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1.1 INTRODUCTION

Let an individual having a Gaussian distributed feature variable belong to one of
two distinct populations. Assume that we are given measurements from a sample of
individuals giving rise to independent and identically distributed Gaussian feature
variables. Several methods of allocating the individual or the whole sample to one
of the two populations have been studied in the literature. For an introduction
to this area see, e.g., Anderson (1984) or McLachlan (1992). A certain subclass
of classification rules is given by the so-called distance rules. Because of the great
variety of distances existing in statistics, there are several approaches to distance
based classification rules, as only to mention Cacoullos and Koutras (1985), Marco,
Young and Turner (1987), Cacoullos (1992) and Cacoullos and Koutras (1996).
When choosing a method for classifying an individual or a sample of individuals,
one has to distinguish between the cases of known or unknown moments. Certain
sample-distance based classification rules, however, work without assumptions con-
cerning the second order moments and probabilities of correct classification can be
described explicitly in terms of these moments. This advantage has been exploited
to some extent recently in Krause and Richter(1999). The method developed there
combines a geometric sample measure representation formula for the multivariate
Gaussian measure with a certain non classic linear model approach due to Krause
and Richter (1994). This linear model type approach will be modified in the present
paper to derive new representation formulae for probabilities of correct classification
which are based upon the two-dimensional Gaussian law. Further transformation of
these formulae yields expressions in terms of the doubly noncentral F-distribution
as has been derived recently in another way in Krause and Richter(1999).

Let n1,no and n3 observations belong to the three populations IIy, I, and II3,
respectively. We suppose that II; and I, are distinguishable with respect to their
expectations and that population II3 can be understood as a copy of one of II; or
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IT,. The overall sample vector

T
1T 2T 3T
Yin = (Y(nl)aY(nz)vY(ns)) , n=mny+ny+ng,
consisting of the repeated measurement vectors Yili) = (Yi,..., Yim)T from the

three populations II;,i = 1,2,3 will be assumed to define a Gaussian statistical

structure
Sp=(R",B",{®,s, € MIec0}).

Here, M denotes the range of EY{,) and will be called the model space, although
it is not a linear vector space. It satisfies the representation

M={p€R":pp=p 170 4 pp1°70 4 145100F,

ps € {pa, pa}, (pa, p2) € R?, 1 # po},

where
1790 = (17, 05y 4ny) T 1070 = (07, 15,00) T, 170 = (07, 1, 15) 7
L,,=(1,...,0)F e R" 0,, = (0,...,00T € R™.
Further,
o1y,
=<K= 031, ,(02,03) € Rt x RY,02 € {0},03}

2
o315,

is a set of block diagonal matrices where I,,, denotes a n; x n; unit matrix.
The problem of interest here is, on the basis of the overall sample vector Y,), to
decide between the hypotheses

Hys:ps =p and Hyyg:ps = pa.

1.2 VECTOR ALGEBRAIC PRELIMINARIES
Put

1+0+ — 1+00 + IO(H-7 10++ — 10+0 + 100-‘,-’ 1+++ — 1+00 + 10+0 + 100+
and denote by
M1/3 — L(1+0+7 10+0) and M2/3 — L(10++, 1+00)

subspaces of the sample space spanned up by the vectors standing within the brack-
ets. These spaces can be understood as hypotheses spaces or restricted model spaces
under the hypotheses Hj 3 or Hs 3, respectively. Second basis representations for
these spaces are

M1/3 = L(1+++7 10+0), M2/3 = L(1+++7 1+00)-
Note that M, /3 and My,3 are not orthogonal to each other,
M3 Myz = L(1T*)

and
10+0J_ 1+00 .
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While the dimensions of the hypotheses spaces satisfy the equations
dim M3 =2, i = 1,2
the dimension of
M = L(1100 1040 100+)

i.e. the smallest subspace of the sample space containing both M;,3 and Ms/3,
equals three. A second basis representation for this so called extended model space
is
M= L(1t++ 1700 10+0)
) ) N
The spaces L(1T+) and L(17°?, 1°%9) are linearly independent but not orthogonal.
A third basis representation for M is

