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evaluating probabilities of correct classification new geometric representation formulae for
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aspects of evaluating both probabilities of correct classification and values of the doubly non-
central g-generalized F -distributions demonstrates advantageous computational properties of
the present new approach. This impression will be supported by comparison with literature.
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1 Introduction

Methods for deriving exact formulae for probabilities of correct classification are known
in several situations when elements of a third population are to be allocated to one of
two given populations. Exact results for the maximum likelihood rule in the normality
case with unknown expectations, equal variances and sample size one in the third
population can be found for one-dimensional measurements, e.g., in Hills (1966) and
Schaafsma and van Vark (1977). For multivariate measurements Dorvlo (1993) shows
that the distributions of the linear and quadratic discriminant functions in the cases
of known or unknown expectations but known covariance matrices are the same as
the distributions of certain linear combinations of independent noncentral chi-square
distributed random variables. Furthermore John (1960), John (1961) and Moran (1975)
showed for multivariate Gaussian measurements that probabilities of correct allocation
when using the linear discriminant function with unknown expectations but known and
equal covariance matrices can be expressed as values of the cumulative distribution
function of the doubly noncentral F -distribution.

A certain non classical linear model approach for deriving classification rules including
as a special case the maximum likelihood rule for one-dimensional measurements has
been developed in Krause and Richter (1994a, 1994b) for the case that the continuous
overall sample distribution is elliptically contoured with possibly unknown expectations
and variances and for arbitrary sample sizes in all three populations. The subsamples
corresponding to different populations as well as the measurements within a given
population are assumed to be uncorrelated. Note, however, that uncorrelatedness does
not imply here independence, unless for Gaussian joint distributions.
If one assumes, however, independent subsamples in the non Gaussian case then the
model changes considerably. Such a model has been studied in Richter (2002), but
from an asymptotic point of view.
The geometric idea in Krause and Richter (1994a,1994b) for deriving the classification
rule is a nearest neighbor one and is connected therefore with the statistical idea of
equal variances. But, because of the flexible choice of the cut-off point, the decision
rule can also be applied in the case of unequal variances. It is shown furthermore
how exact probabilities of correct classification can be derived by measuring suitably
defined sets in certain subspaces of the sample space with measures, the location- and
form parameters of which are carefully chosen. To this end representation formulae
for probabilities of correct classification are derived from a general geometric measure
representation formula for Gaussian and spherical distributions in Richter (1985) and
in Richter (1991,95), respectively.

This approach will be developed in Section 2 of the present paper to derive rather
explicit formulae which express precisely the dependence of probabilities of correct
classifications on the parameters of the underlying model for one-dimensional measure-
ments.

Interrelations between exact probabilities of correct classifications and suitably chosen
values of a doubly noncentral g-generalized F -distribution are considered in Section 3
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for multivariate measurements.

The main results of the present paper are based on the general approach from geometric
measure theory mentioned above. Basic tools of investigation from that area like
the intersection percentage function (i.p.f.) for certain Borel sets and a geometric
measure representation formula for spherical measures with density generating function
(d.g.f.) g as well as related representation formulae for noncentral g-generalized chi-
square, Student- and Fisher-distributions are presented and illustrated by examples
in the Appendix. The Appendix gives special insight into the similarities but also
into the differences between the measure theoretical necessities for classification and
other statistical decisions, the risks of which are described with chi-square, Student- or
Fisher-distributions.

Numerical properties of the new formulae for one-dimensional measurements are dis-
cussed in Section 4 and compared with results from the literature, including such one
concerning the doubly noncentral F -distribution as, e.g., Price (1964), Mudholkar et al.
(1976) and Chou et al. (1985). The numerical results for multivariate measurements
show that the probability of correct classification increases if the dimension of the
feature vector increases in the considered case of uncorrelated feature vectors.

Note that our decision rules work without restricting assumptions concerning the vari-
ances and expectations. The formulae for evaluating probabilities of correct classifi-
cation depend therefore strongly on several parameters which can either assumed to
be known or to be unknown and to be estimated in the latter case. The resulting
estimated probabilities of correct classifications are discussed in Section 5. Notice that
we do not use so called plug-in rules and are not looking for their error rates.

2 Explicit formulae for probabilities of correct clas-

sifications

Let an experimenter make n1, n2 and n3 one-dimensional measurements of individuals
from certain categories or populations Π1, Π2 and Π3, respectively. Populations Π1

and Π2 are assumed to be distinguishable in the sense that their expectations µ1 and
µ2 are different and with respect to population Π3 it is assumed that its distribution
coincides with either that of Π1 or that of Π2. One could imagine Π3 to be a copy of
either Π1 or Π2.

Let the overall sample vector Y(n) = (Y 1
n1

T
, Y 2

n2

T
, Y 3

n3

T
)
T
, where Y k

nk
= (Yk1, . . . , Yknk

)T ,
k = 1, 2, 3, satisfy the sample model equation

Y(n) =

 1n1 0n1 0n1

0n2 1n2 0n2

0n3 0n3 1n3

 µ1

µ2

µ3

+ E(n),

where (µ1, µ2)
T ∈ IR2\{(ν1, ν2)

T : ν1 = ν2}, µ3 ∈ {µ1, µ2}, n = n1 + n2 + n3, and where
the random error vector E(n) has a centered elliptically contoured distribution having a
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density and finite second order moments. Adapting the notation in Fang et al. (1990),
pp. 31 and 46, we have thus assumed that

E(n) ∼ ECd
n(µ, Σ

E(n)

i ; g)

with expectation vector µ = 0 ∈ IRn, block diagonal form matrix

Σ
E(n)

i =

 σ2
1In1

σ2
2In2

σ2
i In3

 , i =

{
1 if µ3 = µ1

2 if µ3 = µ2

,

and density function

pi

(
y(n); g

)
= C(n, g)

∣∣∣ΣE(n)

i

∣∣∣−1/2

g
(
(y(n) − IEiY(n))

T (Σ
E(n)

i )−1(y(n) − IEiY(n))
)

=
C(n, g)

σn1
1 σn2

2 σn3
i

g

( 3∑
i=1

σ−2
i

ni∑
j=1

(yij − µi)
2

)
, y(n) ∈ IRn

where C(n, g) = Γ(n/2)/(2πn/2
∫∞

0
rn−1g(r2)dr) denotes a normalizing constant and g

is a d.g.f. satisfying the condition

0 <

∫ ∞

0

rn−1g(r2) dr < ∞. (1)

Thereby,
1ni

= (1, . . . , 1)T ∈ IRni , 0ni
= (0, . . . , 0)T ∈ IRni

and Ini
denotes the ni × ni - unit matrix.

The question which the investigator wants to answer is which of the decisions

D1/3 : µ3 = µ1 or D2/3 : µ3 = µ2 (2)

would be more reasonable. Di/3 means to allocate or classify the individuals from
population Π3 having joint measurement vector Y 3

n3
to population Πi, i ∈ {1, 2}. Put

1+00 =

(
1n1

0n2+n3

)
, 10+0 =

 0n1

1n2

0n3

 , 100+ =

(
0n1+n2

1n3

)
,

1+0+ = 1+00 + 100+, 10++ = 10+0 + 100+

and define two linear subspaces of IRn which can be interpreted as allocation or classi-
fication spaces reflecting D1/3 and D2/3 in the sample space IRn, respectively:

M1/3 = L
(
1+0+, 10+0

)
, M2/3 = L

(
1+00, 10++

)
.

The union of these spaces can be considered as the model space M, i.e. the set of all
possible values of the expectation of Y(n):

M = range(IE1Y(n)) ∪ range(IE2Y(n)) = M1/3 ∪M2/3.
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Here, IEi means expectation if µ3 = µi holds true. Note that M is not a linear subspace
of IRn but is a subset of the three-dimensional linear space

M̃ = L
(
1+00, 10+0, 100+

)
which is called the extended model space. Recognize furthermore that M is not in-
cluded in any two-dimensional subspace of IRn and that

M1/3 ∩M2/3 = L(1n).

The sample vector Y(n) leaves the model space only because of random deviations.
We assume that the deviations from the two allocation spaces M1/3 and M2/3 have
equal size what means equal variances in the populations Π1 and Π2. We use therefore
the euclidean distance to describe what is meant with deviations from the allocation
spaces. Nevertheless, we can apply our decision rule to the case of unequal variances,
too. We shall study then the changes of the probabilities of correct classifications in
the sense of a robustness-sensitivity study.

The experimenter could intend to use one of the following three allocation or classifi-
cation rules.
Allocation rule d1 This rule leads to rejection of D1/3 for values of

‖Y(n) − ΠM1/3
Y(n)‖

‖Y(n) − ΠM2/3
Y(n)‖

=

∑
i=1,3

∑ni

k=1(Yik − Y
(1,3)

.. )2 +
∑n2

k=1(Y2k − Y
(2)

. )2∑
i=2,3

∑ni

k=1(Yik − Y
(2,3)

.. )2 +
∑n1

k=1(Y1k − Y
(1)

. )2

larger than or equal to a certain positive real number c where Π means orthogonal

projection, Y
(i)

. = 1
ni

∑ni

k=1 Yik and Y
(i,j)

.. = 1
n+nj

(
∑ni

k=1 Yik +
∑nj

k=1 Yjk), i 6= j . It has

been proved in Richter (1999) that d1 is the likelihood ratio rule for the case that
all parameters µ1, µ2, Σ1 and Σ2 are unknown but Σ1 = Σ2. Note that d1 is called
maximum likelihood rule if c = 1. In the case of a Gaussian error vector E(n) and
n3 = 1 the maximum likelihood rule has been studied in Das Gupta (1965).
Allocation rule d2 Classification rule d2 rejects D1/3 for values of

dist
(
ΠM̃Y(n), M1/3

)
dist

(
ΠM̃Y(n), M2/3

) =
n1(Y

(1)

. − Y
(1,3)

.. )2 + n3(Y
(3)

. − Y
(1,3)

.. )2

n2(Y
(2)

. − Y
(2,3)

.. )2 + n3(Y
(3)

. − Y
(2,3)

.. )2
(3)

larger than or equal to c. Here,

dist
(
z, Mi/3

)
= ‖z − ΠMi/3

z‖

means euclidean distance from the point z ∈ M̃ to the space Mi/3.

