation Iteration Procedure for different orders N . The footnotes 0,
1, 2 and S at the results indicate whether the given value is the N -th order approximative
quantile, N ∈ {0, 1, 2}, or the starting value C2

0 , respectively.
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Table 12 Light tail effects: comparison of the approximations for the quantiles
χ2
1−α(k, 1; gK) with parameters N = 1, γ = 1.5 and β = 0.5,

k α χ2
1−α,N (k, 1; gK)(ε∗n(α, k)) χ̃2

1−α,N (k, 1; gK)(ε∗n(α, k)) χ2
1−α,∗(k, 1; gK)

2 10−2 6.87185579S(0.0439408) 7.004018482(0.0255534) 7.18768859
10−3 9.08949622S(0.0253340) 9.284011562(0.0044761) 9.32575474
10−4 10.95907778S(0.0168096) 11.130012662(0.0014742) 11.14644503
10−5 12.61004396S(0.0121966) 12.757609742(0.0006370) 12.76574211
10−6 14.10932345S(0.0093829) 14.238380342(0.0003218) 14.24296372
10−7 15.49570554S(0.0075143) 15.610302772(0.0001744) 15.61302644
10−8 16.79387346S(0.0061534) 16.896999952(0.0000504) 16.89785246

3 10−2 6.97295539S(0.0624126) 7.709445971(0.0366163) 7.43712605
10−3 9.17244144S(0.0371421) 9.474547592(0.0054291) 9.52626679
10−4 11.03103680S(0.0252909) 11.297348572(0.0017594) 11.31726070
10−5 12.67467647S(0.0187121) 12.906855832(0.0007365) 12.91636851
10−6 14.16865014S(0.0146180) 14.373716882(0.0003563) 14.37883986
10−7 15.55096657S(0.0118625) 15.734684102(0.0001887) 15.73765414
10−8 16.84589118S(0.0099000) 17.012529632(0.0001060) 17.01433284

4 10−2 7.12728617S(0.0731333) 7.928546491(0.0310665) 7.68965615
10−3 9.29926645S(0.0451198) 9.658647342(0.0082173) 9.73867307
10−4 11.14131720S(0.0314827) 11.472034772(0.0027333) 11.50347734
10−5 12.77386654S(0.0236982) 13.068579782(0.0011734) 13.08393280
10−6 14.25978045S(0.0187522) 14.523880302(0.0005789) 14.53229278
10−7 15.63590590S(0.0153565) 15.875052112(0.0002967) 15.87976350
10−8 16.92588286S(0.0127833) 17.144618132(0.0000254) 17.14505369

5 10−2 7.32027088S(0.0780942) 8.076413541(0.0171334) 7.94036778
10−3 9.45864078S(0.0499704) 10.056985131(0.0101275) 9.95615395
10−4 11.28032661S(0.0357057) 11.640540522(0.0049130) 11.69801286
10−5 12.89912969S(0.0273258) 13.232191542(0.0022109) 13.26151169
10−6 14.37500650S(0.0218898) 14.679791902(0.0011514) 14.69671418
10−7 15.74339645S(0.0180964) 16.023290532(0.0006396) 16.03354653
10−8 17.02717648S(0.0151686) 17.285833942(0.0002081) 17.28943217

6 10−2 7.54228771S(0.0787755) 8.026356551(0.0196508) 8.18724210
10−3 9.64307315S(0.0522953) 10.179986571(0.0004716) 10.17518772
10−4 11.44176859S(0.0382587) 11.921949001(0.0021030) 11.89692968
10−5 13.04492550S(0.0297637) 13.472041371(0.0020036) 13.44510213
10−6 14.50931410S(0.0241365) 14.893273381(0.0016877) 14.86818063
10−7 15.86881551S(0.0201652) 16.217959991(0.0013931) 16.19539818
10−8 17.14545438S(0.0172286) 17.430478652(0.0008912) 17.44602584

7 10−2 7.78646831S(0.0762815) 9.107739470(0.0804625) 8.42948218
10−3 9.84724617S(0.0525889) 10.158867911(0.0226076) 10.39384741
10−4 11.62118942S(0.0394037) 12.018815271(0.0065363) 12.09789079
10−5 13.20734770S(0.0311663) 13.598402671(0.0024802) 13.63221395
10−6 14.65917783S(0.0255830) 15.028844531(0.0010107) 15.04404979
10−7 16.00892023S(0.0215510) 16.355651371(0.0003592) 16.36152802
10−8 17.27769331S(0.0183154) 17.603049981(0.0001707) 17.60004528
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k α χ2
1−α,N (k, δ2; gK)(ε∗n(α)) χ̃2

