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Nonlinear regression models with spherically symmetric error vectors and a single nonlinear parameter
are considered. On the basis of a new geometric approach, exact one- and two-sided tests and confidence
regions for the nonlinear parameter are derived in the cases of known and unknown error variances.
A geometric measure representation formula is used to determine the power functions of the tests if the
error variance is known and to derive different lower bounds for the power function of a one-sided test
in the case of an unknown error variance. The latter can be done quite effectively by constructing and
measuring several balls inside the critical region. A numerical study compares the results for different
density generating functions of the error distribution.
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1. Introduction

We consider the nonlinear regression model

Y = η(γ ) + σE, γ ∈ � = (a, b), −∞ ≤ a < b ≤ ∞, σ > 0,

where Y denotes the n-dimensional vector of the response variables and

η(γ ) = (f (x1, γ ), . . . , f (xn, γ ))T,

its mathematical expectation which depends on both the known experimental design point
x = (x1, . . . , xn)

T ∈ X n ⊆ R
n and the unknown value of the one-dimensional nonlinear

parameter γ of the nonlinear regression function f (x, γ ).
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Design points x including repeated measurements are assumed to be given as

x = (ξ11T
n1

, . . . , ξm1T
nm

)T, 1nj
= (1, . . . , 1)T ∈ R

nj , j = 1, . . . , m, (1)

with m ≤ n, ξ1 < · · · < ξm, ξj ∈ X ⊆ R, nj ≥ 1, j = 1, . . . , m, and n1 + n2 + · · · +
nm = n.

Given the experimental design point x, let the nonlinear regression function f (x, γ ) satisfy
the assumption:

(RA1) η | � → R
n is twice continuously differentiable with respect to γ .

The range of the mean value of the observation vector Y, i.e.,

M = {η(γ ): γ ∈ �}
is a curve in the sample space R

n, which is called the expectation curve or the solution locus.
The error vector E ∼ ECn(0n, In, g) is assumed to follow a spherically symmetric

distribution with a density

p(z; g) = C(n, g)g(‖z‖2), z ∈ R
n,

where ‖·‖ denotes the Euclidean norm in R
n, the density generating function g | [0, ∞) →

[0, ∞) satisfies the condition

0 < In+2,g < ∞ (2)

with

In,g =
∫ ∞

0
rn−1g(r2) dr,

and the norming constant C(n, g) is defined as

C(n, g) = (ωnIn,g)
−1.

Here,

ωn = 2πn/2

�(n/2)

denotes the surface area of the unit sphere Sn(0n, 1) = {z ∈ R
n: ‖z‖ = 1} in R

n.
Examples of density generating functions are the Gaussian density generator

gG(r) = exp

(−r

2

)
, r > 0,

the Kotz-type density generator

gK(r) = rM−1 exp(−trs), r > 0, t > 0, s > 0, 2M + n > 2,

and the Pearson-VII-type density generator

gP(r) =
(

1 + r

m∗
)−M

, r > 0, M >
n

2
, m∗ > 0.

The corresponding norming constants are

C(n, gG) = (2π)−n/2, C(n, gK) = st ((2M+n−2)/(2s))�(n/2)

πn/2�((2M + n − 2)/(2s))

and

C(n, gP) = �(M)

(πm∗)n/2�(M − n/2)
.
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Spherically symmetric and more general elliptically symmetric distributions have been
studied, e.g., in refs. [1–9]. Nonlinear regression models with spherically symmetric error
vectors are considered in ref. [10] and ref. [11, section 7.5.1].

The expectation vector and the covariance matrix of the elliptically symmetric distributed
response vector Y,

Y ∼ ECn(η(γ ), σ 2In, g),

are due to condition (2) and Theorems 2.17 and 2.9 in ref. [6], and is given by

EY = η(γ ) and Cov(Y) = C(n, g)In+2,g

n
σ 2In,

respectively.
Several methods of constructing size-α tests and confidence regions for the parameter

γ ∈ � ⊂ R
p, p ≥ 1, can be found in the literature if the error vector E follows a Gaussian

distribution. Local linear approximations to the curve M are the basis of linear methods for
the definition of confidence regions in refs. [12–15]. However, in ref. [16, p. 223], it is not
recommended to use this methods.

The so-called almost exact confidence regions which are based on maximum likelihood
estimators were proposed in ref. [17] for flat regression models. The words ‘almost exact’
mean that the regions under consideration are exact for a restricted sample space. In the
present article, the whole sample space R

n is considered, but the regression functions are
assumed to satisfy certain assumptions.

For the case of a known parameter σ and arbitrary density generating function g satisfying
assumption (2), we derive exact α-tests for one-sided and two-sided alternatives in section 2.
We determine the power-functions of all these tests and define the corresponding confidence
regions. There are similarities to the considerations in refs. [10, 11, 17], concerning the methods
of constructing confidence regions and evaluating the first-type error probabilities of the cor-
responding tests. The critical regions of the tests for known parameter σ are half-spaces in
both approaches, but the respective normal vectors are chosen in different ways.

In Section 3, a new geometric approach will be developed to consider the more interesting
case of unknown σ . We give size-α tests for the one-sided alternatives and also under some
additional assumption, for the two-sided alternative and define the corresponding confidence
regions. The critical regions of the new tests are modifications of the critical regions of the well-
known Student test, which are rotationally symmetric single or double cones. These cones have
symmetry axes that consist of the sets of all points from the sample space describing the one-
or two-sided alternatives. The new critical regions are constructed in such a way that the
tests reject the null hypotheses for sample points near to the respective alternatives. Several
possibilities for the evaluation of lower bounds for the power function of one of these new
tests are given in section 4.

There are also possibilities to derive a point estimator for the parameter γ by the help of the
given two-sided confidence regions for γ , taking into account the parameter-effect curvature.
If the two-sided confidence region for a concrete sample y ∈ R

n is an interval (γl, γu), then
one can choose that parameter value γ̂ as a point estimator for γ which satisfies either the
condition that the corresponding point η(γ̂ ) on the expected curve M has the same euclidean
distances from the points η(γl) and η(γu) on M or the condition that the respective curve
length is the same. In the case of unknown parameter σ , an estimator σ̂ could be chosen as
σ̂ := ‖y − η(γ̂ )‖. To investigate the statistical properties of these point estimators, further
work would be needed, which is not the aim of this article.
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2. Known parameter σ 2

When testing the hypothesis H0: γ = γ0 about the unknown nonlinear parameter versus one
of the one-sided alternatives HA1 : γ > γ0 or HA2 : γ < γ0, or versus the two-sided alternative
HA: γ �= γ0 in the case of known parameter σ 2, we shall make use of one of the following
additional model assumptions or their combination, respectively:

(RA21) The functions f (ξj , ·) | �i → R are monotonous for all j , j ∈ {1, . . . , m} as γ , γ >

γ0, approaches b, and there is at least one index j such that this monotony holds in
the strong sense.

(RA22) The functions f (ξj , ·) | �i → R are monotonous for all j , j ∈ {1, . . . , m}, as γ ,
γ < γ0, approaches a, and there is at least one index j such that this monotony holds
in the strong sense.

2.1 One-sided test problem

This section deals with the construction of exact one-sided tests for proving

H0: γ = γ0 versus HA1 : γ ∈ �1 = (γ0, b) or HA2 : γ ∈ �2 = (a, γ0)

if the parameter σ is known.
Let a class of half-spaces in the sample space R

n be defined by

Hn(n, d) = {y ∈ R
n: �ny = λn, λ ≥ d}, n ∈ Sn(0n, 1), d ∈ R,

where �ny = 〈y, n〉 n = yTn·n denotes the orthogonal projection of y into the linear subspace
spanned up by the vector n and Sn(0n, 1) was defined as mentioned earlier.