Note that d1 and d2 coincide if c = 1. Furthermore, d1 can be looked as a sample space
based classification rule while d2 can be viewed as an extended model space based rule.
Allocation rule d3 The decision space based rule d3 is defined as leading to a rejection
of D1/3 for values of

‖Π1−0+Y(n)‖
‖Π10−+Y(n)‖

=

√
n1(n2 + n3)

n2(n1 + n3)

|Y (3)

. − Y
(1)

. |
|Y (3)

. − Y
(2)

. |
(4)
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larger than or equal to c, where

10−+ = −10+0/n2 + 100+/n3, 1−0+ = −1+00/n1 + 100+/n3.

The vectors 10−+ and 1−0+ build a basis of the two-dimensional decision space

D = L(1−0+, 10−+).

Recognize that d3 coincides with decision rule d2 and that the least squares estimates

Y
(3)

. − Y
(i)

. for the effects µ3 − µi, i = 1, 2 satify the equations

Π1−0+Y(n) = 1−0+ n1n3

n1 + n3

(Y
(3)

. − Y
(1)

. ), Π10−+Y(n) = 10−+ n2n3

n2 + n3

(Y
(3)

. − Y
(2)

. ).

Note further that the corresponding equations

Π1−0+IEiY(n) = 1−0+ n1n3

n1 + n3

(µi − µ1), Π10−+IEiY(n) = 10−+ n2n3

n2 + n3

(µi − µ2)

motivate the names effect or decision or action space because they reflect possible
changes of the model parameters µi − µj, j ∈ {1, 2}, as well as deviations from the
situations µi−µj = 0 and they allow a comparison of the quantities µ3−µ1 and µ3−µ2

which builds the background for the allocation rule d3.

While the maximum likelihood rule occurs frequently in the literature, the equivalent
representation d3 suggests a new way for dealing with the risks of this decision. This
way has been started in Krause and Richter (1994a) for c = σ1/σ2 and will be developed
here for arbitrary positive cut-off point c. It leads, e.g., to the well interpretable
fact that the probability of correct classification considered here depends on the four
parameters

p1,1 =
n3

σ2
1

(µ1 − µ2)
2, p2,1 =

σ2
2

σ2
1

, p3,1 =
n3

n1

, p4,1 =
n3

n2

(5)

if µ3 = µ1 is true and

p1,2 =
n3

σ2
2

(µ1 − µ2)
2, p2,2 =

σ2
1

σ2
2

, p3,2 =
n3

n2

, p4,2 =
n3

n1

(6)

if µ3 = µ2 is true. In both cases, the probabilities of correct classification depend
additionally on the cut-off point c and a certain function g̃. Let

Pi(CCi)(c) = Pi(CCi)(c; g̃) = Pi(CCi)(c; p1,i, p2,i, p3,i, p4,i; g̃)

denote the probability of correct classification into the ith population, i.e. the proba-
bility of making decision Di/3 if Di/3 is actually correct. Concerning the function g̃ in
the definition of Pi(CCi)(c; g̃) recall that all two-dimensional marginal distributions of
a continous elliptically contoured distribution follow a ECd

2-distribution with a certain
d.g.f. The latter one may be well defined up to a norming constant. The function g̃
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from Pi(CCi)(c; g̃) is such a d.g.f. of a two-dimensional marginal distribution which
has a normalizing constant being equal to unity. We shall call therefore g̃ a normal-
ized d.g.f. or a density generator (d.g.). Finally, note that the parameters in (5) and
(6) are defined in such a way, that we can derive below unified explicit formulae for
Pi(CCi)(c), i = 1, 2.
We restrict our consideration for a moment to the Gaussian case g = gG, where
gG(r) = e−r/2, r > 0. It has been shown in Ittrich et al. (2000) that the corresponding
d.g. g̃ in this two-dimensional case is g̃ = g̃G with g̃G(r) = (2π)−1e−r/2, r > 0.

Theorem 1 If in the Gaussian case decision Di/3 would be correct then the probability
Pi(CCi)(c) of correct classification when using allocation rule d3 allows the represen-
tation

Pi(CCi)(c) = 1 +
( 1

π
arccos

m2
i − 1√
hi

− 1
)

e−‖qi‖2/2

− 1

π

∫ ‖qi‖

smin,i

re−r2/2 arccos
smin,i

r
dr +

(−1)Ii

π

∫ ‖qi‖

smax,i

re−r2/2 arccos
smax,i

r
dr (7)

for i ∈ {1, 2}, where

m1 =
1

c

√
1 + p4,1√

1 + p2,1p4,1

, m2 = c

√
1 + p4,2√

1 + p2,2p4,2

, hi = (1 + m2
i )

2 − (2miρi)
2,

‖qi‖ =
ai√

1− ρ2
i

, ai =

√
p1,i√

1 + p2,ip4,i

, ρi =
1√

1 + p3,i

√
1 + p2,ip4,i

,

smin,i =
ai√

m2
i + 2miρi + 1

, smax,i =
ai√

m2
i − 2miρi + 1

,

I1 =

{
1 if c2 < (1 + p3,1)(1 + p4,1)

0 otherwise
, I2 =

{
1 if 1/c2 < (1 + p3,2)(1 + p4,2)

0 otherwise
.

Remark 1 The quantities Ii, mi, smin,i, smax,i and hi occuring in Theorem 1 depend
explicitely on the cut-off point c in the decision rule d3 while the quantities ai, %i and
qi do not depend on c.
Remark 2 Despite the fact that Theorem 1 offers two formulae for the probabilities
of correct classification, for numerical computations in fact one has to implement only
one formula and can use then the general relation

P2(CC2)(c) = P1(CC1)
(1

c
;
p1,1

p2,1

,
1

p2,1

, p4,1, p3,1; g̃
)
.

Remark 3 One can read as usual P (CCi) := Pi(CCi)(c) as ”the probability of correct
classification if there holds µ3 = µi ”, i ∈ {1, 2}, although the symbols P (CCi) are
formally not quite correct.
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Remark 4 If n1 = n2, i.e. if the sample sizes are somehow balanced, then p3,i = p4,i.
Hence, the number of parameters which influence the probabilities of correct classifi-
cations is reduced to three.

Before proving Theorem 1 let us continue now with the elliptically contoured case, i.e.
with arbitrary d.g.f. g satisfying assumption (1). Recall that if, e.g., g = gP with
gP (r) = (1 + r/m)−M , r > 0, m > 0, M > 1/2 is the Pearson type VII d.g.f. then the
corresponding d.g. g̃ = g̃P is

g̃P (r) =
Γ(M)

πmΓ(M − 1/2)

(
1 +

r

m

)−M

, r > 0. (8)

Theorem 2 If decision Di/3 would be correct then the probability of correct classification
into the population Πi allows the integral representation

Pi(CCi)(c) =

∫ ∞

0

r g̃(r2)F2(CC∗∗
i , r) dr/

∫ ∞

0

r g̃(r2) dr, i = 1, 2 (9)

where

F2(CC∗∗
i , r) =


1 if r ≤ smin,i,

1− 1
π

arccos
smin,i

r
if smin,i < r ≤ smax,i,

1− 1
π

arccos
smin,i

r
+ 1

π
(−1)Ii arccos

smax,i

r
if smax,i < r ≤ ‖qi‖,

1
π

arccos
m2

i−1√
hi

if ‖qi‖ < r,

(10)
with mi, %i, hi, ai, ‖qi‖, smin,i, smax,i, Ii being the same as in Theorem 1 and

g̃(u) =
πn/2−1

Γ(n/2− 1)

∫ ∞

u

(y − u)n/2−2C(n, g)g(y) dy. (11)

The following consideration will be based on a geometric measure representation, de-
veloped in Richter(1985, 1991, 1995a) and sketched in the Appendix. An important
quantity from this representation is the intersection percentage function.

Definition 1 Denote by ω the uniform probability distribution on the unit sphere
Sn(1) = {x ∈ IRn : ‖x‖ = 1} with respect to the euclidean norm in IRn. Then

Fn(A, r) = ω
(
r−1A ∩ Sn(1)

)
, r > 0 (12)

is called intersection percentage function (i.p.f.) for the Borel set A.

Proof of Theorem 1 The n-dimensional problem of evaluating probabilities of correct
classification has been reduced in Krause and Richter (1994a), formula (16), to a two-
dimensional problem concerning a certain Gaussian random vector Z(2) and certain
two-dimensional Borel sets CC∗

i such that: Pi(CCi) = PZ(2)(CC∗
i ), i = 1, 2. The

process of transforming the two-dimensional random vector Z(2) into a standardized
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Gaussian vector was described, too. Simultaneous transformations of the areas CC∗
i ,

i = 1, 2, lead to well defined ”double” cones, i.e. two-sided cones in the plane which
were denoted by CC∗∗

i . Note that the cones

CC∗∗
1 =

{(w1

w2

)
∈ IR2 :

n2 + n3

n2n3

(1
2

√
2(1 + %1)w1 +

1

2

√
2(1− %1)w2

)2
(13)

<
( 1

n2

+
σ2

1

σ2
2n3

)(1
2

√
2(1 + %1)w1 −

1

2

√
2(1− %1)w2 +

µ1 − µ2√
σ2
2

n2
+

σ2
1

n3

)2}
,

CC∗∗
2 =

{(w1

w2

)
∈ IR2 :

( 1

n1

+
σ2

2

σ2
1n3

)(1
2

√
2(1 + %2)w1 +

1

2

√
2(1− %2)w2 +

µ2 − µ1√
σ2
1

n1
+

σ2
2

n3

)2
>

n1 + n3

n1n3

(1
2

√
2(1 + %2)w1 −

1

2

√
2(1− %2)w2

)2}
(14)

depend on c through the ratio σ1/σ2. The resulting formulae
Pi(CCi) =

∫∞
0

r exp{−r2/2}F2(CC∗∗
i , r) dr and

F2(CC∗∗
i , r) =



1 if r ≤ smin,i

1− 1
π

arccos
smin,i

r
if smin,i < r ≤ smax,i

1− 1
π

arccos
smin,i

r
− 1

π
arccos

smax,i

r
if (smax,i < r ≤ ‖qi‖)∧

((l1,i, qi)(l2,i, qi) > 0)