M:L(1+++ 170+ 10-+)

where
1=+ — _ 1 {400 " i100+, 10—+ — _ 1 qo40 n 1 oot
ni n3 n2 n3

The spaces L(17++) and L(17°%,1°=%) are orthogonal but

1
(17971977 = —, (1.2.1)

ns

Since

My -orpo = (s — pa) 17" and Tyo-s po = (s — pp)1°7 7,

the two-dimensional space
W =L(1°"1°%)

will be called effect space or decision space. These notations correspond to the
circumstances that changes of the differences (u3 — p;),7 = 1,2 are immediately
reflected in the space W and decisions concerning the magnitude of these differ-
ences should be based upon considerations within this space. This can be taken as
motivation to define the decision rules

d.|R" — {1,2}, ¢>0
for deciding between the hypotheses H; /3 and Hy/3 as

de(Y(n)) = 2 = H{|[T o+ y() | < €lThyo-+y( 1} (1.2.2)

for arbitrary ¢ > 0. Here, I(A) denotes the indicator of the random event A. Notice
that
dc(Y(n)) =1
holds iff
||H1—0+Hwy(n)|| < C||H10—+Hwy(n)||.

Recognize further that
di (}/in)) =2- [{||}/in) - HM1/3Y'(”)|| < ||}/in) - HMz/gif(n)H}'

Hence the geometrically motivated decision rule d. will be called, throughout the
present paper, a generalized minimum-distance classification rule.

Let us now consider the orthogonal projection of u onto the effect space W, Iy u.
Note that g€ M C M = L(1TT+, W) and W L1t++. Hence, Oy p = p— v+ p,
i.e.

Wy = a(pun, o, p3) 170 + b(pa, o, p3) 1970 + e, o, pu3) 1°°F (1.2.3)
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with
n- a(w,y,z) = ’I'Lg(l' _y) _'_”713(m - Z)?” : b(CII,y,Z) = nl(y —Z’) +n3(y - Z);
n- c(m,y,z) = nl(z —Z’) +n2(2’ _y)

It is easily seen from this M-basis representation of Iy u that the coefficients must
depend on each other. We shall therefore try to reduce the number of parameters
included in the model. To this end we start with a first reparametrisation. This
reparametrisation is based upon a certain partial orthogonalisation.

LEMMA 1.2.1

Mwp = —nya(p, pz, ps)1™ 0 — nob(p, p, ps) 107,

nip + Nap2 + ngpis [+t
ni + na2 + ns )

Mysr+p =

The proof of the second assertion is obvious. The first assertion follows immedi-
ately from the following lemma. Notice that, e.g., the dimension-depending new
parameter

3
1
m(p, p2, p12) = n Z;llmi
P
does not allow an immediate interpretation in the original problem.

LEMMA 1.2.2
The M —vector
u = alt0 4 1070 4 100F (1.2.4)

belongs to the subspace W and allows the representation

u=pl " + 410 F (1.2.5)
for some (p,) € R? if and only if

any + bns +cng = 0. (1.2.6)

In this case,
Y =-nia, Y = —nsb. (1.2.7)

PROOF Replacing the two vectors in (1.2.5) by their definitions yields

w= —F 1+00 _ £10+0 i + 1/’100+'
ni no ns

Equating coefficients from the latter formula with corresponding coefficients from

(1.2.4) gives (1.2.7) and

p+Y __n1a+n2b
ns3 B ns '

The latter quantity coincides with the coefficient ¢ if and only if condition (1.2.6)
is fulfilled. |

Let us define by
— 1 &
Vi) Y
n; e

the mean in the i-th population, i = 1,2,3 and by m(Y 1., Y., Y 3.) the overall mean.
It follows then that -
H1+++Y = m(Yl., Yz., ng.)].+Jr+
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and
MY =Y. 1700 4 V5,100 4 51901,

Hence, an M-basis representation for lIyY, i.e. for I3V —+++Y is
HWy = a(?l.,?g.,vg.)1+00 + b(?l.,?Q.,?3.)10+0 + C(?l.,?Q.,?3.)100+.

The last three equations define M-basis representations of the least squares esti-
mations for the quantities Il;+++pu, g;p and Il p, respectively.

COROLLARY 1.2.3
Using the above defined functions a and b, a W -basis representation formula for
wY is given by

IIwY = —’nla(?l.,?},?&)li(ﬁr — nzb(?l.,?z.,?g.)170+.

Note that
W = L(by1,b2)

with 1
R — L (1.2.8)
ny + ns N9

b1 = 170+ and b2 =
defines an orthogonal basis representation for W where
be = 1=+ — 1T —o+ 10—+,

From (1.2.1) and

ny+n
1-ot))2 = 2= (1.2.9)

nins

we get
n
M 04 10-T = — 1 170+,

ny +ns

Hence,
by = — 1010 4 1100+ 4 1400 ___ML___jo04
n2 ns3 niy +ng nz(ni + ng)

This yields the second assertion in (1.2.8). The following lemma presents a reparametri-
sation which is based upon orthogonalisation.