In what follows, we shall make use of the geometric measure representation formula for
spherically symmetric distributions with density-generating function g. Basic results from
this theory have been published for the first time in ref. [18] and are exploited in refs. [19–
21]. According to this theory, it holds for a spherically symmetric distributed random vector
Z ∼ ECn(0n, In, g) and all Borel sets A ∈ Bn

P (Z ∈ A) = 	0n,In,g(A) = I−1
n,g

∫ ∞

0
F(A, r)rn−1g(r2) dr, (3)

where the integral In,g is assumed to satisfy 0 < In,g < ∞ and the so-called intersection
percentage function F(A, r), r > 0 is defined as

F(A, r) = Un(r
−1A ∩ Sn(0n, 1)), r > 0,

with Un being the uniform probability distribution on the unit sphere Sn(0n, 1).
The intersection percentage function of a half-space Hn(n, d) is

F(Hn(n, d), r) :=


I[d,∞)(r)

ωn−1

ωn

∫ φ∗(r)

0
sinn−2 ϕ dϕ, d > 0,

1

2
, d = 0,

1 − I(|d|,∞)(r)
ωn−1

ωn

∫ φ∗(r)

0
sinn−2 ϕ dϕ, d < 0,

(4)

where φ∗(r) := arctan(r2/d2 − 1)1/2. For a derivation of this formula and its application, see
refs. [22, 23], respectively.
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For α ∈ (0, 1/2) and n ∈ Sn(0n, 1), let z1−α(n, g) denote an arbitrary value satisfying the
equation

	0n,In,g(Hn(n, z1−α(n, g))) = α.

Note that z1−α(n, g) depends in no way on the vector n and for the special case g = gG,
the value z1−α(n, gG) equals the usual (1 − α)-quantile of the one-dimensional Gaussian
distribution.

Assuming that the conditions (RA2i), i ∈ {1, 2}, are satisfied, the γ0-related expected curve
points distance function ν | � → [0, ∞), defined by

ν(γ ) := ‖η(γ ) − η(γ0)‖, γ ∈ �, (5)

increases strongly monotonously and unbounded as γ , γ > γ0, approaches b or as γ , γ <

γ0, approaches a, respectively. Let the parameter value γ = γ(i) ∈ �i , i ∈ {1, 2}, denote the
uniquely determined solution of the equation

ν(γ ) = σz1−α(n, g)

if the corresponding alternative under consideration is HAi
. Put

bi := η(γ(i)) − η(γ0)

‖η(γ(i)) − η(γ0)‖ ∈ Sn(0n, 1), i ∈ {1, 2}

and let the test statistic be defined by

ti(Y) := σ−1〈Y − η(γ0), bi〉, i ∈ {1, 2}.
The hypothesis H0 will be rejected, if for a concrete sample y ∈ R

n it holds

ti(y) ≥ z1−α(n, g), i ∈ {1, 2},
i.e., if the actual sample belongs to the critical region

Ki (z1−α(n, g)) := {y ∈ R
n: ti(y) ≥ z1−α(n, g)}, i ∈ {1, 2}.

THEOREM 2.1 The tests ψi | Rn → {0, 1}, i ∈ {1, 2}, defined by

ψi(y) =
{

1 if ti(y) ≥ z1−α(n, g),

0 otherwise,

are size-α tests.

Proof If the null hypothesis is true, then Y ∼ ECn(η(γ0), σ
2In, g). If the transformation

V | Rn → R
n is defined as

V (y) := σ−1(y − η(γ0)), y ∈ R
n,

then V (Y) ∼ ECn(0n, In, g) and V (Ki (z1−α(n, g))) = Hn(bi , z1−α(n, g)). Consequently,

	η(γ0),σ 2In,g(Ki (z1−α(n, g))) = 	0n,In,g(V (Ki (z1−α(n, g)))) = α. �
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COROLLARY 2.1 If the parameter σ is known, then the regions

{γ0 ∈ �: ti(y) < z1−α(n, g)}, i = 1, 2,

are one-sided confidence regions for the parameter γ of size 1 − α.

The power functions pψi
, i = 1, 2, indicate the probabilities of rejecting the null hypothesis

H0: γ = γ0 if the true parameter is some γ �= γ0, γ ∈ �i .

THEOREM 2.2 The power function pψi
, i ∈ {1, 2}, satisfies the representation formula

pψi
(γ ) = I−1

n,g

∫ ∞

0
F(Hn(bi , di(γ )), r)rn−1g(r2) dr, γ ∈ �i,

with di(γ ) := z1−α(n, g) − σ−1〈η(γ ) − η(γ0), bi〉, z1−α(n, g) as defined earlier, and inter-
section percentage function F(Hn(bi , di(γ )), ·) given in formula (4).

Proof Suppose Y ∼ ECn(η(γ ), σ 2In, g) for some γ ∈ �i, i ∈ {1, 2}, then it holds

pψi
(γ ) = 	η(γ ),σ 2In,g(Ki (z1−α(n, g))).

Using the transformation V1 | Rn → R
n, defined by V1(y) := σ−1(y − η(γ )), y ∈ R

n, we
obtain

V1(Ki (z1−α(n, g))) = {z̃ ∈ R
n: σ−1〈[σ z̃ + η(γ )] − η(γ0), bi〉 ≥ z1−α(n, g)}

= Hn(bi , di(γ )),

with

di(γ ) := z1−α(n, g) − σ−1〈η(γ ) − η(γ0), bi〉
and

	η(γ ),σ 2In,g(Ki (z1−α(n, g))) = 	0n,In,g(V1(Ki (z1−α(n, g)))) = 	0n,In,g(Hn(bi , di(γ ))).

�

LEMMA 2.1 Under the assumption (RA2i), i ∈ {1, 2}, the power function pψi
is

monotonously increasing in the strong sense for γ ∈ �i, γ → b or γ → a, respectively.

Proof We show the proposition for i = 1, and the considerations for the case i = 2 follow
analogously. Using the representation formula for pψ1 given in Theorem 2.2, we first indicate
that the function d1(γ ) is monotonously falling in the strong sense for γ ∈ �1, γ → b. We
have

∂

∂γ
d1(γ ) = −σ−1

m∑
j=1

njf
′(ξj , γ )

[f (ξj , γ(1)) − f (ξj , γ0)]
‖η(γ(1)) − η(γ0)‖ .

For f (ξj , γ ) monotonously increasing in γ , it holds f ′(ξj , γ ) ≥ 0 and f (ξj , γ(1)) −
f (ξj , γ0) ≥ 0 (γ(1) > γ0), and for f (ξj , γ ) monotonously falling in γ , it holds f ′(ξj , γ ) ≤ 0
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and f (ξj , γ(1)) − f (ξj , γ0) ≤ 0. If there is at least one index j such that this monotonicity
holds in the strong sense as we assume in (RA21), it follows that

∂

∂γ
d1(γ ) < 0, γ ∈ (γ0, b),

i.e., the function d1(γ ) is monotonously falling in the strong sense for γ → b. Hence, for the
parameter values γ, γ ′ ∈ �1, γ < γ ′, and the half-spaces Hn(b1, d1(γ )) and Hn(b1, d1(γ

′)),
we obtain the relationship Hn(b1, d1(γ )) ⊂ Hn(b1, d1(γ

′)). From this, it follows that

pψ1(γ ) = �0n,In,g(Hn(b1, d1(γ ))) < �0n,In,g(Hn(b1, d1(γ
′)) = pψ1(γ

′),

i.e., pψ1(γ ) is monotonously increasing in the strong sense. �

2.2 Two-sided test problem

In this section, we consider the two-sided test problem

H0: γ = γ0 versus HA: γ �= γ0

for the case of known parameter σ 2. The critical region of a test ψ will be the union of the
critical regions of two one-sided tests ψi of sizes α1 and α2, where 0 < α1 + α2 < 1. Unlike
the linear case, the critical regions of the one-sided tests in section 2.1 are not half-spaces
with opposite normal vectors, rather their normal vectors depend on the concrete shape of the
curve M. They are given by

bi := η(γ(i)) − η(γ0)

‖η(γ(i)) − η(γ0)‖ , i = 1, 2,

where the parameters γ = γ(i) ∈ �i denote the uniquely determined solutions of the equations

ν(γ ) = σz1−αi
(n, g), i = 1, 2.

The corresponding test statistics are

ti(Y) = σ−1〈Y − η(γ0), bi〉, i = 1, 2.

We reject the null hypothesis H0: γ = γ0 if for a concrete sample vector y ∈ R
n it holds

t1(y) ≥ z1−α1(n, g) or t2(y) ≥ z1−α2(n, g). Consequently, the test ψ | Rn → {0, 1} is
defined by

ψ(y) :=
{

1, t1(y) ≥ z1−α1(n, g) ∨ t2(y) ≥ z1−α2(n, g),

0, otherwise,

and its critical region K satisfies the representation

K = K1(z1−α1(n, g)) ∪ K2(z1−α2(n, g))

with Ki (z1−αi
(n, g)) = {z ∈ R

n: ti(z) ≥ z1−αi
(n, g)}, i = 1, 2.
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When evaluating the first-type error probability α = 	η(γ0),σ 2In,g(K) of the test ψ , we have
to take into consideration that K1(z1−α1(n, g)) ∩ K2(z1−α2(n, g)) �= ∅ if the corresponding
normal vectors b1 and b2 satisfy |〈b1, b2〉| �= 1. Consequently, α allows the decomposition

α =
2∑

i=1

	η(γ0),σ 2In,g(Ki (z1−αi
(n, g))) − 	η(γ0),σ 2In,g(K1(z1−α1(n, g)) ∩ K2(z1−α2(n, g))).