1− 1
π

arccos
smin,i

r
+ 1

π
arccos

smax,i

r
if (smax,i < r ≤ ‖qi‖)∧

((l1,i, qi)(l2,i, qi) ≤ 0)
1
π

arccos
(l1,il2,i)

‖l1,i‖‖l2,i‖ if ‖qi‖ < r

(15)

from the above mentioned paper allow more explicit descriptions of the probabilities of
correct classification which will be deduced now. While doing this we drop from now
on the assumption c = σ1/σ2 from the former paper. Here, l1,i and l2,i are directional
vectors of the boundary lines gj,i of the double cone CC∗∗

i and the endpoint of the local
vector qi coincides with the vertex of the double cone:

gj,i :

(
w1

w2

)
= tjlj,i + qi, tj ∈ IR, j ∈ {1, 2}, (16)

with

l1,1 =

(
1+m1√
1+%1

1−m1√
1−%1

)
, l2,1 =

(
m1−1√
1+%1

− m1+1√
1−%1

)
, q1 =

µ1 − µ2√
σ2

2/n2 + σ2
1/n3

1√
2

(
− 1√

1+%1
1√

1−%1

)
, (17)

l1,2 =

(
m2+1√
1+%2

− m2−1√
1−%2

)
, l2,2 =

(
m2−1√
1+%2

− m2+1√
1−%2

)
, q2 =

µ2 − µ1√
σ2

1/n1 + σ2
2/n3

1√
2

(
− 1√

1+%2
1√

1−%2

)
,

(18)

m1 =
1

c

√
n2 + n3√

n2 +
σ2
2

σ2
1
n3

, m2 =
c
√

n1 + n3√
n1 +

σ2
1

σ2
2
n3

, %i =
σ2

i

√
n1n2√

(n3σ2
1 + n1σ2

i )(n3σ2
2 + n2σ2

i )
, i = 1, 2.
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The distances from the origin to the lines gj,i are

dist(0, g1,i) =
ai√

m2
i − 2mi%i + 1

= smin,i, dist(0, g2,i) =
ai√

m2
i + 2mi%i + 1

= smax,i.

Finally note that ‖qi‖ = ai/
√

1− %2
i and and that the condition (l1,i, qi) (l2,i, qi) > 0 is

equivalent to c2 <
(
1 + n3

n1

)(
1 + n3

n2

)
and 1

c2
<
(
1 + n3

n1

)(
1 + n3

n2

)
if i = 1 and i = 2,

respectively. The proof is finished by introducing the parameters from (5) and (6). �

Proof of Theorem 2 The matrix

BT :=

(
− 1

n1
· · · − 1

n1
0 · · · 0 1

n3
· · · 1

n3

0 · · · 0 − 1
n2

· · · − 1
n2

1
n3

· · · 1
n3

)
transforms the overall sample vector Y(n) into the two dimensional vector Z(2) = BT Y(n).

Our assumption Y(n) ∼ ECd
n(IEiY(n), Σ

Y(n)

i , g) corresponds to the assumption

Y(n) ∼ ECc
n(IEiY(n), Σ

Y(n)

i , φ) (19)

for some characteristic generating function φ with the property φ(tT t) = ϕX(n)
(t), t ∈

IRn, where ϕX(n)
denotes the characteristic function of X(n) := (Σ

Y(n)

i )−1/2(Y(n)−IEiY(n)).
Using Theorem 2.16 in Fang et al. (1990) one gets

Z(2) ∼ ECc
2(νi, Γi, φ) (20)

with the same characteristic generating function φ as above and with νi and Γi given
in Krause and Richter (1994a). Now we want to determine the d.g.f.of the reduced
statistic Z(2). Since a standardization doesn’t change neither the characteristic gen-
erating function nor the d.g.f., X(n) follows the n-dimensional spherically symmetric
distribution with characteristic and density generating functions φ and g, respectively.
Let us consider now the two-dimensional random vector

X(1) = B̃T X(n) =

(
1 0 0T

n−2

0 1 0T
n−2

)
X(n).

Due to Theorems 2.16 and 2.10 in Fang et al. (1990), its probability law is the two-
dimensional spherically symmetric marginal law with characteristic and density gen-
erating functions φ and gn,2, respectively, where according to formula (2.23) in Fang
et al. (1990)

gn,2(u) =
πn/2−1

Γ(n/2− 1)

∫ ∞

u

(y − u)n/2−2C(n, g)g(y) dy.

Note that gn,2 has the normalization property
∫
IR2 gn,2(‖u‖2)du = 1. As a consequence,

Y (1) = νi+Γ
1/2
i X(1) satisfies both Y (1) ∼ ECc

2(νi, Γi, φ) and Y (1) ∼ ECd
2 (νi, Γi, gn,2).

From this and (20) it follows

Z(2) ∼ ECd
2(νi, Γi, gn,2).

11



As in the proof of Theorem 1, it turns out that

P (CCi) = PZ(2)(CC∗
i ) = ECd

2(νi, Γi, gn,2)(CC∗
i ).

Since W(2) := Γ
−1/2
i (Z(2) − νi) ∼ ECd

2(02, I2, gn,2) it follows

P (CCi) = ECd
2(02, I2, gn,2)(CC∗∗

i )

with the intersection-percentage function F2(CC∗∗
i , r) being the same as in the Gaus-

sian case. Now, we get the assertion of Theorem 2 from formula (32) below. �

Example 1 The normalizing constant of the n-dimensional Pearson type VII distribu-
tion is C(n, gP ) = (πm)−n/2Γ(M)/Γ(M − n/2). One can explicitely compute certain
parts from the representation formula (9) and gets:

Pi(CCi)(c) = 1 +
( 1

π
arccos

m2
i − 1√
hi

− 1
)(

1 +
‖qi‖2

m

)−M+n
2

−2M − n

πm

∫ ‖qi‖

smin,i

arccos
smin,i

r
r
(
1 +

r2

m

)−M+n
2
−1

dr (21)

+
(−1)Ii(2M − n)

πm

∫ ‖qi‖

smax,i

arccos
smax,i

r
r
(
1 +

r2

m

)−M+n
2
−1

dr.

3 Classification probabilities and doubly non cen-

tral generalized Fisher distributions

Let us turn now to the case p ≥ 1 of multivariate measurements. Let the sample vector

Y(np) =
(
Y 1T

(n1p), Y
2T
(n2p), Y

3T
(n3p)

)T
where

Y i
(nip) =

(
Y T

i1 , . . . , Y T
ini

)T
, Yij = (Y1ij, . . . , Ypij)

T , j = 1, . . . , ni, i = 1, 2, 3,

satisfay the sample model equation

Y(np) =

p∑
l=1

3∑
i=1

1liµli + E(np).

It is essentially based upon the orthogonal vectors 1li ∈ IRnp defined as

111 =
(
1, 0T

p−1, . . . , 1, 0
T
p−1, 0

T
(n2+n3)p

)T
, . . . , 1p1 =

(
0T

p−1, 1, . . . , 0
T
p−1, 1, 0

T
(n2+n3)p

)T
,

...

113 =
(
0T

(n1+n2)p, 1, 0
T
p−1, . . . , 1, 0

T
p−1

)T
, . . . , 1p3 =

(
0T

(n1+n2)p, 0
T
p−1, 1, . . . , 0

T
p−1, 1

)T
.

12



The expectation vectors in the three populations are

µi = (µ1i, . . . , µpi)
T , i = 1, 2, 3, and µ3 ∈ {µ1, µ2}

and the overall random error vector E(np) is assumed to be distributed according to an
elliptically contoured distribution Φ

0np,Σ
E(np)
i ;g

with

Σ
E(np)

i =

In1 ⊗ Σ1 0pn1,pn2 0pn1,pn3

0pn2,pn1 In2 ⊗ Σ2 0pn2,pn3

0pn3,pn1 0pn3,pn2 In3 ⊗ Σi

 , i ∈ {1, 2}.

Here, 0i,j and ”⊗” denote the i × j-zero matrix and the direct product, respectively.
Put

1−0+
l = −1l1/n1 + 1l3/n3, l = 1, . . . , p.

Because of the projection property

Π1−0+
l

IEY(np) = 1−0+
l

n1n3

n1 + n3

(µil − µ1l), l = 1, . . . , p

the vectors 1−0+
l are suitable for describing the directions in the sample space IRnp

into which the quantities µl3 − µl1 deviate from the zero vector if one of the partial
assumptions µl3 = µl1, l = 1, . . . , p would not be correct. The linear space D−0+ having
the orthogonal basis {1−0+

1 , . . . , 1−0+
p } can therefore be considered as the action space

for the vector µ3 − µ1 or as the decision space corresponding to D1/3. The action
space D0−+ for the vector µ3 − µ2 which can also be interpreted as the decision space
corresponding to D2/3 is spanned up by the orthogonal vectors

10−+
l = −1l2/n2 + 1l3/n3, l = 1, . . . , p.

Define the 2p-dimensional decision space by

D = L
(
1−0+

1 , . . . , 1−0+
p , 10−+

1 , . . . , 10−+
p

)
= L

(
D−0+ ∪ D0−+

)
. (22)

Let an allocation rule d(p) | IRnp −→ {1, 2} being defined as leading to decision D2/3,
i.e. as taking the value 2 if∥∥ΠD−0+Y(np)

∥∥ /
∥∥ΠD0−+Y(np)

∥∥ ≥ c (23)

for a suitably chosen cut-off point c. Note that if p = 1 then (23) is the same as (4),
hence d(1) coincides with the above considered allocation rule d3. Each of the sets{

y ∈ IRnp :

∥∥ΠD−0+y(np)

∥∥∥∥ΠD0−+y(np)

∥∥ < c
}

,
{

y ∈ IRnp :

∥∥ΠD−0+y(np)

∥∥∥∥ΠD0−+y(np)

∥∥ ≥ c
}

is a cone in IRnp with vertex in the origin. In the following it will be shown, that
probabilities of correct classification can be equivalently determined by measuring cones
in the 2p-dimensional Euclidean space with suitably chosen non centered elliptically

13



contoured measures instead of measuring cones in the np-dimensional space. The
decision is actually made in the 2p-dimensional decision space D, defined in (22). This
circumstance is reflected by the fact that the statistic from the allocation rule can be
reformulated in a data reduced form as∥∥ΠD−0+Y(np)

∥∥2∥∥ΠD0−+Y(np)

∥∥2 =

∥∥∥∑p
l=1 1−0+

l
n1n3

n1+n3
(Yl3• − Yl1•)

∥∥∥2

∥∥∥∑p
l=1 10−+

l
n2n3

n2+n3
(Yl3• − Yl2•)

∥∥∥2 =
n1

n1+n3

∥∥(Y3• − Y1•)
∥∥2

n2

n2+n3

∥∥(Y3• − Y2•)
∥∥2 (24)

where

Yi• :=
(
Y1i•, . . . Ypi•

)T
, Yli• =

1

ni

ni∑
j=1

Ylij, i = 1, 2, 3, l = 1, . . . , p.