LEMMA 1.2.4
The quantity Ly can be written as

nins
ny +ng

Hwp = (3 — p1)br + d(pa, p2, p3)ba,

whereby the new parameter d satisfies the two representation formulae

nd(pu1, pa, p13) = ning(p1 — p2) + nang(pus — p2), (1.2.10)
and
nd(py, 2, p13) = na(ny + nz) (m(1/3) (1, p3) — H2) (1.2.11)
with
niT + n3y

(1/3) _
m* ) (x,y) P
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PROOF Making use of equations (1.2.3) and (1.2.7) above as well as (1.2.12) below
one can see that

w =Ty = My (1 1790 4 1151040 4 15100+)

allows the representation

u = by + vby
with
¥ =— - b
nia(p, 2, p3) R (1, 2, p3)
_ mana(p = ) +mans(us — ) ning(pu — p2) + nanong(us — pio)
n n(ny + ns)
and
v=1= —nzb(H1;H2;H3) = nwl(ul — ,u2) :7/‘”277/3([143 — ,u2)‘

Hence

n(ni+n3)Y = (nq+ns)[ning (pe—p ) +nins (s —p)]+ning (p1—pe)+n1nons (ps—pe)

= ninan(ps — f1)

and N
nipr +~ N3p3
nv =nsz(ni +n _ — ,
2(n1 3) .+ 13
which proves the assertions of the lemma. |

Observe that since the new parameters d and m('/3) (uu1, u3) depend on the sam-
ple sizes they do not allow immediate interpretations with respect to the original
problem.

LEMMA 1.2.5
The M —vector u from (1.2.4) belongs to the subspace W and allows the representa-
tion

u = 9b1 + vbs (1.2.12)

for certain values of (9,v) € R? if and only if the condition (1.2.6) is satisfied. In
this case we have, with (p,v) from (1.2.7),

ny

=9+ ¥, v =1

ni] + ns
PROOF Equating coefficients, (1.2.12) follows from

a1+00 + b10+0 + 0100+ =u = ¥b; + vby

=9 _i1+00 + i100+ +v #14»04» _ i10+0
ny n3 niy +ng n2

:<_£+ v >1+00_110+0+<£+L>100+_
ny ni + ns N9 ns ni + ns

In the same way it follows that

which is equivalent to (1.2.6). |
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it b nin — -
HY——713 Y35 —Y)by.
b ny +nsg 1)1

Using the notation

y(/3) = Vij =mY (VY
o ny+n Z Z -m L 3)

ze{1 3} =1

for the pooled mean of the values from the union of the first and third subsamples
Y! and Y2 ., we get
(n1) (ns) _
I, Y =d(Y1.,Y2.,Y3.)by
1 — — — —
= E(nan(Yl. — YQ.) + n2n3(Y3. — Y2.))b2

= Z2(n +ng) (Y7 = T ) bo.

Hence we arrive at least squares estimates for IIy, u and II, .

With
|bu|| = [nitns o o] = , 2t 2 18 (1.2.13)
ny - ng na(ni +ns)

we get the following representation formula for the least squares estimate of Iy
with respect to the normalized orthogonal basis {B;, B2} where B; = b;/||b;]| :

ning na(n1 + ng) -
OyY =,/——— (Y3 -Y YUA/3) —Y, ) By. (1.2.14
w n1+n3 3 1 n1+n2+n3(“ 2) 2 ( )

1.3 DISTRIBUTIONAL RESULTS

1.3.1 REPRESENTATION FORMULAE BASED UPON THE
TWO-DIMENSIONAL GAUSSIAN LAW

The random variables Y3. — Y. and Y(1/3) — Y, play an essential role in the
basic formula (1.2.14). They are coefficients of the projections of Y,y onto the
normalized orthogonal basis vectors By and By of the decision space W and are
therefore uncorrelated. They are linear combinations of the components of the
Gaussian random vector Y, and are therefore jointly Gaussian distributed and
consequently independent from each other.