1−α,N (k, δ2; gK)(ε∗n(α)) χ2
1−α,∗(k, δ

2; gK)

10 10−2 8.60675843S(0.0570174) 10.209717530(0.1186077) 9.12716560
10−3 10.54298037S(0.0449209) 11.816186530(0.0704177) 11.03885538
10−4 12.23775648S(0.0364740) 13.300838910(0.0472266) 12.70101285
10−5 13.76845536S(0.0304727) 14.686040870(0.0341405) 14.20120506
10−6 15.17875087S(0.0260393) 15.518642683(0.0042298) 15.58456242
10−7 16.49590208S(0.0226211) 16.825325513(0.0031028) 16.87769376
10−8 17.73821587S(0.0764145) 18.057534143(0.0597884) 19.20581971

12 10−2 9.19765585S(0.0388563) 9.19765585S(0.0388563) 9.56949106
10−3 11.05293767S(0.0352125) 11.05293767S(0.0352125) 11.45634398
10−4 12.69436168S(0.0307786) 13.899802880(0.0612575) 13.09748329
10−5 14.18672787S(0.0269595) 15.239107270(0.0452212) 14.57979118
10−6 15.56781098S(0.0238264) 16.505377370(0.0349634) 15.94778862
10−7 16.86175081S(0.0212618) 17.709825120(0.0279645) 17.22805070
10−8 18.08504230S(0.0191438) 18.861261390(0.0229551) 18.43801525

Restricted to the ranges of Tables 11 and 12 and the concrete Kotz type distributions
dealt with there, one can observe the following effects of heavy and light tails.
Heavy tails:
In Table 11 we can see that for 2 d.f. the relative approximation errors ε∗n(α, k) of the
corrected values χ̃2

q,N(k, 1; gK) are smaller than the relative approximation errors for the
N -th order approximative quantiles χ2

q,N(k, 1; gK). For 3 d.f. the asymptotic expansion is
the better one. For d.f. 4, 5, 8 it turns out that for large α the preliminary stage is better
and for small α the asymptotic expansion is better. One suggestion turning out from this
table is therefore to use in the asymptotic formula for large deviations the function fk,δ2;g
instead of f̃k,δ2;g when working in the far tails and vice versa when dealing with quantiles
from the central part of the distribution.
Light tails:
From Table 12 it can be seen that for 2 up to 6 d.f. the preliminary stage is better.
For 7, 10, 12 d.f. the asymptotic expansion is better for large α, whereas for small α
the preliminary stage is better. Roughly spoken, the observed effects under light tails
are contrary to those under heavy tails. Note furthermore that with increasing d.f. the
asymptotic expansion becomes better for decreasing α.

6 ORDINARY CHI-SQUARE QUANTILES:

COMPARISON WITH OTHER RESULTS

We could not find any results in the literature concerning the general case discussed in
Section 5, but there are various results for the ordinary chi-square distribution.
Fisher (1928) published the upper 5% significance points of the noncentral chi-square
distribution function in an implicit form for k = 1(1)7 and δ = 0(0.2)5.0. Several methods
for approximating the quantiles of the usual noncentral chi-square distribution function
have been developed by Patnaik (1949), Abdel-Aty (1954) and Sankaran (1963). In these
papers the upper and the lower 5% points for several parameters are given. In Table 13
we follow the choice of parameters studied by other authors to compare our upper 5%
points with their results. In the column Fisher we quoted the exact results of Fisher
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(1928). Modified central chi-square-approximated percentage points from Patnaik (1949)
are given in the column Patnaik. The next column contains the Cornish-Fisher type
approximations in Abdel-Aty (1954). In the columns Sankaran (’closer’ and ’normal’)
the results of a modification of Abdel-Aty’s method and a normal approximation by
Sankaran were listed. The last columns contain our corrected explicit approximation
values χ̃2

q,N(k, δ2; gG) based upon the Large Deviation Iteration Procedure from Section
4, indexed by the actual value of N , and our exact ’implicit’ results from the application
of the secant method χ2

q,∗(k, δ
2; gG), respectively.