The reduced statistic

Z(2p) :=

(
Y3• − Y1•
Y3• − Y2•

)
(25)

satisfies the equation Z(2p) = BT Y(np) with

BT :=

(
− 1

n1
Ip · · · − 1

n1
Ip 0p,pn2

1
n3

Ip · · · 1
n3

Ip

0p,pn1 − 1
n2

Ip · · · − 1
n2

Ip
1
n3

Ip · · · 1
n3

Ip

)
∈ IR2p×np.

Due to Theorems 2.16 and 2.10 in Fang et al. (1990),

Z(2p) ∼d ECd
2p

(
BT (1l1µl1 + 1l2µl2 + 1l3µli), BT Σ

E(np)

i B; gnp,2p

)
, (26)

where according to formula (2.23) of Fang et al. (1990), the d.g.f. is given by

gnp,2p(u) =
πp(n/2−1)

Γ(p(n/2− 1))

∫ ∞

u

(y − u)p(n/2−1)−1C(np, g)g(y) dy. (27)

It follows from (24) and (25) that the areas which are to be measured with the 2p-
dimensional measures from (26) are

CC∗
1 =

{
z ∈ IR2p :

n1

n1 + n3

∥∥∥(z1, . . . , zp)
T
∥∥∥2

< c2 n2

n2 + n3

∥∥∥(zp+1, . . . , z2p)
T
∥∥∥2}

and CC∗
2 = IR2p \ CC∗

1 for i = 1 and 2, respectively. These areas are cones in the
2p-dimensional Euclidean space and can be rewritten in terms of quadratic forms as
CC∗

i =
{
z ∈ IR2p : zT A∗

i z < 0
}

with indefinite form matrices

A∗
i =

(
(−1)i+1 n1

n1+n3
Ip 0p,p

0p,p (−1)ic2 n2

n2+n3
Ip

)
, i = 1, 2.

Lemma 1 The probability of correct classification if Di/3would be correct and when
using the allocation rule d(p) allows in the case Σ1 = σ2

1Ip, Σ2 = σ2
2Ip the representation:

Pi (CCi) (c) = Φ02p,I2p;gnp,2p(CC∗∗
i (c)), (28)

14



i = 1, 2, where the sets

CC∗∗
i (c) = CC∗∗

i =
{
w(2p) ∈ IR2p : (w(2p) + ν∗∗i )T Λi (w(2p) + ν∗∗i ) < 0

}
(29)

are defined with the help of the form matrices

Λi =

(
(1− 1

m2
i

+
√

hi

m2
i
) Ip 0p,p

0p,p (1− 1
m2

i
−

√
hi

m2
i
) Ip

)

and the shift vectors ν∗∗i =
(

n3

2σ2
i Ni(1+p2,ip4,i)

)1/2

×

((−1)i 1√
1+%i

(
√

hi + m2
i %i − %i) + (−1)i+1

√
1 + %i(1 + m2

i )
)

(µ2 − µ1)(
−
√

1− %i(1 + m2
i ) + (−

√
hi −m2

i %i + %i)
1√

1−%i

)
(µ2 − µ1)

 .

Here, Ni = (1 − %2
i )(1 + m2

i )
2 + (

√
hi + m2

i %i − %i)
2, the quantities mi, %i, hi are the

same as in Theorem 1 and the parameters p2,i, p3,i and p4,i are defined in (5) and (6).

Let us recall that the quantities mi and hi depend on the cut-off point c.

Proof Starting from (26) we have Pi(CCi) = Φν∗i ,Γ∗i ;gnp,2p(CC∗
i ) with

ν∗i = BT (1l1µl1 + 1l2µl2 + 1l3µli) =

(
µi − µ1

µi − µ2

)
and because of Σ1 = σ2

1Ip, Σ2 = σ2
2Ip,

Γ∗i = BT Σ
E(np)

i B =

(
(

σ2
1

n1
+

σ2
i

n3
)Ip

σ2
i

n3
Ip

σ2
i

n3
Ip (

σ2
2

n2
+

σ2
i

n3
)Ip

)
.

In the first step of the proof the form matrix of the reduced statistic Z(2p) will be
transformed into the unit matrix. The matrix Γ∗i has only two different eigenvalues. Let
Oi be the orthogonal matrix which consists of the normalized eigenvectors of Γ∗i . Put

Mi := OiD
1/2
i where D

1/2
i is a diagonal matrix consisting of the inverses of the square

roots of the eigenvalues of Γ∗i . We get then Γ∗i = MiM
T
i and Mi

−1Γi(M
T
i )

−1
= I2p with

Mi
−1 =

1√
2

 1√
1+%i

√
n1n3

n3σ2
1+n1σ2

i
Ip

1√
1+%i

√
n2n3

n3σ2
2+n2σ2

i
Ip

1√
1−%i

√
n1n3

n3σ2
1+n1σ2

i
Ip − 1√

1−%i

√
n2n3

n3σ2
2+n2σ2

i
Ip

 .

Consequently,

Pi(CCi) = Φνi,Γ∗i ;gnp,2p

(
CC∗

i

)
= ΦM−1

i ν∗i ,I(2p);gnp,2p

(
CCT1

i

)
with CCT1

i =
{
u ∈ IR2p : uT AT1

i u < 0
}

, and where

AT1
i :=

(
(1 + %i)(1− 1

m2
i
) Ip (−1)i+1

√
1− %i(1 + 1

m2
i
) Ip

(−1)i+1
√

1− %i(1 + 1
m2

i
) Ip (1− %i)(1− 1

m2
i
) Ip

)
.
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For proving this note that MT
1 A1M1 = 1

2

σ2
1

n3
AT1

1 , MT
2 A2M2 = 1

2

σ2
2

n3
c2AT1

2 and therefore

uT MT
i AiMi u < 0 iff uT AT1

i u < 0. In the second step of the proof the matrix AT1
i of

the quadratic form will be transformed into a diagonal matrix. This will be done with
an orthogonal matrix Pi the columns of which are the eigenvectors of AT1

i :

Pi :=
1√
Ni

( (√
hi + m2

i %i − %i

)
Ip (−1)i+1

√
1− %i (1 + m2

i ) Ip

(−1)i+1
√

1− %i (1 + m2
i ) Ip

(
−
√

hi −m2
i %i + %i

)
Ip

)
with Ni = (1− %2

i )(1 + m2
i )

2 + (
√

hi + m2
i %i − %i)

2. Because of

Λi := P T
i AT1

i Pi =

(
(1− 1

m2
i

+
√

hi

m2
i
) Ip 0p,p

0p,p (1− 1
m2

i
−

√
hi

m2
i
) Ip

)
and PiI2pP

T
i = I2p.

it follows
ΦM−1

i ν∗i ,I2p;gnp,2p

(
CCTi

i

)
= Φν∗∗i ,I2p;gnp,2p

(
CCT2

i

)
with CCT2

i =
{
v ∈ IR2p : vT Λi v < 0

}
and ν∗∗i := Pi M

−1
i ν∗i =

√
n3√

2σi

√
1+p2,ip4,i

1√
Ni

×

[(−1)i 1√
1+%i

(√
hi + m2

i %i − %i)
)

+ (−1)i+1
√

1 + %i(1 + m2
i )
]
(µ2 − µ1)[

−
√

1− %i(1 + m2
i ) + 1√

1−%i

(
−
√

hi −m2
i %i + %i)

)]
(µ2 − µ1)

 .

A third transformation with respect to the expectation vector results in

Pi(CCi) = Φν∗∗i ,I2p;gnp,2p

(
CCT2

i

)
= Φ02p,I2p;gnp,2p

(
CC∗∗

i (c)
)
.

�

Theorem 3 The probability of correct classification satisfies the representation

Pi(CCi)(c) = Fp,p,δ1,i,δ2,i;g(ti), i ∈ {1, 2}
with

ti =
1−m2

i +
√

hi

−1 + m2
i +

√
hi

,

δ2
1,i =

a2
i

2Ni

(
1√

1 + %i

(
√

hi + m2
i %i − %i)−

√
1 + %i(1 + m2

i )

)2

,

δ2
2,i =

a2
i

2Ni

(
1√

1− %i

(
√

hi + m2
i %i − %i) +

√
1− %i (1 + m2

i )

)2

,

mi, %i, hi and ai as in Theorem 1, Ni from Lemma 1 but the Parameters p1,i being
defined now more general as

p1,i =
n3

σ2
i

p∑
l=1

(µ1l − µ2l)
2, i ∈ {1, 2}.

Note that the parameters p1,i coincide with those from (5) and (6) if p = 1.
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Proof Let M := L(e1, . . . , ep) and M⊥ := L(ep+1, . . . , e2p) be orthogonal subspaces of

IR2p where ej is the j’th unit vector of IR2p, j = 1, . . . , 2p. Let further ν
(1)
i := ΠMν∗∗i

and ν
(2)
i := ΠM⊥ν∗∗i , i = 1, 2. Then

CC∗∗
i (c) = CC∗∗

i =
{
w(2p) ∈ IR2p :(

1− 1

m2
i

+

√
hi

m2
i

)
‖w(1) + ν

(1)
i ‖2 +

(
1− 1

m2
i

−
√

hi

m2
i

)
‖w(2) + ν

(2)
i ‖2 < 0

}
.

One can show that 1− 1
m2

i
+

√
hi

m2
i

> 0, consequently

CC∗∗
i =

{
w(2p) ∈ IR2p :

‖w(1) + ν
(1)
i ‖2

‖w(2) + ν
(2)
i ‖2

<

√
hi −m2

i + 1√
hi + m2

i − 1

}
.