(6)

Now, we shall give a representation of K1(z1−α1(n, g)) ∩ K2(z1−α2(n, g)), which allows to
evaluate the elliptically symmetric measure of this set in terms of a known probability
distribution.

LEMMA 2.2 Let |〈b1, b2〉| �= 1. The set K1(z1−α1(n, g)) ∩ K2(z1−α2(n, g)) satisfies the
representation

K1(z1−α1(n, g)) ∩ K2(z1−α2(n, g)) = D

for

D = {y ∈ R
n: 〈y − η(γ0), x〉 + µ ≥ t∗|〈y − η(γ0), y〉 + λ|},

with

x := b1 + b2

‖b1 + b2‖ , y := b1 − b2

‖b1 − b2‖ , x ⊥ y,

and

µ = −σ(z1−α1(n, g) + z1−α2(n, g))√
2(1 + 〈b1, b2〉) , λ = −σ(z1−α1(n, g) − z1−α2(n, g))√

2(1 − 〈b1, b2〉) ,

t∗ =
√

1 − 〈b1, b2〉
1 + 〈b1, b2〉 .

For the proof of this Lemma, we refer to ref. [24].

LEMMA 2.3 The elliptically symmetric measure of the set D from Lemma 2.2 satisfies the
representation

	η(γ0),σ 2In,g(D) = 1 − F1,µ/σ,λ2/σ 2;gn,2(t
∗),

where F1,µ/σ,λ2/σ 2;gn,2(·) denotes the distribution function of the doubly non-central
gn,2-generalized t-distribution with one degree of freedom and non-centrality parameters
µ/σ and λ2/σ 2. The density generator gn,2 is defined by

gn,2(r) = πn/2−1

�(n/2 − 1)
C(n, g)

∫ ∞

r

(u − r)n/2−2g(u) du, r ≥ 0 (7)

and satisfies the equation ∫
R2

gn,2(‖z‖2) dz = 1, z ∈ R
2.

For the evaluation of F1,µ/σ,λ2/σ 2;gn,2(t
∗), see ref. [24].
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Proof Using the transformation V , one obtain Ỹ := V (Y) ∼ ECn(0n, In, g) and

D̃ := V (D) = {V (y): y ∈ D} =
{̃

y ∈ R
n: 〈̃y, x〉 + µ

σ
≥ t∗

∣∣∣∣〈̃y, y〉 + λ

σ

∣∣∣∣} .

Consider the n × 2-matrix B := (x y) and let a random vector Z be defined by

Z := BTỸ = (〈Ỹ, x〉, 〈Ỹ, y〉)T.

On the basis of Theorem 2.16 in ref. [6] and BTB = I2, it follows that

Z ∼ EC2(02, I2, gn,2),

where according to formula (2.23) in ref. [6], the density generator gn,2 is defined by
equation (7). Consequently, we obtain

P(Y ∈ D) = P(Ỹ ∈ D̃) = P(Z ∈ D̃∗),

where

D̃∗ :=
{

z ∈ R
2: z1 + µ

σ
≥ t∗

∣∣∣∣z2 + λ

σ

∣∣∣∣} .

Finally, Definition 1, for the doubly non-central g-generalized t-distribution, and relation
(14) in ref. [24] yield

P(Z ∈ D̃∗) = 	02,I2,gn,2(D̃∗) = 1 − F1,µ/σ,λ2/σ 2;gn,2(t
∗).

�

Remark 2.1 Recognize that the marginals of spherically symmetric distributed vectors have
distributions that depend on the dimensions of both the whole vector and the marginal vector
and that the one-dimensional marginals are not independent except for the Gaussian case.
For example, in the case of the Pearson-VII-type density generating function gP, the two-
dimensional marginal distribution depends on the overall dimension n as follows:

gn,2(r) = �(M − (n − 2)/2)

πm∗�(M − n/2)

(
1 + r

m∗
)−M+(n−2)/2

,

whereas in the case of the Gaussian density generating function gG it holds

gn,2(r) = (2π)−1e−r/2.

THEOREM 2.3 The two-sided test ψ is a size-α test with

α = α1 + α2 − (1 − F1,µ/σ,λ2/σ 2;gn,2(t
∗)).

Proof Owing to formula (6), we obtain the assertion of the theorem by

	η(γ0),σ 2In,g(Ki (z1−αi
(n, g))) = αi, i = 1, 2

and Lemma 2.3. �
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COROLLARY 2.2 The two-sided test ψ is a level-α∗ test with α∗ = α1 + α2 and

{γ0 ∈ �: t1(y) < z1−α1(n, g) ∧ t2(y) < z1−α2(n, g)}
is a confidence region for the parameter γ with confidence level 1 − α∗.

THEOREM 2.4 The power function of the two-sided test ψ satisfies the representation

pψ(γ ) = I−1
n,g

2∑
i=1

∫ ∞

0
F(Hn(bi , di(γ )), r)rn−1g(r2) dr

− (1 − F1,µ∗/σ,λ∗2/σ 2;gn,2(t
∗)), γ ∈ �,

where

di(γ ) := z1−αi
(n, g) − σ−1〈η(γ ) − η(γ0), bi〉, i = 1, 2,

and the intersection percentage function F(Hn(bi , di(γ )), ·) is given in formula (4).
The quantities µ∗ and λ∗ occurring in the non-centrality parameters of the doubly non-

central gn,2-generalized t-distribution satisfy the equations

µ∗ := µ + 〈η(γ ) − η(γ0), x〉, λ∗ := λ + 〈η(γ ) − η(γ0), y〉, (8)

and the density generating function gn,2 is defined in formula (7).

Proof Let Y ∼ ECn(η(γ ), σ 2In, g) for some γ ∈ �. We have to determine

	η(γ ),σ 2In,g(K) = 	η(γ ),σ 2In,g(K1(z1−α1(n, g)) ∪ K2(z1−α2(n, g))).

The transformation V1 yields V1(Y) ∼ ECn(0n, In, g),

V1(Ki (z1−αi
(n, g))) = Hn(bi , di(γ )), i = 1, 2,

with di(γ ) = z1−αi
(n, g) − σ−1〈η(γ ) − η(γ0), bi〉 and

V1(D) = {̃z ∈ R
n: 〈[σ z̃ + η(γ )] − η(γ0), x〉 + µ ≥ t∗|〈[σ z̃ + η(γ )] − η(γ0), y〉 + λ|}

=
{̃

z ∈ R
n: 〈z, x〉 + µ∗

σ
≥ t∗

∣∣∣∣〈z, y〉 + λ∗

σ

∣∣∣∣},

with µ∗ and λ∗ given in equation (8). Consequently,

	η(γ ),σ 2In,g(K) =
2∑

i=1

	0n,In,g(Hn(bi , di(γ ))) − 	0n,In,g(V1(D)).

Making the same considerations as in the proof of Lemma 2.3, it follows that

	0n,In,g(V1(D)) = 	02,I2,gn,2(D∗) = 1 − F1,µ∗/σ,λ∗2/σ 2;gn,2(t
∗),

where

D∗ =
{

z ∈ R
2: z1 − µ∗

σ
≥ t∗

∣∣∣∣z2 − λ∗

σ

∣∣∣∣} .

�
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Figure 1. pψ(γ ) for g = gG, g = gP1 , and g = gP2 .

Example 2.1 Let f (x, γ ) = xγ , � = (−∞, ∞), γ0 = 1, n = 4, x1 = 0.1, x2 = 0.5,
x3 = 2, x4 = 3.5, and σ = 1.

We compare the first-type error probability αG and the power function of the Gaussian
density generator gG with the first-type error probability αP and the power function of the
Pearson-VII-type density generator gP1 with parameters m∗ = 10 and M = 3.1, respectively.
It holds COV(Y) = I4 for g = gG and according to formula (3.29) in ref. [6], COV(Y) =
m∗/(2M − n − 2)In = 50I4 for g = gP1 .

Notice that the existence of the moments is not necessary for the construction of the
considered tests and the evaluation of the power functions. To illustrate this case, we
choose another Pearson-VII-type density generator gP2 with parameters m∗ = 1 and M =
(1/2)(n + m∗) = 5/2, i.e., Y follows a multivariate Cauchy distribution.