Let 11,72, ... denote independent standard Gaussian distributed random variables.
The symbol X; ~ N;(a;,A?) will be used to indicate that X; follows the same
distribution law as a; + A;7; . Thus

Y;. - Y, )~N 1.3.1
n1+n3( 3 1) 1 (1.3.1)

nns = - ninsg
ny +nsg ni + ns

2 2
ni1o0; + nzo
(13 —ul),¥> :

The first and second order moments of this distribution will be denoted by &; and
82, respectively. In a similar way as above, one can show that the random variables
Y (1/3) und Y. are independent. Using the notations

— o2
Y5 ~ N3 (,u2, —2>
n2

nio? + nsos
Y (1/3) ~ Ny <m(1/3)(,u17,u3)a ﬁ) ’
1 3

and
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we get
ng(nl + ’I'L3) — A —
L (Y/3) —V5.) ~ Ny(&, 62 1.3.2
n1+n2+n3( g 2.) ~ Na(&2,05) (1.3.2)
with
€ = M(m(lﬁ)(m j13) — piz) = nany(py — pr2) + nana(ps — pio)
nq + ng + ng ’ V(n1 +n2 +n3)na(ng +ns)
and 2 2 2 2
52 = (Lt ns)°05 + na(nioi + nyo3)
2 (n1 + n2 +n3)(n1 + ng3)
Recall that
de(Yiny) =1
holds if and only if
NiB; + N3Bsy € {z € W : ||IT;-0+z|| < ¢||TTo-+2]|} (1.3.3)

The following lemma concerns reducing dimension and norming,.

LEMMA 1.3.1
The relation

Ni1By + NoBs € {z € W : ||II;-0+2|| < ¢|/IIjo-+2]|}

is true iff -
N1 No T 2 |t1] }
L2 edtnt)TeRY < ey,
<(51 (52) {(1 2) |t1+lit2| C ¢
where
o melm ngz)?o; +2n2("102% +n303)] (13.4)
nina(n103 + nzoi)
and 1
ning
¢ = \/ _ . (1.3.5)
(n1 + n3)(n2 + n3) \/(1+n3/n1)(1+n3/n2)

PROOF Put A = {z € W :||II;-o+2||/||II10-+2]|| < ¢}. Then

M0+ (21B1 + 22 Bs)||
’ ||H10—+(21B1 + ZQBQ)H

A= {21B1+Z2B2 <c, (21,22)T ERZ}.

With
By 10 ) = [
( ! ) 713(77,1 +n3)

and
(By, 10 +) = [Tt r2 s
2, =\

N9 (n1 + 713)
it follows that

A={z1B1 +22Bs : |z1|/|z1 + x - 22| < (- ¢, (Zl,ZQ)T € RQ},

where
X = \/n3(n1 + ny + ng)//nins.
Hence,
N1B; + N2By € A
iff

(N1, N2)T € {(21,22)" € R?: |z1]/|z1 + xzo] < (- ¢}

The assertion of the lemma follows now with & = (65/01)x. |
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Put ¢
1 ning
==t = (s — 1.3.6
41 o1 nlag T n30% (p3 — p1) ( )
and
vy = & _ Viz(ng +n3)[m (g, pus) — pe) (1.3.7)
62 \/(nl +n3)2ag+n2(n10%+n30§)
_ ol — ) + n3(ps — o)
V(ny +n3)20% +na(nio? + nzo?)
If the hypothesis H 3 is true, then m3) (g, ps) = pa,
=0 (1.3.8)
and
— 1+n3/n Vvni+n —
vy = g 2 / > = 3(”; “2)2. (1.3.9)
o2 L+nz/nm + (n20f)/(n103) /(1 +n3)o? + nao?
If the hypothesis H, /3 is true, then
2
K= \/@ 4 (m + na)nscy n3)2302 : (1.3.10)
ny ninaoy
but if Hy /3 is true, then
K= n30—§ (n2n3 - (nl +2n3)2) tnlnzn@a—% . (1.3.11)
nina(nios + nzoy)
If H, 3 is true, then the random event of correct classification
C01(0) = {d:(¥in) = 1),
in view of (1.3.3) and Lemma 1.3.1, obtains the representation
|N1(0,1)] }
CCi(c) = <(-c 1.3.12
= { o e < ¢ (1312

with independent random variables N; and N; , v» from (1.3.9), s from (1.3.10)
and ¢ from (1.3.5). This proves the following theorem.