From this representation of CC∗∗
i it follows that the sets CC∗∗

i from (29) belong to
the class of Borel sets Ap,p,δ1,iδ2,i,ti defined in the Appendix. Notice that the functions
ti | IR+ → IR+ arising there are chosen here as the constants ti, i.e. ti(r) = ti, r > 0, i =
1, 2. With the notion Cn,n−m,δ1,δ2(x) for a certain cone as in the Appendix it follows

CC∗∗
i ∩ S2p(r) = Cp,p,δ1,i,δ2,i

(ti(r)) ∩ S2p(r),

where

δ2
1,i = ‖ν(1)‖2 =

n3

2σ2
i Ni(1 + p2,ip4,i)

×
(

1√
1 + %i

(
√

hi + m2
i %i − %i)−

√
1 + %i(1 + m2

i )

)2 p∑
l=1

(µl2 − µl1)
2,

δ2
2,i = ‖ν(2)‖2 =

n3

2σ2
i Ni(1 + p2,ip4,i)

×
(
−
√

1− %i(1 + m2
i ) +

1√
1− %i

(−
√

hi −m2
i %i + %i)

)2 p∑
l=1

(µl2 − µl1)
2.

Hence, CC∗∗
i ∈ Ap,p,δ1,i,δ2,i,ti . Recall that the functions ti(r) actually do not depend on

r. Due to Remark 5 in the Appendix, the probabilities of correct classification can be
written in terms of the c.d.f. of the doubly noncentral g-generalized F -distribution:

Pi(CCi) = Fp,p,δ1,i,δ2,i;g(ti),

with δ1,i, δ2,i, ti as given above. �

4 Numerical results

The representation formulae (7) and (9) with (15) are the basis for efficient procedures
to evaluate the probabilities of correct classifications in various situations. Single in-
tegrals are to be calculated. This was done by numerical integration according to a
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combination of Simpson’s rule and the extended trapezoidal rule, see, e.g., in Press
et al. (1989), implemented as a Turbo-Pascal program. In this section, several ta-
bles of probabilities of correct classification for various parameter configurations are
presented.

First of all, Table 1 will be given for a comparison of our one-dimensional results with
related results from the literature. We apply formula (7) for probabilities of correct
classification into the first population in the special case of c = 1, equal variances
σ2

1 = σ2
2 =: σ2 and only one individual in the third population, n3 = 1, i.e.

p1,1 =
(µ1 − µ2)

2

σ2
, p2,1 = 1, p3,1 =

1

n1

, p4,1 =
1

n2

.

Table 1 Comparison with literature: Gaussian sample distributions.

∆ n1 n2 Theorem 1 Sch./Vark Dejew Mem./Oka.

1 3 3 0.638943 0.638943 0.678324 0.623803
0.1 5 5 0.502388 0.502388 0.519012 1.083490
0.3 5 5 0.520740 0.520740 0.556864 0.709856
0.5 5 5 0.553771 0.553771 0.594206 0.656126
1 5 5 0.662364 0.662364 0.683266 0.665046
3 5 5 0.923668 0.923668 0.929415 0.874694
5 5 5 0.991429 0.991429 1.102311 1.072366
10 5 5 0.999999 0.999999 -0.577656 1.000932
1 5 10 0.677435 0.677435 0.689032 0.678786
1 10 5 0.668284 0.668284 0.681573 0.672178
0.1 10 10 0.503443 0.503443 0.513459 0.662283
1 10 10 0.682462 0.682462 0.687254 0.682865
3 10 10 0.928383 0.928383 0.934892 0.883520
1 20 20 0.689003 0.689003 0.689348 0.688235
1 50 50 0.690588 0.690588 0.690638 0.690420
0.1 100 100 0.510352 0.510352 0.519889 0.521717
0.3 100 100 0.557455 0.557455 0.559472 0.560179
0.5 100 100 0.598425 0.598425 0.598471 0.598861
1 100 100 0.691024 0.691024 0.691074 0.690982
5 100 100 0.993680 0.993680 1.142290 0.988134
10 100 100 1.000000 1.000000 -0.029009 0.999991

The exact formula of Schaafsma and van Vark (1977) is based on assumptions of
normality, equality of the variances and sample size one in the third population and is
given in terms of the Mahalanobis distance ∆ = σ−1|µ1 − µ2| and the sample sizes n1

and n2. The values in column 5 coming from application of the formula of Schaafsma
and van Vark (1977) coincide with our values in column 4 in all cases. Note that there
exist approximation formulae for the special case under consideration here but with
the extension to higher dimensional measurements.

In column 6, we tabled values derived from Dejew’s approximation formulae including
second order terms given in Ahrens and Läuter (1981). Values derived from Memon
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and Okamoto’s approximation formulae as given in Siotani (1982) are tabled in column
7. These approximation formulae are in some situations not very precisely, especially
in cases of probabilities near an half and near one, respectively.

On the basis of Theorem 1, we are in a position to compute probabilities of correct
classification in more general cases of unequal variances and more than one individual
in the third population, see Tables 2 and 3.

Table 2 Unequal variances and repeated measurements, the case µ3 = µ1.

c n1 n2 n3 µ1 µ2 σ2
1 σ2

2 p1,1 p2,1 p3,1 p4,1 P1(CC1)(c)

1 4 4 4 0.5 0 1 1 1 1 1 1 0.582475
1
2

4 4 4 0.5 0 1 1 1 1 1 1 0.345909
2 4 4 4 0.5 0 1 1 1 1 1 1 0.774654
1 4 4 4 0.25 0 1 1 0.25 1 1 1 0.522347
1 4 4 4 1 0 1 1 4 1 1 1 0.746820
1 4 4 4 1 0 4 2 1 0.5 1 1 0.561523
1 4 4 4 0.5 0 1 2 1 2 1 1 0.620593

Table 3 The case µ3 = µ2: P2(CC2)(c; p1,2, p2,2, p3,2, p4,2; g
G)

= P1(CC1)(1/c; p1,1/p2,1, 1/p2,1, p4,1, p3,1; g
G).

c n1 n2 n3 µ1 µ2 σ2
1 σ2

2 p1,2 p2,2 p3,2 p4,2 P2(CC2)(c)

1 4 4 4 0.5 0 1 1 1 1 1 1 0.582475
1
2

4 4 4 0.5 0 1 1 1 1 1 1 0.774654
2 4 4 4 0.5 0 1 1 1 1 1 1 0.345909
1 4 4 4 0.25 0 1 1 0.25 1 1 1 0.522347
1 4 4 4 1 0 1 1 4 1 1 1 0.746820
1 4 4 4 1 0 4 2 2 2 1 1 0.664547
1 4 4 4 0.5 0 1 2 1

2
0.5 1 1 0.507431

Using Theorem 2 we can also exactly evaluate probabilities of correct classification for
elliptically contoured error variables. In Table 4 such values are given for a Pearson
Typ VII distribution with parameters N and m. This gn,2-marginal case is described in
Example 1 and is a distribution with heavier tails then that of the normal distribution.
With N = (m + n)/2 one gets the multivariate t-distribution which is considered here.
Note that the probabilities of correct classification depend on c, p1,i, . . . , p4,i, m, N and
via gn,2 on n.
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Table 4 Multivariate-t sample distribution.

c p1,i p2,i p3,i p4,i m N P1

(
CC1)(c; g

PVII
12,2

)
P2(CC2)

(
c; gPVII

12,2

)
1 1 1 1 1 1 6.5 0.570024 0.570024
1 1 1 1 1 2 7 0.575506 0.575506
1
2

1 1 1 1 1 6.5 0.337745 0.767720
1
2

1 1 1 1 2 7 0.341436 0.770805
2 1 1 1 1 1 6.5 0.767720 0.337745
2 1 1 1 1 2 7 0.770805 0.341436
1 1 2 1 1 1 6.5 0.615027 0.615027
1 1 2 1 1 2 7 0.617577 0.617577

The importance of the case n3 > 1 was inter alia mentioned in Schaafsma and van Vark
(1977) and in McLachlan (1992). In actual practice the researcher will usually have
to classify more individuals, for instance if one wants to assign all the skeletal remains
found in a particular specified burial site to one of two prehistoric populations.

Under the assumptions under which Table 5 has been generated, it can be seen that
the increase of the number of individuals in the third population yields a greater effect
onto the probabilities of correct classification into the first population than the increase
of the number of individuals in the first population. The effect of the increase of n2,
however, is again more significant.

Table 5 Most effective sample size increase when µ3 = µ1, c = 1, µ1 = 1, µ2 = 0,
σ2

1 = σ2
2 = 1.

n2 = 3, n3 = 3
n1 P1(CC1)(1)

1 0.695219
2 0.699711
3 0.702820
4 0.705093
5 0.706825

10 0.711578
50 0.717412

100 0.718330

n1 = 3, n3 = 3
n2 P1(CC1)(1)

1 0.611121
2 0.668726
3 0.702820
4 0.724939
5 0.740276

10 0.776183
50 0.809411

100 0.813715

n1 = 3, n2 = 3
n3 P1(CC1)(1)

1 0.638943
2 0.679132
3 0.702820
4 0.718766
5 0.730307

10 0.759937
50 0.793355

100 0.798400

The free choice of c (c ∈ IR+) in the decision function allows the statistician in practice
to determine c on such a way, that certain demands on the probabilities are fulfilled.

In Table 6 we determined c in such a way that we got equal probabilities of correct
classification

P1(CC1)(c) = P2(CC2)(c) =: P (CC)(c).

To this end we used the bisection method (Press et al. (1989)) as a root finding algo-
rithm.
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Table 6 Risk equalizing cut-off points.

n3(µ1−µ2)2

σ2
1

σ2
2

σ2
1

n3

n1

n3

n2
c P (CC)(c)

0.25 1 0.5 0.5 1 0.533877
1 1 0.5 0.5 1 0.617859
1 1 1 1 1 0.582475
4 1 1 1 1 0.746820
1 2 0.5 0.5 0.883739 0.593300
1 0.5 0.5 0.5 1.223383 0.578692
1 1 0.5 1 1.036860 0.598719
1 1 1 0.5 0.964450 0.598719

In Table 7 we will consider additionally costs of misclassification. Let C(i|j) > 0 be
the costs of misclassification which arise, if one classifies an object from Πj as coming
from Πi. The statistician could search for such a cut-off point c that

C(2|1)

C(1|2)
=

P2(MC2)(c)

P1(MC1)(c)

holds for the probabilities of misclassification Pi(MCi)(c) = 1− Pi(CCi)(c), i = 1, 2.