Let α1 = α2 = 0.025. Then z1−αi
(4, gP1) = 8.419, z1−αi

(4, gP2) = 12.705, i = 1, 2, and
αG = 0.050, αP1 = 0.048, and αP2 = 0.045. For a comparison of the power functions, see
figure 1.

3. Unknown parameter σ 2

When testing the hypothesis H0: γ = γ0 about the unknown nonlinear parameter versus one
of the one-sided alternatives HA1 : γ > γ0 or HA2 : γ < γ0 or versus the two-sided alternative
HA: γ �= γ0 in the case of unknown parameter σ 2, we shall make use of one of the following
additional model assumptions or their combination, respectively:

(RA31) The γ0-related expected curve points distance function ν(·) defined in equation (5)
increases strongly monotonously and unbounded, as γ , γ > γ0, approaches b.

(RA32) ν(·) increases strongly monotonously and unbounded, as γ < γ0 approaches a.

3.1 One-sided test problem

In this section, we propose an exact one-sided tests for proving

H0: γ = γ0 versus HA1 : γ ∈ �1 = (γ0, b) or HA2 : γ ∈ �2 = (a, γ0).
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The construction of the tests is similar for the two alternatives HA1 and HA2 and is based on an
idea of modification of Student’s well-known test for the mean, if the variance in a Gaussian
population is unknown.

For this reason, let us first rewrite the Student’s test in a form, suitable for our further
purposes. Let the sample vector Z ∼ ECn(µ1n, σ

2In, gG) be given and consider the test
problem H0: µ = µ0 versus HA: µ > µ0. The range {µ1n: µ ∈ R} of the mean value of the
observation vector Z is a linear subspace of the sample space R

n and is usually called the
model-space. The test statistic

T (Z) := √
n

Zn − µ0√
(1/(n − 1))

∑n
i=1(Zi − Zn)2

= ‖Zn1n − µ01n‖sign(Zn − µ0)

‖Z − Zn1n‖/
√

n − 1

follows Student’s t-distribution with n − 1 degrees of freedom if the null-hypothesis is true.
Let tn−1,1−α denote the (1 − α)-quantile of this Student distribution. Then, α is the probability
under H0 that Z falls into the critical region of this test, which is a rotationally symmetric
cone around the middle line � = {λ1n: λ > µ0}:

K =
{

w ∈ R
n: √

n − 1
‖�1n/

√
n(w − µ01n)‖sign(wn − µ0)

‖w − �1n/
√

nw‖ ≥ tn−1,1−α

}
.

Note that for every density generating function g satisfying 0 < In,g < ∞, it holds

	µ01n,σ 2In,g(K) = α.

Now, we want to adapt the decision rule for the nonlinear regression model and arbitrary
density generating function g satisfying the relation (2). The critical region of this test can
be interpreted as the result of a nonlinear transformation of a cone like K . The ray � =
{λ1n, λ > µ0} has been transformed into the curve {η(γ ): γ ∈ �i}. Here, i indicates which of
the alternatives HA1 or HA2 is actually under consideration. The critical region is constructed
in such a way that the test rejects the null hypothesis for sample point y near to the point
η(γ ) ∈ M with parameter values γ belonging to the alternative �i . Hence, the critical region
is well adapted to the whole shape of the expected curve {η(γ ): γ ∈ �i}. To this end, let

Sn(η(γ ), ν) := {y ∈ R
n: ‖y − η(γ )‖ = ν}, ν > 0,

denote the sphere with radius ν and center η(γ ) in R
n.

For a given y ∈ R
n, we find, because of the assumption (RA3i), an uniquely determined

parameter γi = γi(y, γ0) ∈ �i ∪ {γ0} such that the uniquely determined point η(γi(y, γ0)) on
the curve M has the same Euclidean distance from η(γ0) as y:

‖y − η(γ0)‖ = ‖η(γi(y, γ0)) − η(γ0)‖. (9)

The function

γi | Rn × � → �i ∪ {γ0}
defined by equation (9) will play an essential role for defining a test statistic as in what follows.
Let us therefore study first some of its properties.

LEMMA 3.1 The mapping γi(·, γ0) | Rn → �i ∪ {γ0}, i ∈ {1, 2}, is continuous.

Proof The function γi(·, γ0) is continuous if the following conditions holds: For any y ∈ R
n,

there exists ε = ε(y) > 0 for all δ, 0 < δ ≤ |γi(y, γ0) − γ0|, such that |γi(y, γ0) − γi(z, γ0)| <

δ for all z satisfying ‖y − z‖ < ε(y).
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For a fixed y ∈ R
n\{η(γ0)}, the value γi(y, γ0) is uniquely determined by equation (9) if

the condition (RA3i) is fulfilled. The set

K := {η(γ ): γ ∈ (γi(y, γ0) − δ, γi(y, γ0) + δ)}
denotes the image of the interval (γi(y, γ0) − δ, γi(y, γ0) + δ) under the mapping γ → η(γ ).
Because of the strongly monotonic property (RA3i) of the γ0-related expected curve points
distance function ν(·), it holds

ν(γ ) ∈ (ν1, ν2) for γ ∈ (γi(y, γ0) − δ, γi(y, γ0) + δ)

with

ν1 := ν(γi(y, γ0)) − ε1(y) and ν2 := ν(γi(y, γ0)) + ε2(y),

for certain positive ε1(y) and ε2(y). The γi(·, γ0)-image of the set

R := {z ∈ R
n: ν1 < ‖z − η(γ0)‖ < ν2}

is the interval (γi(y, γ0) − δ, γi(y, γ0) + δ).
Let ε(y) > 0 satisfy

ε(y) < min(ε1(y), ε2(y))

and put Uε(y)(y) := {z ∈ R
n: ‖z − y‖ < ε(y)}. If z ∈ Uε(y)(y) then

‖z − η(γ0)‖ ≤ ‖z − y‖ + ‖y − η(γ0)‖ < ε(y) + ν(γi(y, γ0))

and

ν(γi(y, γ0)) = ‖y − η(γ0)‖ ≤ ‖y − z‖ + ‖z − η(γ0)‖ < ε(y) + ‖z − η(γ0)‖.
Hence z ∈ R, because (ν(γi(y, γ0)) − ε(y), ν(γi(y, γ0)) + ε(y)) ⊂ (ν1, ν2). Consequently,
Uε(y)(y) ⊂ R. It follows that η(γi(z, γ0)) ∈ K for all z ∈ Uε(y)(y) and therefore

γi(z, γ0) ∈ (γi(y, γ0) − δ, γi(y, γ0) + δ).

The continuity of γi(·, γ0) in the point η(γ0) follows analogously. �

Now, we continue with the construction of the test. Let a mapping e | �\{γ0} → Sn(0n, 1)

be defined by

e(γ ) := η(γ ) − η(γ0)

‖η(γ ) − η(γ0)‖ , γ ∈ �\{γ0}.

As in Student’s test for linear models, we want to compare

‖�e(γi (y,γ0))(y − η(γ0))‖
with the square root of a corresponding variance-type estimator

‖y − η(γ0) − � e(γi (y,γ0))(y − η(γ0))‖.
Then, the test is defined as to reject the hypothesis H0: γ = γ0 if the first of the two norm-terms
is larger than a certain multiple of the second one.
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The test statistic

Ti(Y) := √
n − 1

‖�e(γi (y,γ0))(Y − η(γ0))‖sign(〈Y − η(γ0), e(γi(y, γ0))〉)
‖Y − η(γ0) − �e(γi (y,γ0))(Y − η(γ0))‖ ,

is a measurable function because of the continuity of γi(·, γ0). The critical region of the test

Kf,i = Kf,i(tn−1,1−α) := {y ∈ R
n: Ti(y) ≥ tn−1,1−α}, i ∈ {1, 2}

is, therefore, a measurable set. It will be called a curved transformed cone-type set.An Example
is given in figure 2.

In this way, we arrived at the following decision rule:

Reject the hypothesis H0: γ = γ0 if for a concrete sample y, it holds

Ti(y) > tn−1,1−α, i ∈ {1, 2}.
Note that initial considerations concerning this test, as well as the following theorem, have
been made in ref. [25].

THEOREM 3.1 The tests �i | Rn → {0, 1}, i ∈ {1, 2}, defined by

�i(y) =
{

1 if y ∈ Kf,i(tn−1,1−α),

0 otherwise,

are exact size-α tests.