Table 13 Comparison study for the upper 5% points of CQ(k, δ2; gG)

k δ2 Fisher Patnaik Abd.- Sankaran Sankaran
Aty ’closer’ ’normal’ χ̃2

0.95,N χ2
0.95,∗

2 1 8.642 8.63 8.38 8.38 8.87 8.672 8.64220388
4 14.641 14.72 14.62 14.62 14.68 14.612 14.64021080

16 33.054 33.35 33.08 33.08 33.057 32.952 33.05421469
25 45.308 45.66 45.33 45.33 45.309 45.172 45.30823043

4 1 11.707 11.72 11.67 11.67 11.96 11.872 11.70722775
4 17.309 17.38 17.24 17.27 17.39 17.570 17.30932288

In Dinges (1989) a Lugannani-Rice type formula called Wiener Germ approximation is
used to approximate the distribution function of the noncentral chi-square distribution.
We exploited the respective formula based on a second order approximation from example
4.5 in Dinges (1989). The resulting quantities C2

D,1−α(k) given in column Dinges of Table
14 are evaluated by the root finding algorithm ’fsolve’ of the formulae manipulating system
Maple V.
Certain z1 and z2 transformations for approximating the quantiles of the noncentral chi-
square distribution are given in Sankaran (1963). It is mentioned there that the approx-
imation based on z1 is not as good as that based on z2, in general. We evaluated both
types of values and confirmed them. In column Sankaran the values C2

s,1−α(k) nearest
to the exact quantiles are tabled. They are indexed by ’z1’ if the z1 approximation was
used, otherwise the z2 approximation was used. In the last column of Table 14 our exact
values of the quantiles are given, again evaluated by combining the exact formula (4)
for the distribution function with the secant method. The relative errors are computed
according to

ε∗S(α, k) =
|C2

S,1−α(k)− χ2
1−α,∗(k, δ

2; gG)|
χ2
1−α,∗(k, δ

2; gG)

and

ε∗D(α, k) =
|C2

D,1−α(k)− χ2
1−α,∗(k, δ

2; gG)|
χ2
1−α,∗(k, δ

2; gG)
,

respectively, where ’S’ stands for Sankaran and ’D’ for Dinges.
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Table 14 Comparison study for large quantiles (δ = 1)
k α Sankaran (ε∗S(α, k)) Dinges (ε∗D(α, k)) χ2

1−α,∗(k, 1; gG)

2 10−1 6.78151398z1 (0.0016814) 6.78427274 (0.0020889) 6.770130446893
10−2 13.11027479z1 (0.0203662) 12.86014207 (0.0008985) 12.848597693670
10−3 19.11900814z1 (0.0252974) 18.65699390 (0.0005209) 18.647279743060
10−4 24.85364100 (0.0234739) 24.29193303 (0.0003428) 24.283609705167
10−5 30.43250001 (0.0208637) 29.81781012 (0.0002438) 29.810542419159
10−6 35.90979020 (0.0185071) 35.26373314 (0.0001830) 35.257282009222
10−7 41.30881727 (0.0164083) 40.64775757 (0.0001428) 40.641953336007
10−8 46.64480567 (0.0145311) 45.98198422 (0.0001147) 45.976712945780

5 10−1 11.08178983z1 (0.0051117) 11.02741413 (0.0001798) 11.025431349567
10−2 18.21014455 (0.0213072) 17.83212578 (0.0001062) 17.830232659777
10−3 24.52924605 (0.0192386) 24.06830591 (0.0000856) 24.066245884333
10−4 30.48325316 (0.0154637) 30.02120647 (0.0000719) 30.019048804997
10−5 36.20303657 (0.0113917) 35.79746130 (0.0000613) 35.795267059696
10−6 41.75619172 (0.0074290) 41.45046464 (0.0000529) 41.448272843317
10−7 47.18302639 (0.0036977) 47.01136799 (0.0000461) 47.009202057374
10−8 52.50951253 (0.0002183) 52.50016107 (0.0000402) 52.498051624489