THEOREM 1.3.2
If the hypothesis H 3 is true, then P (CCy(c)) , the probability of correct classifi-
cation into the population 111, satisfies the representation formula

P (CCy(c)) = 10 (CC5(e)) (1.3.13)
(O,Vz)T,< 0 1 )

for all ¢ > 0, with

* _ T 2, |t1| .
CCi(c) = {(tl,tQ) €R": Tt ] <( c}

and vo, kand ( as in (1.3.9), (1.3.10) and (1.3.5),respectively.
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If the hypothesis Hs/3 is true, then the random event of correct classification into
the population II5,
CCy(c) = {de(Yim)) = 2},

satisfies for all ¢ > 0 the representation

_ |N1(V171)| .
CCs(c) = {|N1(u1,1) ANy T)] > ( c}, (1.3.14)

where k and ¢ are to be chosen according to (1.3.11) and (1.3.5), respectively,

f2 — i Vning(ps — )

n=—— —— = - S (1.3.15)
Vo3 /ns + 07 /m Vnios + ngoy
and, since
1/3 oy, = T H2
m> (g, p2) — pe 1+ n3/n1’
Vs is defined as
1 — n3\>  me0?  nom
1 — 2 3 2 07 273
= /No—— 1+ — —— + — 1.3.16
v "2 () / < +n1> +n1 U% + n% ( )
ni (1 — p2)

\/U%(nzng + (n1 + ’n3)2) + U%’I’Llnz -

The following theorem is an immediate consequence.

THEOREM 1.3.3
If Hy 3 is true then the probability of correct classification into the population II5,
P,(CC(c)), satisfies the representation formula

P, (CC3(c)) =@ 10 (CC5(c)) (1.3.17)
o (§1)

for all ¢ > 0, with

* _ T 2, |t1| .
CC5(c) = {(tl,tQ) €R": Tt ] >( c}

and vy, Vo, K, ¢ as in (1.83.15), (1.3.16), (1.3.11) and (1.3.5), respectively.

The representation formulae for P; (CCi(c)) in Theorem 1.3.2 and for P> (C'Cs(c))
in Theorem 1.3.3 do not only reflect different quantitative situations but they are
also of different qualitative nature. The most obvious difference between v; = 0 in
(1.3.8) and 14 # 01in (1.3.15) can be easily detected. The following theorem presents
a second representation formula for P,(C'C3(c)) which corresponds in quality to that
for P, (CC4(c)) in Theorem 1.3.2. Its proof repeats that of Theorem1.3.2 and will
be suppressed therefore here.

THEOREM 1.3.4
If Hys3 is true then the probability of correct classification into the population I,
satisfies for all ¢ > 0 the representation

Py(CCy(c)) = @ ( 0 ) (CCa(c)), (1.3.18)
(0,02)T, 1

O =
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where

Ay T ope. ] ¢
CCQ(C) = {(tl,tQ) € R : |t1 +I:Lt2| < C}

with ¢ as in (1.3.5),

2
Ry M malnz s 7 (1.3.19)
no nins g5
and
py = Y2 F sl — ) (1.3.20)
V (n2 +n3)o? +nyo?
The next theorem follows by analogy.
THEOREM 1.3.5
If Hy 3 is true then it holds for all ¢ > 0
PI(CCi () = @ L0\ (€, (1321
where | ¢
CCy(c)={ (t1,t)T e R?: — 21— > 2
1() {( ph) € R T G
with ¢ as in (1.3.5),
. nzoi(ning + (no +2n3)2) -{;nlngngag (1.3.22)
nlnz(nlal + n302)
and
5y = Yans( — ) (1.3.23)
\V/n20? + nzo3
as well as

5 — na(p2 — )
2 — .
\/U%(’nlng + (n2 + n3)2) + n1n202

(1.3.24)

1.3.2 Representation formulae based upon the doubly non central
F—distribution

It was shown in John (1961) and Moran (1975) that the probabilities of correct
classification can be expressed in terms of the doubly noncentral F—distribution if
expectations are unknown but covariance matrices are known and equal and the
linear discriminant function is used for classifying an individual into one of the
populations II; and II,. It has been recently proved, in Krause and Richter(1999),
that the probabilities of correct classification can be also expressed in terms of the
doubly noncentral F—distribution if both expectations and covariance matrices are
unknown but a certain generalized minimum-distance rule is used for making the
decision. Here, a result will be derived which is equivalent in content to the latter
one but different from it in form. The method of proving this result developed here
differs from that in Krause and Richter(ibid) in using basically a two-dimensional
representation formula from the preceding section whereas the proof of the corre-
sponding result in Krause and Richter(ibid) starts from a sample space measure
representation formula.