Proof If the null hypothesis H0: γ = γ0 is true, then Yn ∼ ECn(η(γ0), σ
2In, g) and the

first-type error probability is equal to

	η(γ0),σ 2In,g(Kf,i(tn−1,1−α)), i ∈ {1, 2}.
If the transformation V | Rn → R

n is defined as

V (y) := σ−1(y − η(γ0)), y ∈ R
n,

then it holds V (Y) ∼ ECn(0n, In, g) and

K∗
i := V (Kf,i(tn−1,1−α)) = {zn ∈ R

n: Ti(σzn + η(γ0)) ≥ tn−1,1−α}, i ∈ {1, 2}.
For the application of the geometric measure representation formula for the system A(dir, dist)
of Borel sets, first introduced in ref. [25] and later on studied, e.g., in ref. [21], we have to

Figure 2. Kf,1 for f (x, γ ) = exp(γ x), n = 3, x1 = 0.01, x2 = 0.2, x3 = 1, γ0 = 0.03.
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determine two functions. The first one is the so-called direction-type function for the set K∗
i ,

eK∗
i
(̃ν(γ )) := η(γ ) − η(γ0)

σ ν̃(γ )
, γ ∈ �i,

and the second one is the distance type function for the same set K∗
i ,

RK∗
i
(ν̃(γ )) := ν̃(γ )

(1 + (n − 1)/t2
n−1,1−α)1/2

, γ ∈ �i,

where

ν̃(γ ) := ‖σ−1(η(γ ) − η(γ0))‖, γ ∈ �.

Note that the transformed critical region K∗
i satisfies, for all γ ∈ �i , the equation

K∗
i ∩ Sn(0n, ν̃(γ )) = Hn(eK∗

i
(̃ν(γ )), RK∗

i
(̃ν(γ ))) ∩ Sn( 0n, ν̃(γ )).

Further the curve

γ → C(ν̃(γ )) = RK∗
i
(ν̃(γ )) · eK∗

i
(ν̃(γ ))

= ν̃(γ )√
1 + (n − 1)/t2

n−1,1−α

· η(γ ) − η(γ0)

‖η(γ ) − η(γ0)‖

= 1

σ

√
1 + (n − 1)/t2

n−1,1−α

· (η(γ ) − η(γ0))

is continuous in γ and thus, after reparameterization, the curve ν̃ → C(ν̃) is continuous in ν̃.
Recall that from Lemma 3.1, it follows that K∗

i is a measurable set and therefore belongs to
the Borel σ -algebra Bn. Consequently, K∗

i belongs to the system A(dir, dist) in ref. [25] and
for the intersection percentage function defined there it holds

F(K∗
i , ν̃) = ωn−1

ωn

∫ α∗(ν̃)

0
(sin ψ)n−2 dψ,

where

α∗(ν̃) := arctan

(
ν̃(γ )2

RK∗
i
(ν̃(γ ))2

− 1

)1/2

= arctan

(√
n − 1

tn−1,1−α

)
.

Note that α∗(ν̃) actually does not depend on ν̃. Thus, for the first type error probability from
the geometric measure representation formula (3) for spherical measures, we have

	η(γ0),σ 2In,g(Kf,i(tn−1,1−α)) = �0n,In,g(K∗
i ) = ωn−1

ωn

∫ arctan(
√

n−1/tn−1,1−α)

0
(sin ψ)n−2 dψ.

(10)

Let Tn−1 be a random variable following Student’s t-distribution with n − 1 degrees of
freedom and put

At :=

z ∈ R
n: z1√

(z2
2 + · · · + z2

n)/
√

n − 1
> t

 for all t > 0.



16 C. Ittrich and W.-D. Richter

It has been shown in ref. [25, sections 3 and 8] that

P(Tn−1 > t) = �0n,In,g(At ) = ωn−1

ωn

∫ arctan(
√

n−1/t)

0
(sin ψ)n−2dψ.

Hence, if t = tn−1,1−α then

ωn−1

ωn

∫ arctan(
√

n−1/tn−1,1−α)

0
(sin ψ)n−2dψ = P(Tn−1 > tn−1,1−α) = α.

From this equation and the relation (10), it follows that

	η(γ0),σ 2In,g(Kf,i(tn−1,1−α)) = α,

i.e., �i is a size-α test. �

COROLLARY 3.1 If the parameter σ is unknown, then

{γ0 ∈ �: Ti(y) < tn−1,1−α}, i = 1, 2,

are one-sided confidence regions for the parameter γ with a confidence level exactly equal
to 1 − α.

3.2 Two-sided test problem

Now, let us consider the two-sided problem of testing

H0: γ = γ0 versus HA: γ �= γ0. (11)

The critical region of a test � will be defined as the union of the critical regions of two one-
sided tests �i of sizes α1 and α2, respectively, where 0 < α1 + α2 < 1. To this end, recall the
definitions of the functions γi | Rn × � → �i ∪ {γ0}, i = 1, 2, as well as the definition of the
test statistics Ti based upon them. Let T1(y) and T2(y) denote the realizations of these test
statistics and define a decision rule to reject the hypothesis H0: γ = γ0 iff T1(y) > tn−1,1−α1

or T2(y) > tn−1,1−α2 holds true. Hence, the test �3 | Rn → {0, 1} has been defined by

�3(y) =
{

1, T1(y) > tn−1,1−α1 ∨ T2(y) > tn−1,1−α2 ,

0, otherwise

and its critical region Kf,3 satisfies the representation

Kf,3 = Kf,1(tn−1,1−α1) ∪ Kf,2(tn−1,1−α2).

For evaluating the first-type error probability of the test �3, we try to ensure that the intersection
of Kf,1(tn−1,1−α1) with Kf,2(tn−1,1−α2) is empty. The condition given in what follows should
ensure this. Let z(ν) denote an arbitrary but fixed chosen point from Sn(η(γ0), ν) and define
an angle type function ν → ζ(ν) as

ζ(ν) := ∠
(

η(γ1(z(ν), γ0)) − η(γ0)

ν
,
η(γ2(z(ν), γ0)) − η(γ0)

ν

)
, ∀ν ∈ (0, ∞).
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LEMMA 3.2 If the regression function f and the experimental design point x satisfy the
condition

cos ζ(ν) <
tn−1,1−α1 tn−1,1−α2 − (n − 1)√

(n − 1) + t2
n−1,1−α1

√
(n − 1) + t2

n−1,1−α2

, ∀ν ∈ (0, ∞), (12)

then it holds

Kf,1(tn−1,1−α1) ∩ Kf,2(tn−1,1−α2) = ∅.

Proof We prove this assertion indirectly. Suppose condition (12) is satisfied and there exists
nevertheless any y ∈ Kf,1(tn−1,1−α1) ∩ Kf,2(tn−1,1−α2) with

‖y − η(γ0)‖ =: ν > 0,

from the definition of Kf,i(tn−1,1−αi
), it follows that φi(y) := ∠(y − η(γ0), e(γi(y, γ0)))

satisfies the inequality

cos φi(y) >
tn−1,1−αi√

(n − 1) + t2
n−1,1−αi

, i = 1, 2. (13)

Because of y ∈ Sn(η(γ0), ν), we have γi(y, γ0) = γi(z(ν), γ0), i = 1, 2, and consequently

∠(e(γ1(y, γ0)), e(γ2(y, γ0))) = ∠(e(γ1(z(ν), γ0)), e(γ2(z(ν), γ0))) = ζ(ν)

for all ν > 0. If y ∈ L(e(γ1(y, γ0)), e(γ2(y, γ0))), then ζ(ν) = φ1(y) + φ2(y) and

cos ζ(ν) = cos(φ1(y) + φ2(y)) = cos φ1(y) cos φ2(y) − sin φ1(y) sin φ2(y).

From equation (13) it follows that

cos ζ(ν) >
tn−1,1−α1 tn−1,1−α2 − (n − 1)√

(n − 1) + t2
n−1,1−α1

√
(n − 1) + t2

n−1,1−α2

,

which is in contradiction to the assumption (12).
If y /∈ L(e(γ1(y, γ0)), e(γ2(y, γ0))), then consider the three vectors y, e(γ1(y, γ0)), and

e(γ2(y, γ0)). It holds

∠(e(γ1(y, γ0)), e(γ2(y, γ0))) < ∠(y, e(γ1(y, γ0))) + ∠(y, e(γ2(y, γ0)))

and consequently

ζ(ν) < φ1(y) + φ2(y).