Table 7 Cost driven cut-off points.

n3(µ1−µ2)2

σ2
1

σ2
2

σ2
1

n3

n1

n3

n2

C(2|1)
C(1|2)

c 1− P1(CC1)(c) 1− P2(CC2)(c)

1 1 1 1 3 2.047427 0.220413 0.661240
1 1 1 1 1 1 0.417525 0.417525
1 1 1 1 0.5 0.644801 0.570775 0.285387
0.25 1 1 1 3 2.151153 0.242446 0.727339
0.25 1 1 1 0.5 0.625045 0.641410 0.320705
1 0.5 1 1 3 2.078769 0.230112 0.690335
1 0.5 1 1 0.5 0.641438 0.598374 0.299187

Note that it was assumed in the former discussion for determining c that all parameters
of the classification problem are known. Let us assume now that the expectations µ1

and µ2 are not known, but all other parameters are known. It can be recommended
then to choose c as

c =
(1 + n3

n2

1 + n3

n1

1 +
σ2
1

σ2
2

n3

n2

1 +
σ2
2

σ2
1

n3

n1

)1/4

. (30)

It follows from the explicit formulae in Theorems 1 and 2 that the probabilities of
correct classification Pi(CCi)(c) are nearly the same for i = 1 and i = 2 if c is chosen
as in (30). Note that the quantities ‖qi‖, ai and %i occurring in Theorems 1 and 2 do
not depend on the cut-off point c and that m1 and m2 depend explicitly on c. Starting
therefore from the equation m1 = m2 gives similar values for smin,1 and smin,2 as well
as for smax,1 and smax,2. Table 7a gives an impression of how the choice of c influences
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the probabilities of correct classification. This table includes four rows for each of the
examples (i) up to (iv). The first row corresponds each time to the case c = 1, the
second to the case c = σ1/σ2, the third deals with c from (30) and the forth with the
risk equalizing c for equal costs of misclassification.

Table 7a Several choices of the cut-off point.

Ex. n1 n2 n3 µ2 σ2
1 σ2

2 c P1(CC1) P2(CC2) P1 + P2

(i) 4 4 4 1 1 2 1 0.736220 0.648230 1.384451
0.707107 0.636353 0.743300 1.379653
0.840896 0.689517 0.699714 1.389232
0.856268 0.694712 0.694712 1.389424

(ii) 4 4 4 1 1 5 1 0.750662 0.525090 1.275752
0.447214 0.514512 0.764610 1.279121
0.668740 0.643891 0.662209 1.306100
0.689554 0.652981 0.652981 1.305962

(iii) 3 5 7 0.5 1 2 1 0.641850 0.492028 1.133878
0.707107 0.532184 0.609111 1.141296
0.681732 0.520103 0.620756 1.140859
0.795160 0.570549 0.570549 1.141097

(iv) 50 50 50 0.1 1 2 1 0.596201 0.477100 1.073301
0.707107 0.364174 0.714035 1.078210
0.840896 0.478646 0.604921 1.083567
0.845594 0.540085 0.540085 1.080170

Table 7a shows that among the considered four cases formula (30) yields relatively
good results and can therefore be recommended to be used.

Due to Example 5 it is also possible to evaluate probabilities of correct classification
as values of the c.d.f. of doubly noncentral g-generalized F -distributions with (1,1)
degrees of freedom. For special parameters of the underlying classification problem the
n.c.p.’s and arguments of this distribution are evaluated from Example 5 and given
in Table 8 only with 6 digits. Note that we internally used all available digits to get
exact as possible probabilities of correct classification. This circumstance is indicated
by the symbol ”≈” in columns 6, 7 and 8. Then the exact values of the g-generalized
F -distribution are determined and tabled for the Gaussian and the multivariate t den-
sity generating functions, respectively. For the first case let FgG := F1,1,δ2

1,1,δ2
2,1;gG(t1)

and for the latter case let FgPV II
12,2

:= F1,1,δ2
1,1,δ2

2,1;gPV II
12,2

(t1) and note that the parameters

are choosen as m = 1 and N = 6.5.
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Table 8 Doubly noncentral g-generalized F -distributions.

c p1,1 p2,1 p3,1 p4,1 δ2
1,1 ≈ δ2

2,1 ≈ t1 ≈ FgG FgPV II
12,2

1 1 1 1 1 0.044658 0.622008 1.000000 0.582475 0.570024
1
2

1 1 1 1 0.006006 0.660660 0.208715 0.345909 0.337145
2 1 1 1 1 0.115115 0.551551 4.791288 0.774654 0.767720
1 1 2 1 1 0.025426 0.374574 1.558258 0.620593 0.615027
1 1 1 2 1 0.026139 0.573861 1.000000 0.579059 0.567869

Note that the numerical results coincide with the results determined with the explicit
representations from Theorems 1 and 2.

For the case of the Gaussian density generating function we can compare our numerical
results with available special results from the literature.

Price (1964) gives explicit formulae for the c.d.f. of the usual doubly noncentral F -
distribution, where the numbers of degrees of freedom are either both even or both
odd, respectively. By using formula (4.8) in Price (1964) we received the numerical
values given in column 5 of Table 9. Note that the formulae of Price (1964) were used
in Moran (1975) to evaluate error rates.

The approximate normality of the cube root of the noncentral chi-square distribution
and an Edgeworth-series expansion are used in Mudholkar et al. (1976) to derive an
approximation requiring only normal approximation. Formulae (3.2) and (3.3) yield
the values of the culumn 6 in Table 9.

Representations of the c.d.f. of the doubly noncentral F - distribution are presented
in Chou et al. (1985) in terms of the c.d.f. of the noncentral chi-square distribution.
Specializing formula (1) in Chou et al. (1985) to the case of (1,1) d.f. and using a
representation of the c.d.f. of the noncentral chi-square distribution with one degree
of freedom:

CQ(1, δ2)(c2) = Φ(c− δ) + Φ(c + δ)− 1

cited therein and the p.d.f. of the non central chi-square distribution we get column 7.

Table 9 Classical doubly non central F -distributions. Comparison with the literature.

δ2
1,1 δ2

2,1 t1 Theorem 5 Price Mudh. Chou

0.044658 0.622008 1.000000 0.582475 0.582475 0.624917 0.582437
0.006006 0.660660 0.208715 0.345911 0.345911 0.342071 0.345894
0.115115 0.551551 4.791288 0.774654 0.774654 0.882719 0.774570
0.025426 0.374574 1.558258 0.620593 0.620593 0.669155 0.620539
0.026139 0.573861 1.000000 0.579059 0.579059 0.622287 0.579020

Let us remark, that the values of Price’s formula coincide with our values. The results
of Mudholkar et al. are not satisfactory for the case of (1,1) d.f. and the values of
Chou et al. coincide with our values at least to three digits.

To get a more detailed impression of the accuracy of our formula in comparison with
that of Price’s formula Table 10 is given.
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Table 10 Many digits comparison with Price’s formula.

row δ2
1,1 δ2

2,1 t1

(1) 0.0446581987385205 0.622008467928146 1.000000000000000
(2) 0.00600649797934476 0.660660168687322 0.208712152522080
(3) 0.115115443097341 0.551551223569326 4.79128784747792
(4) 0.0254256878112061 0.374574312188794 1.55825756949558
(5) 0.0261387212474169 0.573861278752583 1.000000000000000

row Example 5 Price

(1) 0.582475444211846 0.582475444228883
(2) 0.345909195073269 0.345909195089144
(3) 0.774653756627723 0.774653756607881
(4) 0.620593176025199 0.620593175997704
(5) 0.579059127459032 0.579059127517264

The values of the c.d.f. of the doubly non central F -distribution are given there with 15
digits. One numerical integration over a domain from zero to infinity is necessary for
our formula and two numerical integrations, each over a finite domain, are necessary
for the formula of Price. Note that we took the value 12 as the upper integration
limit for our numerical integration because of the fast decreasing density generating
function in the integrand. The values of columns ”Example 5” and ”Price” in Table
10 are received by numerical integration which is performed by Simpson’s rule with
a large number of steps. Note that for the considered cases the numerical results of
both formulae coincide (after rounding) in 10 digits. Finally note that we don’t know
competing results from the literature for the g-generalized case dealt with here.

Due to Theorem 3 we can evaluate probabilities of correct classification also for a p-
dimensional feature vector as values of the doubly non central g-generalized F -distribu-
tion with (p, p) degrees of freedom. For the Gaussian density generating function we
get the usual doubly non central F -distribution. The latter can be written as a linear
combination of independent non central chi-square variables. Such a distribution can
be evaluated by using formula (3.2) in Imhof (1961). Specifying it to the situation of
Example 5 gives

Fp,p,δ2
1,i,δ

2
2,i;g

G(ti) =
1

2
− 1

π

∫ ∞

0

sin θ(u)

uγ(u)
du (31)

with

θ(u) =
1

2

2∑
k=1

(
p arctan(λku) + δ2

k,iλku(1 + λ2
ku

2)−1
)
,

γ(u) =
2∏

k=1

(1 + λ2
ku

2)p/4 exp
{1

2

2∑
k=1

(δk,iλku)2(1 + λ2
ku

2)−1
}

and λ1 = 1, λ2 = −ti.
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Table 11 illustrates that increasing dimensions p of the feature vector yield increasing
probabilities of correct classification when the distance of each coordinate of the ex-
pectation vector from zero is constant. Note that we assumed uncorrelated features.

Table 11 Uncorrelated features: values P (CC) for increasing dimensions,
c = 1, n1 = n2 = n3 = 4, µ1l = 0, σ2

1 = σ2
2 = 1.

Application of formula (31).

Feature distance Dimension p
µ2l 1 2 3 5 10 50 100
0.10 0.5037 0.5057 0.5073 0.5097 0.5141 0.5320 0.5453
0.25 0.5223 0.5346 0.5437 0.5577 0.5827 0.6817 0.7483
0.50 0.5824 0.6230 0.6517 0.6943 0.7646 0.9468 0.9888
0.75 0.6634 0.7307 0.7748 0.8346 0.9147 0.9989 1.0000
1.00 0.7468 0.8271 0.8744 0.9292 0.9805 1.0000 1.0000

Note that formula (31) is not applicable in the case of a non-Gaussian density generator.
We are interested therefore in getting numerical results from the geometric measure
representation formula using the threefold integral (33). This intersection percentage
function was determined by threefold calling a Simpson quadrature formula. For com-
parison Table 11a contains again results for the Gaussian case.