10 10−1 17.65337272z1 (0.0052836) 17.56096416 (0.0000213) 17.560589244157
10−2 25.80446516 (0.0144990) 25.43588219 (0.0000082) 25.435673840466
10−3 32.84500575 (0.0147403) 32.36810544 (0.0000065) 32.367893850640
10−4 39.35010019 (0.0130238) 38.84444734 (0.0000063) 38.844201654265
10−5 45.51698223 (0.0105404) 45.04250619 (0.0000064) 45.042219934156
10−6 51.44559170 (0.0077610) 51.04972156 (0.0000064) 51.049395594493
10−7 57.19478292 (0.0048973) 56.91640987 (0.0000064) 56.916047546689
10−8 62.80227849 (0.0020450) 62.67448487 (0.0000060) 62.674108040217

The relative errors indicate that among the approximation formulae that of Dinges yields
especially good results in the present special Gaussian situation.
Recognize, however, that it would not be possible to check the relative approximation
errors ε∗S and ε∗D if we would not know the exact values χ2

1−α,∗(k, 1; gG). The information
about the differences with respect to the accuracy of the methods compared in Table 14
seem us therefore to be new. The finally Table 15 illustrates that Dinges’ formula yields
also good results in the central part of the distribution.

Table 15 Small Quantiles: Wiener Germ approximation
k α Dinges (ε∗D(α, k)) χ2

1−α,∗(k, 1; gG)

2 0.45 2.570550010832(0.030952734) 2.493373290173
0.35 3.265723130277(0.009013084) 3.236551817807
0.3 3.708074346704(0.006152537) 3.685399787656
0.2 4.861431555275(0.003446869) 4.844732394966

4 0.45 4.670783894531(0.005554594) 4.644982900987
0.35 5.581361592328(0.001545554) 5.572748608575
0.3 6.121704695126(0.001047945) 6.115296201591
0.2 7.479410831986(0.000574271) 7.475118088576

5 0.45 5.715859549369(0.003042738) 5.698520445432
0.35 6.709647601532(0.000839715) 6.704018135348
0.3 7.291063435846(0.000566234) 7.286937324439
0.2 8.738020360443(0.000302691) 8.735376242672
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APPENDIX A

Asymptotic expansion coefficients

The following quantities complete formula (9) and have been derived in Richter and
Schumacher (in preparation):

D1−2γ = − c
k+3
2

1

b1δ
k+1
2 (1− δ

c
)3

k − 3

16
,

D−2γ =
c
k+3
2

1

b1δ
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2 (1− δ

c
)3
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1 c2
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(k − 1)(γβ)
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2 δ
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and

c1 =
(1− δ/c)2

βγ(1− δ/c)2γ − M−1
c2γ

c2 = −1

2

(1− δ/c)2
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βγ(γ − 1)(1− δ/c)2γ + M−1
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)(
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)3
c3 = − 1

12
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(
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)(
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)4
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1

4

(1− δ/c)2
(
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c2γ

)5 .

APPENDIX B

Proof of Lemma 1 : Case 1: θ ≤ 0. We consider

a0x
θe−β(x−δ)

2γ

= α (22)

with

θ ≤ 0, x > 0.

In (22) holds α→ +0 if and only if x→∞.
Let x ≥ 1. Then it follows from (23) that

a0e
−β(x−δ)2γ ≥ α.

This is equivalent to

x ≤ δ +

(
− 1

β
ln
α

a0

) 1
2γ

.

Inserting the last inequality into (22) at the place of xθ it follows

α ≥ a0e
−β(x−δ)2γ

(
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β
ln
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) 1
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ln
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or
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ln
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Inserting the last inequality again into (22) for xθ supplies
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It follows with θ(1) = O(1), α→ 0 that
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From the inequality (24) follows the upper bound
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for the case θ ≤ 0.
Case 2: θ > 0. Let x ≥ 1 then follows from (22) for θ > 0

a0e
−β(x−δ)2γ ≤ α.

This is equivalent to

x ≥ δ +
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) 1
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If we insert the last inequality (26) for xθ into (22), we obtain
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Finally, we prove x ≤ C∗0 . We show x < (1 + ε)C∗0 , ∀ε > 0, leading the now stated
assumption x ≥ (1 + ε)C∗0 for ε > 0 to a contradiction. Because in (22) α → +0 if and
only if x→∞, it holds for a sufficiently small α or a sufficiently large x, respectively,
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This is equivalent to
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This, however, doesn’t hold for α → 0 and so we have for sufficiently small α the upper
bound C∗0 for x.
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