From this it follows with ζ(ν) ∈ [0, π] and Eq. (13) that

cos ζ(ν) > cos(φ1(y) + φ2(y)) >
tn−1,1−α1 tn−1,1−α2 − (n − 1)√

(n − 1) + t2
n−1,1−α1

√
(n − 1) + t2

n−1,1−α2

,

being again in contradiction to equation (12). �
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THEOREM 3.2 If the regression function f and the experimental design point x satisfy the
condition (12), then the test

�3(y) =
{

1, y ∈ Kf,1(tn−1,1−α1) ∪ Kf,2(tn−1,1−α2),

0 otherwise

is a size-α test for the two-sided problem (11) with α = α1 + α2.

Proof The assertion follows from Lemma 3.2 and Theorem 3.1. �

COROLLARY 3.2 The two-sided test �3 is a level-α test with α = α1 + α2 and

{γ0 ∈ �: T1(y) < tn−1,1−α1 ∧ T2(y) < tn−1,1−α2}
is a confidence region for the parameter γ with a confidence level 1 − α.

If condition (12) is satisfied for all γ0 ∈ �, then the size of this confidence region is exactly
by equal to 1 − α.

3.3 Modified model assumptions

There are several regression functions that do not satisfy the assumption (RA31) or (RA32) in
the sense that their γ0-related expected curve points distance function ν may increase strongly
monotonously as γ approaches b or a, but are not unbounded. In such case, we shall construct
tests for proving the hypothesis H0: γ = γ0 versus the one-sided alternatives HA1 and HA2

or the two-sided alternative HA by the help of a suitable continuation of the curve M. To be
more concrete, we shall make use of one of the following modified model assumptions or their
combination, respectively:

(RA31m) ν increases strongly monotonously as γ > γ0 approaches b and is bounded by the
finite limit

lim
γ→b

‖η(γ ) − η(γ0)‖ =: b1.

(RA32m) ν increases strongly monotonously as γ < γ0 approaches a and is bounded by

b2 := lim
γ→a

‖η(γ ) − η(γ0)‖.

Put

B1 := lim
γ→b

η(γ ), B2 := lim
γ→a

η(γ ) and ei := Bi − η(γ0)

‖ Bi − η(γ0)‖ , i ∈ {1, 2}

and let the critical regions of the one-sided tests for the modified model assumptions be
defined as

K̃f,i = K̃f,i(tn−1,1−α) := {y ∈ R
n: T̃i(y) ≥ tn−1,1−α}, i ∈ {1, 2},

where T̃i(y) = Ti(y) if ‖y − η(γ0)‖ < bi and

T̃i(y) = √
n − 1

‖� ei
(y − η(γ0))‖sign(〈y − η(γ0), ei〉)

‖y − η(γ0) − �ei
(y − η(γ0))‖

otherwise. An example for such a critical region is given in figure 3.
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Figure 3. K̃f,1 for f (x, γ ) = 130 − 30 exp(−γ x), n = 3, xi = 10i, i = 1, 2, 3, γ0 = 0.03.

COROLLARY 3.3 The one-sided tests �̃i | Rn → {0, 1}, i ∈ {1, 2}, defined by

�̃i(y) =
{

1 if y ∈ K̃f,i(tn−1,1−α),

0 otherwise,

are exact size-α tests.

Example 3.1 Let the regression function be f (x, γ ) = a − b exp(−γ x), x > 0, γ ∈ � =
(0, ∞), and assume that the positive parameters a and b are known. Any experimental design
point x with ξj ∈ (0, ∞), j = 1, . . . , m, satisfies the conditions (RA31m) and (RA32m) for
every γ0 ∈ �.

Analogously, the critical region of the two-sided test for the modified model assumptions
is defined as

K̃f,3 = K̃f,1(tn−1,1−α1) ∪ K̃f,2(tn−1,1−α2)

for some α1, α2 with 0 < α1 + α2 < 1. Assuming K̃f,1(tn−1,1−α1) ∩ K̃f,2(tn−1,1−α2) = ∅,
the test �̃3 | Rn → {0, 1} defined by �̃3(y) := IK̃f,3

(y), y ∈ R
n, is also a size-α test with

α = α1 + α2.

4. Lower bounds for the power functions in the case of unknown σ 2

The power functions p�i
of the tests �i , i = 1, 2, 3, describe the probabilities of rejecting

the null hypothesis H0: γ = γ0 if the true parameter is some γ �= γ0. In this case, it holds
Y ∼ ECn(η(γ ), σ 2In, g) with γ ∈ �1, γ ∈ �2, or γ ∈ �1 ∪ �2 =: �3, respectively. Note that

p�i
(γ ) := 	η(γ ),σ 2In,g(Kf,i), γ ∈ �i, i ∈ {1, 2, 3}. (14)

An exact evaluation of these power functions by the help of the geometric measure represen-
tation formula (3) seems to be very complicated. It turns out to be much more easier to derive
lower bounds for the power functions by measuring suitable subsets of the critical regions
Kf,i with the elliptically symmetric measure 	η(γ ),σ 2In,g . The construction and measuring of
a single ball or a union of several balls inside the critical regions will be favored here.

In this article, we shall consider such possibilities for estimating the power function only
for the one-sided test �1, because the approximations for the power functions of the tests �2

and �3 may be carried out in a similar way.
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To construct a suitable ball inside a curved transformed cone-type set, we consider the
critical region Kf,1(tn−1,1−α) of the test �1 and a fixed alternative parameter value γ ∈ �1,
and try to construct a ball

Kn(η(γ ), R(γ )) := {z ∈ R
n: ‖z − η(γ )‖ ≤ R(γ )}

with center in the point η(γ ) ∈ M and possibly maximal radius R(γ ) chosen in such a way
that

Kn(η(γ ), R(γ )) ⊂ Kf,1(tn−1,1−α). (15)

This problem is equivalent to determining the minimal Euclidean distance between the point
η(γ ) and ∂Kf,1(tn−1,1−α), i.e., R(γ ) is the solution of the minimization problem

R(γ )2 = min
y∈∂Kf,1

‖y − η(γ )‖2. (16)

Recognize that there exists a solution of this minimization problem. It can be determined by
finding the solutions of a system of m − 1 nonlinear equations. In sections 4.1–4.3, we shall
already make use of the solution of the problem (16). The respective technical details are given
in refs. [24, 26].

4.1 Measuring a suitable ball: a first lower bound for the power function p�1

The first lower bound for the power function of the one-sided test �1 at the point γ1 ∈ �1

will be simply the probability measure of a possibly large ball inside the critical region
Kf,1(tn−1,1−α) having its center in the point η(γ1). Let R(γ1) denote the solution of the
minimization problem (16) for γ = γ1 at a fixed γ1 ∈ �1.

THEOREM 4.1 The power function of �1 satisfies the inequality

p�1(γ1) > 	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1)))

with the lower bound for p�1(γ1) being representable as

	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1))) = I−1
n,g

∫ R(γ1)/σ

0
rn−1g(r2) dr.

Proof Because the radius R(γ1) is a solution of the minimization problem (16) for γ = γ1,
it holds

Kn(η(γ1), R(γ1)) ⊂ Kf,1(tn−1,1−α).

Consequently,

	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1))) < 	η(γ1),σ 2In,g(Kf,1(tn−1,1−α)) = p�1(γ1).

For evaluating the probability measure of the ball Kn(η(γ1), R(γ1)), we can now use the
geometric measure representation formula (3).

Note that for the transformation V1 | Rn → R
n, V1(y) = σ−1(y − η(γ1)), y ∈ R

n, it holds

	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1))) = 	0n,In,g(V1(Kn(η(γ1), R(γ1))))

and

V1(Kn(η(γ1), R(γ1))) = Kn

(
0n,

R(γ1)

σ

)
.

The spherical measure of the ball Kn(0n, R(γ1)/σ ) is equal to the value of the distribution
function of the central g-generalized χ2-distribution at the point (R(γ1)/σ )2. The correspond-
ing geometric measure representation formula for this distribution was given in ref. [18] and
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exploited in ref. [21]. The intersection percentage function is

F
(

Kn

(
0n,

R(γ1)

σ

)
, r

)
=


1, 0 ≤ r ≤ R(γ1)

σ
,

0,
R(γ1)

σ
< r.

Hence, we got

	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1))) = 	0n,σ 2In,g

(
Kn

(
0n,

R(γ1)

σ

))
= I−1

n,g

∫ R(γ1)/σ

0
rn−1g(r2) dr.