Table 11a Increasing dimensions in the situation of Table 11.
Application of formula (33).

Feature distance Dimension p
µ2l 1 2 3 5 10 50 100
0.25 0.5223 0.5340 0.5432 0.5577 0.5827 0.6794 0.7483

Note that the numerical evaluations based upon formula (33) are relatively time con-
suming and do not yield as accurate results as when using Imhof’s formula (31). How-
ever, on principle, we can evaluate with one and the same intersection percentage
function which we used for establishing Table 11a the probabilities of correct classifica-
tion for arbitrary continuous spherically symmetric sampling error distributions. The
case of a multivariate t-distribution is dealt with in Table 11b.

Table 11b Uncorrelated features: values P (CC) for increasing dimensions,
density generator of the multivariate t-distribution with m = 2,
c = 1, n1 = n2 = n3 = 4, µ1l = 0, σ2

1 = σ2
2 = 1.

Feature distance Dimension p
µ2l 1 2 3 5 10
0.25 0.5218 0.5325 0.5406 0.5527 0.5739

The next study concerns fixed Mahalanobis distance ∆2 = 1 as it was considered,
e.g., in Ahrens and Läuter (1981). Note that in the present situation the parameters
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p1,i = n3

σ2
i

∑p
l=1(µ1l − µ2l)

2, i ∈ {1, 2} coincide with ∆2 if n3 = 1, σ2
1 = σ2

2 and that

fixing ∆2 results in decreasing feature distance for increasing dimensions. We have
chosen the distances µ2l = 1/

√
p, l = 1, . . . , p, for all features in Table 12.

Table 12 Increasing dimensions: the case of fixed Mahalanobis distance and
decreasing feature distances.
c = 1, n1 = n2 = 4, n3 = 1, µ1l = 0, l = 1, . . . , p, σ2

1 = σ2
2 = 1.

p 1 2 3 5 10 100
Pi(CCi) 0.6528 0.6297 0.6154 0.5975 0.5749 0.5262

Furthermore we studied how the coordinates of the expectation vector must be chosen
to achieve a constant probability of correct classification P1(CC1) = P2(CC2) = P (CC)
for increasing dimension of the feature vector. The results of this study are given in
Tables 13 and 14.

Table 13 Increasing dimensions: the case of a fixed probability of correct classification
P (CC) = 0.7468.
c = 1, n1 = n2 = n3 = 4, µ1l = 0, l = 1, . . . , p, σ2

1 = σ2
2 = 1.

p 1 2 3 5 10 100
µ2l 1 0.7468 0.6908 0.5879 0.4768 0.24905

Note that Table 14 gives an answer to the question of which order should be the rate
of convergence of |µ2 − µ1| := f(n) towards zero as n with n/3 = n1 = n2 = n3 tends
to infinity if one wants ensure that the probability of correct classification P (CC) does
not change as n →∞. It turns out from Table 14 that f(n) = 1/

√
n which corresponds

to the often considered so called n−1/2-local alternatives from test theory.

Table 14 Increasing sample sizes: the case of a fixed P1(CC1) = 0.582475.
c = 1, n1 = n2 = n3 = 4, µ1l = 0, l = 1, . . . , p, σ2

1 = σ2
2 = 1.

n 4 102 104 106

µ2l 0.5 0.1 0.01 0.001

5 Estimating probabilities of correct classification

Let us restrict the considerations in this section to the Gaussian case, i.e. put g = gG.
The probabilities of correct classification depend on the possibly unknown parameters
µ1, µ2, µ3, σ2

1, σ2
2, σ2

3. If D1/3 would be correct then we can estimate the parameters
µ2 and σ2

2 as well as the parameters µ1 and σ2
1 by the single sample based estimators

y2•, s2
2 and the pooled sample estimators y

(1/3)
• and s

(1/3)
n1+n3

2
, respectively, where

s
(1/3)
n1+n3

2
=

1

n1 + n3 − 1

[
n1∑

j=1

(
y

(1)
i − y

(1/3)
•

)2

+

n3∑
j=1

(
y

(3)
i − y

(1/3)
•

)2
]

.
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Based upon

p̂1,1 =
n3

s
(1/3)
n1+n3

2

(
y

(1/3)
• − y2•

)2
and p̂2,1 =

s2
2

s
(1/3)
n1+n3

2

we can estimate the probabilities of correct classification into the first population by

̂P1(CC1) = P1(CC1)(c, p̂1,1, p̂2,1, p3,1, p4,1; gG).

A related simulation study is organized as follows: For fixed n1, n2 and n3 each Gaussian
distributed subsample vector of dimension ni with expectation µi1ni

and covariance
matrix σ2

i Ini
was simulated N=500 times, i = 1, 2, 3. For every repetition, the single

and the pooled sample estimators p̂1,1
(j) and p̂2,1

(j) were computed, and based upon
them the estimators

̂p1(CC1)
(j)

= P1(CC1)(p̂1,1
(j), p̂2,1

(j), p3,1, p4,1; gG), j = 1, . . . , 500

of the probability of correct classification P1(CC1) were evaluated, too. The arithmetic

mean p̂ = p̂1
(•)

of these probability estimators was tabled in column 3 of Table 15 and
their empirical variance s2

P̂
in column 4. Furthermore the relative errors

r(j) :=
| ̂p1(CC1)

(j)

− P1(CC1)|
P1(CC1)

, j = 1, . . . , 500

were computed and their arithmetic mean r and empirical variance s2
R were tabled in

columns 5 and 6, respectively. It turns out from Table 15 that increasing probabilities
of correct classification correspond to decreasing relative estimation errors.

Table 15 Increasing balanced sample sizes n1 = n2 = n3: the case of a fixed
feature difference. c = 1, µ2 = 0, µ1 = 1, σ2

1 = σ2
2 = 1.

n1 P (CC)(1) p̂ s2
P̂

r s2
R

3 0.702820 0.740398 0.025 0.1938 0.025
4 0.746820 0.742211 0.023 0.1703 0.013
5 0.782989 0.765938 0.022 0.1591 0.011

10 0.891467 0.860205 0.015 0.1021 0.010
20 0.965326 0.943363 0.004 0.0437 0.003
30 0.987274 0.973138 0.002 0.0214 0.001

100 0.999978 0.999892 0.000 0.0001 0.000

The probability of correct classification is fixed in Table 16 at a preassumed level and
the parameters p1,i up to p4,i are fixed as well for i = 1, 2. To achieve this, the difference
|µ1−µ2| of the expectations in Π1 and Π2 becomes smaller when the overall sample size
n increases. Simulation studies like in the case of Table 15 were made for producing the
results in Table 16 which reflect increasing estimation accuracy for increasing sample
sizes.
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Table 16 Increasing balanced sample sizes n1 = n2 = n3: the case of a fixed
probability of correct classification P (CC) = 0.582475.
c = 1, µ2 = 0, σ2

1 = σ2
2 = 1.

n1 µ1 p̂ s2
P̂

r s2
R

4 0.5 0.648 0.022 0.2248 0.028
100 0.1 0.635 0.017 0.1835 0.023
104 0.01 0.635 0.016 0.1813 0.023
106 0.001 0.595 0.010 0.1305 0.011

The next simulation study in Table 17 was done for the case that the sample distribution
is the multivariate-t distribution.

Table 17 Constant probability of correct classification P1(CC1) = 0.570024.
c = 1, µ2 = 0, σ2

1 = σ2
2 = 1.

g = gP with m = 1, N = (1 + n)/2.

n1 n2 n3 µ1 p̂ s2
P̂

r s2
R

4 4 4 0.5 0.605290 0.012 0.1649 0.012
100 100 100 0.1 0.595109 0.007 0.1224 0.008
104 104 104 0.01 0.598885 0.007 0.1251 0.009
106 106 106 0.001 0.594235 0.007 0.1232 0.009

Another question arises if the parameters µ1, µ2, σ
2
1 and σ2

2 are not known and one
wants to determine a ”good” cut-off point c.

First, we want to estimate c from (30) by plugging in the estimates s2
1 and s2

2 for the
variances. The resulting estimator ĉ was evaluated for 500 randomly choosen normal
samples, and then the arithmetic mean ĉ was evaluated. The results are given in Table
17a for the examples (i) to (iv) of Table 7a.

Table 17a Estimating c from (30).

Ex. ĉ p̂1 p̂2 p̂1 + p̂2 s2
ĉ s2

p̂1
s2

p̂2
r s2

R

(i) 0.904836 0.685638 0.681861 1.367499 0.088 0.009 0.008 0.2679 0.059
(ii) 0.714178 0.636020 0.649391 1.285411 0.071 0.011 0.011 0.2944 0.076
(iii) 0.737871 0.514831 0.613284 1.128116 0.108 0.018 0.016 0.3552 0.113
(iv) 0.847527 0.539907 0.539957 1.079864 0.003 0.001 0.001 0.0567 0.002

Table 17a contains furthermore the arithmetic means p̂1 and p̂2 of the probabilities of
correct classifications into the two populations, the empirical variances of ĉ, p̂1, p̂2, the
arithmetic mean of the relative errors r(j) := |ĉ−c|/c, j = 1, . . . , 500, and the empirical
variance of the relative error. One can see in Table 17a that for the examples (i) to
(iv) the sums of the probabilities of correct classifications are smaller in tendency for
unknown variances than for known variances.
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Analogous considerations will be made now for the risk-equalizing cut-off-point c. In
this case it is additionally necessary to estimate the expectations µ1 and µ2. The results
are given in Table 17b.

Table 17b Estimating risk-equalizing c.