The aim of what follows is to determine the Gaussian measure of C'C;(c) in ac-
cordance with Theorem 1.3.2. To this end we describe the boundary of the set of
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points satisfying the inequality

|t1]

— < (cC 1.3.25
TETAR (1.3.25)
with the help of the straight lines
1 —1)J
gj ity =—= <1+( ) )tl,j:1,2. (1.3.26)
K (c

It turns out that the set of solutions of (1.3.25) includes the ts—axis in its inner
part. The straight line g, belongs for all values of (¢ to the union of the second and
third quadrants in a cartesian coordinate system, i.e. it belongs to the union of the
sets {tl < 0,t2 > 0} and {tl > 0,t2 > 0}

The straight line g; belongs to the same set if (¢ > 1 but to the union of the first
and fourth quadrants if 0 < (¢ < 1. The straight lines g; and g¢» intersect within
the set (1.3.25) under an angle a satisfying

o = 7 —arctan (—l (1 + l)) + (=1)Hce<1} . arctan <—l (1 - l)) . (1.3.27)
K (c K Ce

Notice that the set of points (t1,%2)7 corresponding to (1.3.25) represents a cone.
That is why there exists a vector (t19,%20)7 € R? and a positive real number d =
d((c) such that a vector (t1,t2)T € R? satisfies condition (1.3.25) if and only if it
satisfies the condition

||(t17 t2)T - H(tlﬂyt20)T (t17 tz)T”2

<d’. (1.3.28)
||H(t107t20)T(t17t2)T”2
The latter condition is equivalent to
titag — tatip)?
(titao — t2 10)2 <&
(titio + tatao)
or
(q —t2/t1)? < d*(1 4 qta/t;)? (1.3.29)
where

q = ta20/t10-

Let us determine now a solution (q, d). Recall that the boundary of (1.3.25) can
be described by the equations (1.3.26). The temporary assumption that we have
in (1.3.25) and (1.3.29) equalities instead of inequalities leads us to the equation
systems

—d 1 1 d 1 1
¢-¢__ 2,  oare_ 21 (1.3.30)
dg+1 Kk k(c 1—dq Kk k(c
and i1 1 +d 11
q— q
- _ = —— 4+ —. 1.3.31
dg+1 k  kCe 7 1-—dg H+I€<C ( )
The solution of (1.3.30) is given by
1 1 1 1\°
d=Z= KCC‘{'Q__ + — /@Cc-{—g—— —|—4, (1.3.32)
2 k k(e 2 Kk k(e

q:|:d—1+%:|/|:1+§—i:|- (1.3.33)
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The solution of (1.3.31) is given by

1 e 1) 1 e 1Y’
d__E (HCC+;_I€_CC>+§\/<HCC+;_I€_<C> +4, (1.3.34)
1 1 d d
:[d_;__w]/[uﬂ—m]. (1.3.35)

Consequently, the representation (1.3.25) for the cone under consideration is equiv-
alent to the representation (1.3.29) if the quantities d and g are chosen there either
according to (1.3.32) and (1.3.33) or according to (1.3.34) and (1.3.35), respectively.
Hence, the following lemma has been proved.

LEMMA 1.3.6
The probability of correct classification into II, satisfies the representation
P (CCi(c) =

lI(t1,t2)" — Wty )T(tlatZ)T||2
® (t1,t2)" € R*: fatn <d*} ).
(07112)T’< é (1) ) <{ o ”H(tloizo)T(tl’t?)T”2

Here, vy is chosen as in (1.3.9), (ti0,t20)7 € R? is an arbitrary vector satisfying
ta0/t10 = q and d and q are to be chosen according to either (1.3.32) and (1.3.33)
or (1.8.34) and (1.3.35).

It follows from the definition of the doubly noncentral F—distribution with (1,1)
degrees of freedom and from the invariance of the two-dimensional standard Gaus-
sian measure with respect to orthogonal transformations that P;(CCi(c)) can be
expressed as a suitable value of the cumulative distribution function F} ; az,az- The
noncentrality parameters of this distribution are

A3 = [ e 00" = 20
10,t20) T \Hs V2 1o + 139
and 20 v3
A% = 0,07 T O = 05,
10 20

As a result, the following theorem has been proved.

THEOREM 1.3.7
If Hy ;3 is true, then

P (CCi(c) = F1,17A§,A§ (d2)

with vo,d,q as in Lemma 1.3.6 and

2 2
2 V3 2 Va

T

Notice that a corresponding result in Krause and Richter (1999) is different in form
and it is not obvious how to transform one of the results into the other in a direct
way.
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