�

A comparison of the first lower bound values with simulated values of the power function p�1

shows that this first approximation is already quite good for values γ1 ∈ �1 of the alternative,
far away from γ0. However, this first approximation fails for values γ1 close to γ0. That is why
we shall improve this first approximation by constructing and measuring additional suitable
balls inside the critical region. We consider two different possibilities in the forthcoming
sections. We construct only one additional ball with center at a certain distance from the point
η(γ1) in section 4.2 and a sequence of additional balls in section 4.3.

4.2 Measuring two balls: a first improvement of the lower bound for the power
function p�1

Let a value γ1 ∈ � be fixed and let us define a function ν1 | � → [0, ∞) by

ν1(γ ) := |η(γ ) − η(γ1)|, γ ∈ �1.

Put �̃1 := {γ ∈ �1: γ > γ1}. Assume that the function ν1 satisfies the assumption

(RA41) ν1(·) is monotonously and unbounded increasing in the strong sense as γ → b.

We shall choose a second ball Kn(η(γ̃ ), R(γ̃ )) inside the critical region Kf,1(tn−1,1−α) in
such a way that the elliptically symmetric measure of this ball is as large as possible in some
sense. To this end, the image V1(Kn(η(γ̃ ), R(γ̃ ))) of the second ball will be situated in such
a part of the sample space R

n where the weighting function

wg(r) := rn−1g(r2)

from the geometric measure representation formula attains its maximum value. It is possible
to evaluate the radius rg ,

rg := argmax
r∈(0,∞)

wg(r)

for different density generators g.

Example 4.1 (a) In the case of a Gaussian density generator gG it holds rgG = √
n − 1.

(b) If the density generator is of Pearson-VII-type then

rgP =
√

m∗(n − 1)

2M − (n − 1)
.
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(c) The Kotz-type density generator gK with M = 1 and n > 1 yields

rgK =
[
(n − 1)

2st

]1/(2s)

.

We choose the point η(γ̃ ) ∈ M, γ̃ ∈ �̃1, as the centre of the second ball, which has Euclidean
distance σrg from the point η(γ1).

THEOREM 4.2 Let a certain γ1 ∈ �1 be fixed and assume that the condition (RA41) is fulfilled.
Put rg = argmaxr∈(0,∞) wg(r) and let γ̃ ∈ �1 denote the uniquely determined solution of
the equation

ν1(γ ) = σrg.

Denote the solutions of the minimization problem (16) for γ = γ1 and γ = γ̃ by R(γ1) and
R(γ̃ ), respectively, and let

M := Kn(η(γ1), R(γ1)) ∪ Kn(η(γ̃ ), R(γ̃ )).

(a) The power function p�1 of the one-sided test �1 satisfies the inequality

p�1(γ1) > 	η(γ1),σ 2In,g(M).

(b) Let µ := σ−1(η(γ̃ ) − η(γ1)). The lower bound for p�1(γ1) satisfies the representation
formula

	η(γ1),σ 2In,g(M) = I−1
n,g

∫ ∞

0
F(M̃, r)rn−1g(r2) dr,

wherein F(M̃, ·) is the intersection percentage function (i.p.f.) of a well-defined set M̃ .
This i.p.f. can be written in terms of the i.p.f. of the ball Kn(µ, R(γ̃ )/σ ) as follows:

F(M̃, r) = I[0,R(γ1)/σ ](r) + I[rg−R(γ̃ )/σ,rg+R(γ̃ )/σ ](r) · F
(

Kn

(
µ,

R(γ̃ )

σ

)
, r

)
for rg > (R(γ1) + R(γ̃ ))/σ and

F(M̃, r) = I[0,R(γ1)/σ ](r) + I(R(γ1)/σ,rg+R(γ̃ )/σ ] · F
(

Kn

(
µ,

R(γ̃ )

σ

)
, r

)
otherwise. For the i.p.f. of the ball Kn(µ, R(γ̃ )/σ ), we refer to ref. [21].

Proof Recognize that 	η(γ1),σ 2In,g(M) = 	0n,In,g(M̃), where

M̃ = Kn

(
0n,

R(γ1)

σ

)
∪ Kn

(
µ,

R(γ̃ )

σ

)
.

According to assumption (RA41), the value γ̃ is uniquely determined. As a solution of the
minimization problem (16), R(γ̃ ) satisfies

Kn(η(γ̃ ), R(γ̃ )) ⊂ Kf,1(tn−1,1−α)

and thus we have for M := Kn(η(γ1), R(γ̃1)) ∪ Kn(η(γ̃ ), R(γ̃ )) the relation

M ⊂ Kf,1(tn−1,1−α).
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Consequently,

	η(γ1),σ 2In,g(M)<	η(γ1),σ 2In,g(Kf,1(tn−1,1−α)) = p�1(γ1).

The elliptically symmetric measure of the set M is equal to the spherical measure of the set
V1(M) = M̃ . The set M̃ can be decomposed as follows:

M̃ = Kn

(
0n,

R(γ1)

σ

)
∪

[
Kn

(
µ,

R(γ̃ )

σ

)
∩ Kn

(
0n,

R(γ1)

σ

)C
]
.

By construction, it holds ‖µ‖ = rg and

F(M̃, r) = 1 for r ∈
[

0,
R(γ1)

σ

]
.

Taking into account the cases that Kn(0n, R(γ1)/σ ) ∩ Kn(µ, R(γ̃ )/σ ) may be empty or not
and applying the i.p.f. for balls in ref. [21], we obtain assertion (b). �

4.3 Measuring several balls: improved lower bounds for p�1

Different improvements of the first lower bound for the power function p�1 at a fixed point
γ1 ∈ �1 can be obtained by constructing and measuring several balls inside the critical region
Kf,1(tn−1,1−α).

Let the function ν1 be defined as in section 4.2 and assume that the condition (RA41) is still
satisfied. Fix N ∈ N, N ≥ 2, and choose N − 1 parameter values γk ∈ �̃1, k = 2, . . . , N , in
such a way that γ1 < γ2 < · · · < γN with ν1(γ3) > R(γ1) if ν1(γ2) ≤ R(γ1). An example for
a reasonable concrete choice of the values γk will be given in section 4.4.

Let R(γk) denote the solutions of the minimization problem (16) corresponding to γ = γk ,
then

N⋃
k=1

Kn(η(γk), R(γk)) ⊂ Kf,1(tn−1,α).

We construct a disjoint decomposition of this union and derive the corresponding rep-
resentation formula to compute this improved lower bound for p�1(γ1). To this end,
let

KSn(η(γ ), r1, r2) := {z ∈ R
n: r1 < ‖z − η(γ )‖ ≤ r2}, 0 < r1 < r2 < ∞

denote a spherical shell with center η(γ ), γ ∈ �.
Put S1 := R(γ1), S2 := [max(R(γ1), ν1(γ2)) + ν1(γ3)]/2, Sk := [ν1(γk) + ν1(γk+1)]/2,

k = 3, . . . , N − 1, and SN := ν1(γN) + R(γN).
Let a set MN be defined by

MN :=
N⋃

k=2

[Kn(η(γk), R(γk)) ∩ KSn(η(γ1), Sk−1, Sk)]. (17)

THEOREM 4.3 Let γ1 ∈ �1 be fixed and assume that condition (RA31) is fulfilled.

(a) The power function p�1 of the one-sided test �1 satisfies the inequality

p�1(γ1) > 	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1)) ∪ MN),

with R(γ1) being the solution of the minimization problem (16) for γ = γ1 and MN being
given in equation (17).
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(b) Let µk := σ−1(η(γk) − η(γ1)), k = 2, . . . , N . The lower bound for p�1(γ1) satisfies the
representation formula

	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1)) ∪ MN)

= I−1
n,g

(∫ R(γ1)/σ

0
rn−1g(r2) dr +

N∑
k=2

∫ Sk/σ

Sk−1/σ

F
(
Kn

(
µk,

R(γk)

σ

)
, r

)
rn−1g(r2) dr

)
.

For the i.p.f. of the ball Kn(µk, R(γk)/σ ), we refer to the representation formula in
refs. [21, 24].

Proof The radii R(γk) satisfy

Kn(η(γk), R(γk)) ⊂ Kf,1(tn−1,1−α), k = 1, . . . , N,

and

Kn(η(γk), R(γk)) ∩ KSn(η(γ1), Sk−1, Sk) ⊂ Kf,1(tn−1,1−α), k = 2, . . . , N.