Ex. ĉ p̂1 p̂2 p̂1 + p̂2 s2
ĉ s2

p̂1
s2

p̂2
r s2

R

(i) 0.891769 0.742211 0.742211 1.484422 0.087 0.023 0.023 0.2621 0.052
(ii) 0.739055 0.739093 0.739093 1.478186 0.072 0.020 0.020 0.2775 0.080
(iii) 0.801861 0.712718 0.712718 1.425436 0.091 0.023 0.023 0.2892 0.060
(iv) 0.853702 0.646150 0.646150 1.292299 0.004 0.016 0.016 0.0594 0.002

Note that one could argue from the latter four examples that the received probabilities
of correct classifications are greater in the case of unknown than in the case of known
parameters. However, we counted how often the probabilities of correct classification
were greater in the case of unknown parameters than that in the case of known param-
eters. The hypothesis that the probability for this event is equal 1/2 was not rejected
by a respective significance test at the level α = 0.001.

Acknowledgement The authors are grateful to H. H. Bock, the referees and the Editor-
in-Charge for making valuable remarks to former versions of this paper.

Appendix
Geometry behind noncentral generalized chi-square, Student-

and Fisher distributions

A unified geometric approach to several statistical distributions for elliptically con-
toured populations is based upon a geometric representation formula for Gaussian and
spherical measures in Richter (1985) and in Richter (1991,95), respectively. Let Y(n)

be a n-dimensional spherically symmetric distributed random vector having Lebesgue
density with a d.g.f. g. The spherical measure Φ( · ; g) = ECd

n(0n, In, g)(·) allows the
representation

Φ(A; g) =

∫ ∞

0

Fn(A, r) rn−1g(r2) dr/

∫ ∞

0

rn−1g(r2) dr, A ∈ Bn (32)

where g is assumed to fulfill assumption (1), Fn(A, r) is the i.p.f., see Definition 1.
If Φµ,Σ;g denotes an elliptically contoured probability distribution with expectation
µ ∈ IRn, form matrix Σ ∈ IRn× IRn and d.g.f. g then Φ0,In;g(A) coincides with Φ(A; g).
It’s well known that different statistics generate in a canonical way different types of
sets in the sample space IRn.

Example 2 Let A(x) =
{
y(n) ∈ IRn : ‖y(n) + µ‖2 < x2

}
, x > 0 be a family of balls in

IRn and δ2 = ‖µ‖2, then

Φ(A(x); g) = CQ(n, δ2; g)(x2)
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is the c.d.f. of the noncentral g-generalized chi-square distribution with n d.f. and
n.c.p. δ2. This approach has been dealt with in Ittrich et al. (2000) as well as in
Richter and Schumacher (2000).

Example 3 Assume that N1 and N2 = L(µ) with µ ∈ Sn(1) are linear subspaces of
IRn having dimensions n− 2 and 1, respectively, and being orthogonally to each other.
Let

A(x) =

{
y(n) ∈ IRn :

‖ΠN2y(n) + δµ‖ sign(y(n) + δµ, µ)

‖ΠN1y(n)‖/
√

n− 2
> x

}
denote a class of cones from Bn. Then Φ(A(x); g) = tgn−2(δ), x ∈ IR, has been called
in Richter (1994) noncentral g-generalized Student distribution with n − 2 d.f. and
n.c.p. δ ∈ IR. It is shown in Richter (1994) which spaces N1 and N2 play a role when
evaluating certain probabilities of correct selection.

Example 4 Let M ⊂ IRn be a m-dimensional linear subspace of IRn and M⊥ the
orthogonal complement of M, put y(1) = ΠMy(n) and y(2) = ΠM⊥y(n), and consider the
family of cones

A(x) =

{
y(n) ∈ IRn :

‖y(1)‖2

‖y(2)‖2
<

m

n−m
x

}
, x ∈ IR.

Then, according to Richter (1991, 1995),

Φµ,In,g (A(x)) , x ∈ IR = Fm,n−m,δ2
1 ,δ2

2 ;g(x)

is the c.d.f. of the doubly noncentral g-generalized Fisher distribution with m and
n − m degrees of freedom (d.f.), respectively, and noncentrality parameters (n.c.p.)
δ2
1 = ‖ΠMµ‖2 and δ2

2 = ‖ΠM⊥µ‖2. The special cases δ2
1 = 0 or δ2

2 = 0 correspond
to noncentral g-generalized Fisher distributions of second and first kind, respectively.
With µ(1) = ΠM µ and µ(2) = ΠM⊥µ and δ1 = ‖µ(1)‖, δ2 = ‖µ(2)‖ it follows
Φµ,In;g (A(x)) = Φ0,In;g (Cm,n−m,δ1,δ2(x)) where

Cm,n−m,δ1,δ2(x) =

{
y ∈ IRn :

∥∥y(1) + µ(1)
∥∥2

‖y(2) + µ(2)‖2 <
m

n−m
x

}
.

Let
(
Y (1), Y (2)

)
∼ Φ0,In;gG . The distribution of Q = ‖Y (1) + µ(1)‖2/‖Y (2) + µ(2)‖2

depends on the vectors µ(1) and µ(2) only through ‖µ(1)‖2 = δ2
1 and ‖µ(2)‖2 = δ2

2 because
the noncentral chisquare distributions of ‖Y (1) + µ(1)‖2 and ‖Y (2) + µ(2)‖2 depend only
on δ2

1 or δ2
2, respectively. The following definition is thus motivated.

Definition 2 A Borel set A ⊂ IRn will be said to belong to the class Am,n−m,δ1,δ2,t if
there exists a function t | IR+ −→ IR+ such that

A ∩ Sn(r) = Cm,n−m,δ1,δ2(t(r)) ∩ Sn(r), r > 0.

Remark 5 Clearly, Cm,n−m,δ1,δ2(ν) ∈ Am,n−m,δ1,δ2,t with t(r) ≡ ν for all r > 0 and

Fm,n−m,δ2
1 ,δ2

2 ;g(x) = Φ0,In;g (Cm,n−m,δ1,δ2 (x)) .
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We will give an additional description for the sets A from Am,n−m,δ1,δ2,t. To this end
let

Zm,n−m,δ1,δ2,r(t(r)) =
{
x ∈ IRn : xm+1 > b1

(
x2

1 + · · ·+ x2
m

)
+ b2x1 + b3

}
denote a certain parabolic cylinder type set from IRn where

b1 =
n−m

2t(r)mδ2

+
1

2δ2

, b2 =
(n−m)δ1

t(r)mδ2

, b3 = −r2 + δ2
2

2δ2

+
(n−m)δ2

1

2t(r)mδ2

and where x1, . . . , xm and xm+1, . . . , xn denote the coordinates of x with respect to
orthonormal bases in M and M⊥, respectively. The sets A from Am,n−m,δ1,δ2,t satisfy
the equations

A ∩ Sn(r) = Zm,n−m,δ1,δ2,r(t(r)) ∩ Sn(r), r > 0.

It follows that the i.p.f. for Cm,n−m,δ1,δ2(t(r)) coincides with that for the cylinder type
set Zm,n−m,δ1,δ2,r (t(r)), i.e.

Fn (Cm,n−m,δ1,δ2 (t(r)) , r) = Fn (Zm,n−m,δ1,δ2,r (t(r)) , r) , r > 0.

Theorem 4 The i.p.f. for a set A from the class
Am,n−m,δ1,δ2,t with m ≥ 2, n−m ≥ 2 satisfies the representation formula

ωnF(A, r) = ωm−1ωn−m−1

×
∫ π

0

∫ π/2

0

∫ π

0

(sin φ1)
m−2(sin φm)m−1(cos φm)n−m−1(sin φm+1)

n−m−2 (33)

I
{
b1r

2(sin φm)2+b2r sin φm cos φ1−r cos φm cos φm+1+b3 <0
}

dφm+1dφmdφ1,

were ωk = 2πk/2/Γ(k) denotes the surface area of Sk(1).

The proof follows the general line in Richter (1991) and will therefore be omitted here.

Simulating the intersection percentage function

The numerical evaluation of the i.p.f. Fn(A, ·) for a given Borel set A is relatively
timeconsuming, in general. So it is of some interest to simulate values of this func-
tion. To this end, one has to generate first N uniformly distributed random vectors
(x1, . . . , xn) on the n-dimensional sphere with radius r. Second, one has to check,
whether (x1, . . . , xn) belongs to A ∩ Sn(r) or not. This means in the case of Theorem
4, i.e. if A ∈ Am,n−m,δ1,δ2,t, that one has to check whether the condition

(x1 + δ1)
2 + x2

2 + · · ·+ x2
m

(xm+1 + δ2)2 + x2
m+2 + · · ·+ x2

n

<
m

n−m
t(r)

is fulfilled or not. The number of cases when the condition is fulfilled divided by N
provides a simulated value for Fn(A, r) = Fn(Cm,n−m,δ1,δ2 (t(r)) , r). For simulating the
probabilities

Φ(A; g) =

∫ ∞

0

Fn(A, r)rn−1g(r2) dr/

∫ ∞

0

rn−1g(r2) dr
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one needs the values of Fn(A, r) for r from zero up to rmax, where rmax depends on the
tails of the elliptically contoured distribution, determined by g. Writing the values of
Fn(A, r) for certain values of the parameters into files gives the possibility, to exploit
the geometric representation formula with only one file for all admissible d.g.f. g. Here
lies a main advantage of the geometric method. Instead of simulating new in each case
random vectors x with certain elliptically contoured distributions one has only one
times to simulate Fn(A, r) and can then approximate with this estimator the spherical
measures Φ(A; g) for all d.g.f. g satisfying assumption (1).

Example 5 Two-dimensional geometric consideration shows that the sets CC∗∗
i from

(13) and (14) belong to the classes A1,1,δ1,i,δ2,i,ti , i = 1, 2, where the functions

ti = ti(r) =
√

hi−m2
i +1√

hi+m2
i−1

actually do not depend on r and where the noncentrality param-

eters are

δ2
1,i =

a2
i√
hi

m2
i −

√
hi + 1

m2
i +

√
hi − 1

,

δ2
2,i =

a2
i√
hi

m2
i

(√
hi + m2

i + 1
)

+ %2
i

(
−
√

hi − 3m2
i + 1

)
(1− %2

i )
(√

hi + m2
i − 1

)
with mi, %i, hi and ai being the same as in Theorem 1. Consequently,

Pi(CCi)(c; g) = Φ02,I2;gn,2(CC∗∗
i ) = F1,1,δ2

1,i,δ
2
2,i;gn,2

(ti).

This result was the starting point for our general consideration in Section 3.
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