Hence, Kn(η(γ1), R(γ1)) ∪ MN ⊂ Kf,1(tn−1,1−α) and it holds

	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1)) ∪ MN) < 	η(γ1),σ 2In,g(Kf,1(tn−1,1−α)).

Recall that

Q2 	η(γ1),σ 2In,g(Kn(η(γ1), R(γ1)) ∪ MN) = 	0n,In,g

(
Kn

(
Bf

(
0n,

R(γ1)

σ

))
∪ M̃N

)
with

M̃N := V1(MN) =
N⋃

k=2

[
Kn

(
µk,

R(γk)

σ

)
∩ KSn

(
0n,

Sk−1

σ
,
Sk

σ

)]
.

The set Kn(Bf (0n, R(γ1)/σ )) ∪ M̃N is a union of N disjoint subsets, consequently
Q2

Q2 	0n,In,g

(
Kn

(
Bf

(
0n,

R(γ1)

σ

))
∪ M̃N

)

= 	0n,In,g

(
Kn

(
0n,

R(γ1)

σ

))
+

N∑
k=2

	0n,In,g

(
Kn

(
µk,

R(γk)

σ

)
∩ KSn

(
0n,

Sk−1

σ
,
Sk

σ

))
.

Assertion (b) follows directly with

	0n,In,g

(
Kn

(
µk,

R(γk)

σ

)
∩ KSn

(
0n,

Sk−1

σ
,
Sk

σ

))
= I−1

n,g

∫ Sk/σ

Sk−1/σ

F
(

Kn

(
µk,

R(γk)

σ

)
, r

)
rn−1g(r2) dr.

�

Notice that these considerations include the case of constructing N − 2 balls in addition
to the two balls considered already in section 4.2. Namely, we choose γl = γ̃ for a suit-
able l ∈ {2, . . . , N} in dependence on the relation between the quantities ν1(γ̃ ) and R(γ1). If
ν1(γ̃ ) ≤ R(γ1)putγ2 = γ̃ .According to the concrete differenceν1(γ̃ ) − R(γ1) and the density
generating function g, in the remaining case ν1(γ̃ ) > R(γ1) there are several reasonable
possibilities for choosing the index l.
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4.4 Numerical results

We consider the regression function f (x, γ ) = xγ , γ ∈ � = (−∞, ∞), and the experimental
design point x ∈ R

4 with ξ1 = 2, ξ2 = 3, n1 = 3, n2 = 1.
For comparing the different lower bounds for the power functions of the one-sided test �1

for γ0 = 2, σ 2 = 1, and α = 0.05, we choose three density generating functions gK, gG, and
gP1 with the parameters M = t = s = 1 for the Kotz-type generator gK and with m∗ = 3 and
M = (n + m∗)/2 = 7/2 for the Pearson-VII-type generator gP1 .

Notice that in the case of unknown parameter σ , the existence of the moments is also not
necessary for the construction of the tests and the evaluation of the different lower bounds
for the power functions. To illustrate this, we choose an additional density generator g = gP2

of Pearson-VII-type with parameters m∗ = 1 and M = (n + 1)/2 = 5/2, i.e., Y follows a
multivariate Cauchy distribution.

Recognize that the Kotz-type density generator gK defines lighter tails and the Pearson-VII-
type density generators gP1 and gP2 define heavier tails than the Gaussian density generator gG.
For a comparison of the functions I−1

n,gwg(r) = I−1
n,gr

n−1g(r2) for the four density generators,
see figure 4.

We simulate the power functions of the test �1 for all four density generating functions
with 100.000 repetitions. The results are given in figure 5.

Now, we evaluate the first lower bounds and the first improved lower bounds for the power
function p�1 according to Theorems 4.1 and 4.2. The integrations are performed by Simpson’s
rule with 100.000 steps.

Besides this, we use the result of section 4.3 with N = 4 and N = 8 for a further improve-
ment of the approximations especially for values γ1 ∈ �1 close to γ0. We choose different
parameter values γk,g , k = 2, . . . , N , for all four density generating functions. To determine
these parameter values γk,g for N = 4, we choose first three radii rg(0.25), rg(0.5), and
rg(0.75) in such a way that

	04,I4,g

(
K4

(
04, rg

(
k

4

)))
= k

4
, k = 1, 2, 3,

Figure 4. I−1
n,gwg(r) for n = 4 and the density generators g = gG, g = gP1 (m∗ = 3, M = 7/2), g = gP2 (m∗ = 1,

M = 5/2), and g = gK (M = t = s = 1).
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Figure 5. Simulated power functions for the density generators gK, gG, gP1 , and gP2 .

i.e., the radius rg(k/4) is the square root of the (k/4)-quantile of the central g-generalized
χ2-distribution with four degrees of freedom.

In the case g = gG, we use the quantiles of the usual χ2-distribution with four degrees of
freedom given in ref. [27], namely, rgG(0.25) = √

1.923, rgG(0.5) = √
3.357, rgG(0.75) =√

5.385.
If g = gP1 , g = gP2 , or g = gK, we evaluate the radii numerically by the help of the bisec-

tion method and the geometric measure representation formula for the distribution function
CQ(n; g)(·) of the central g-generalized χ2-distribution, in ref. [18], is given by

CQ(n; g)(R2) = 	0n,In,g(Kn(0n, R)) = I−1
n,g

∫ R

0
rn−1g(r2) dr.

The integration is performed again by Simpson’s rule with 100.000 steps and the itera-
tion algorithm stops if the approximation R for rgPi

(k/4), i = 1, 2, or rgK (k/4) satisfies
|CQ(4; g)(R2) − k/4| < 10−10. In this way, we get

rgP1
(0.25) = 1.397997357, rgP1

(0.5) = 2.062256723, rgP1
(0.75) = 3.091995344,

rgP2
(0.25) = 1.487655189, rgP2

(0.5) = 2.700159136, rgP2
(0.75) = 5.858649731

and

rgK (0.25) = 0.980448246, rgK (0.5) = 1.295510320, rgK (0.75) = 1.640924900.

Put γ1,g := γ1. The parameter values γk,g in section 4.3 are the solutions of the equations

ν1(γk,g) = rg

(
k − 1

4

)
, k = 2, 3, 4.

For the value γ1 far enough from γ0, the radius R(γ1) of the first ball exceeds the value
rg(0.5). In this case, we evaluate only γ3,g and γ4,g . If R(γ1) also exceeds the value rg(0.75), we
compute only the parameter value γ4,g . Hence, we use only for γ1-values of the alternative close
to γ0 the elliptically symmetric measure of the union of the four balls K4(η(γk,g), R(γk,g)),
k = 1, . . . , 4, for the evaluation of the lower bound of the power function.
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To check the influence of additional balls, we consider also the case N = 8 and compute, in
addition to rg(0.25), rg(0.5), and rg(0.75), the four radii rg(0.125), rg(0.375), rg(0.625), and
rg(0.875) by the same procedure. The parameter values γk,g , k = 2, . . . , 8 are the solutions
of the equation

ν1(γk,g) = rg

(
k − 1

8

)
.

If the radius R(γ1) exceeds the values rg((k − 1)/8), k = 3, . . . , 8, we compute only the
appropriate parameter values γk,g .

We evaluate these two additional lower bounds for the power function p�1 according to the
result of section 4.3 and use Simpson’s rule with 100.000 steps for each integration.

The results of our numerical study are given in figures 6, 7, 8 and 9. For the considered
density generators, the first lower bound b1 could be substantially improved by the computation
of the first improved lower bound bimp according to Theorem 4.2.

Figure 6. Kotz-type density generator gK.

Figure 7. Gaussian density generator gG.
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Figure 8. Pearson-VII-type density generator gP1 .

Figure 9. Pearson-VII-type density generator gP2 .

Figure 10. Pearson-VII-type density generator gP2 .
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Figure 11. Relative error of the first lower bound.

A further slight improvement for values γ1 close to γ0 could be observed for the lower bounds
bN according to the result of section 4.3 for N = 4 and N = 8. The differences between the
lower bounds for N = 4 and N = 8 are very small.

If g = gP2 , we evaluate the different lower bounds for a wider range of values γ1 ∈ �1. The
result is given in figure 10.

Figure 11 allows a certain joint interpretation of the effects reflected in figures 4 and 5.
Note that the relative error between the first lower bound and the simulated value of the power
function for the density generators gP1 and gP2 are smaller than the corresponding relative error
for the density generator gG for values γ1 close to γ0, because In,gPi

wgPi
(r) > In,gGwgG(r),

i = 1, 2, for small values of r .
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