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Abstract

Elementary trigonometric quantities are defined in l2,p analogously to that in
l2,2, the sine and cosine functions are generalized for each p > 0 as functions sinp

and cosp such that they satisfy the basic equation | cosp(ϕ)|p + | sinp(ϕ)|p = 1. The
p-generalized radius coordinate of a point ξ ∈ Rn is defined for each p > 0 as
rp = (

∑n
i=1 |ξi|p)1/p. On combining these quantities, ln,p−spherical coordinates are

defined. It is shown that these coordinates are nearly related to ln,p− simplicial coor-
dinates. The Jacobians of these generalized coordinate transformations are derived.
Applications and interpretations from analysis deal especially with the definition of
a generalized surface content on ln,p−spheres which is nearly related to a modified
co-area formula and an extension of Cavalieri’s and Torricelli’s indivisibeln method,
and with differential equations. Applications from probability theory deal especially
with a geometric interpretation of the uniform probability distribution on the ln,p-
sphere and with the derivation of certain generalized statistical distributions.
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1 Introduction

The use of suitably defined coordinates is of great importance in numerous
areas of mathematics. It is therefore not necessary to mention here many con-
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crete situations where ln,p−spherical and simplicial coordinates apply. Instead,
it suffices to refer to Section 4 which is devoted to a number of subjects where
the new coordinates presented here will be considerably successfully used. Al-
though in principal being standard it is sometimes anything but obvious in
which way coordinates should be defined. As to mention here just one such
situation we refer to [1] where the author defines generalized spherical coor-
dinates just with the aim for dealing with the uniform distribution on the
ln,p−sphere. But nevertheless he says as a certain resume of his mathemat-
ically deep study that it seems that the word ”uniform ” does not refer to
real, geometrical uniformity of the probability mass on the surface of the unit
sphere. Subsection 4.3 deals with this question. Our results include now a cer-
tain geometric interpretation. But note that this interpretation needs the new
notion of l2,p-generalized trigonometric functions which will be introduced in
Definition 1.
Level sets of the functions Tp(x, y) = (|x|p + |y|p)1/p, (x, y) ∈ R2 , p > 0 can be
easily described by the equation rp = c if one makes use of polar or standard
triangle coordinates in the cases p=2 and p=1, respectively. In this paper, we
shall consider r1 and r2 as special cases of the p-generalized radius coordi-
nate rp = (|x|p + |y|p)1/p, p > 0 and the functions sin ϕ and cos ϕ as special
cases of certain p-generalized trigonometric functions. Such functions will be
introduced in Section 2. Section 3 deals with ln,p-spherical and simplicial co-
ordinates. In Section 4, we shall present several analytical and probabilistic
applications and interpretations of these coordinates with an emphasis on the
definition of a p-generalized surface content of the ln,p− sphere, on differential
equations, on a geometric interpretation of the uniform probability distribu-
tion on the ln,p-sphere and on deriving certain generalized exact statistical
distributions. The final Section 5 contains most of the proofs.

2 The l2,p-generalized trigonometric functions

The following definition is basic for all what follows in this paper. Geometri-
cally, it means that we consider the right-angled triangle Tr = ((0, 0), (x, 0), (x, y))
from R+2 as a subset of l2,p for an arbitrary but fixed chosen p, p > 0 and in-
troduce elementary l2,p−trigonometric quantities analogously to that in R2.
The side length of Tr needed for defining the l2,p-sine and cosine functions
can be written with the help of the l2,p-distance dp as dp((0, 0), (x, y)) = (xp +
yp)1/p, dp((0, 0), (x, 0)) = x and dp((x, 0), (x, y)) = y. Hence, Tr satisfies the
p-generalized Pythagoras type equation xp + yp = rp with r=dp((0, 0), (x, y)).
This concept is directed, e.g., to dealing with situations where an ε-enlargement
of a set, e.g. for the purpose of taking the derivative of its volume w.r.t. a suit-
ably defined parameter, will not be defined through parallel sets of thickness
ε but through ”blowing up” the set by the factor 1+ε and where the set has
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a surface with a curvature-behavior like in the ”world” of a ln,p−ball with
p 6= 2. The following definition is therefore basic for, e.g., understanding the
relation between an ln,p-ball’s volume and its ln,p−generalized surface content
in Sections 4.2 and 4.3.

Definition 1 The p-generalized sine and cosine values of an angle ϕ ∈
[0, 2π) between the directions of the positive x-axes and the line through the
points (0,0) and (x, y) ∈ R2 are defined for each p > 0 as

sinp(ϕ) =
y

(|x|p + |y|p)1/p
and cosp(ϕ) =

x

(|x|p + |y|p)1/p
.

These functions will be alternatively called l2,p-sine and cosine functions, re-
spectively.

Obviously, it holds | cosp(ϕ)| ≤ 1, | sinp(ϕ)| ≤ 1 and

| cosp(ϕ)|p + | sinp(ϕ)|p = 1. (∗)

From Definition 1 it follows that for each p > 0, ϕ ∈ [0, 2π) it holds

sinp(ϕ) =
sin ϕ

Np(ϕ)
and cosp(ϕ) =

cos ϕ

Np(ϕ)
where Np(ϕ) = (| sin ϕ|p+| cos ϕ|p)1/p.

For ϕ 6= kπ/2, k ∈ {1, 2, 3}, the first order derivatives of sinp and cosp are

sin′p(ϕ) = cosp(ϕ)
| cos ϕ|p−2

(Np(ϕ))p
and cos′p(ϕ) = − sinp(ϕ)

| sin ϕ|p−2

(Np(ϕ))p
.

3 The ln,p-generalized coordinates

On combining the p-generalized radius coordinate rp = (
∑n

i=1 |xi|p)1/p in
n dimensions with the l2,p-generalized sine and cosine functions, we define
ln,p- spherical coordinates by replacing the familiar trigonometric functions
in the well known definition of n-dimensional polar coordinates with their
l2,p-generalized extensions from Definition 1.

Definition 2 The ln,p-spherical coordinate transformation SPHp |Mn −→
Rn, Mn = [0,∞) × M∗

n, M∗
n = [0, π)×(n−2) × [0, 2π) is defined for each p > 0

by x1 = r cosp(ϕ1), x2 = r sinp(ϕ1) cosp(ϕ2), ...,
xn−1 = r sinp(ϕ1) · . . . · sinp(ϕn−2) cosp(ϕn−1),
xn = r sinp(ϕ1) · . . . · sinp(ϕn−2) sinp(ϕn−1).

If n = 2 then this transformation is called l2,p-generalized polar coordinate
transformation.
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The following theorem shows that the angles ϕ1, ..., ϕn−1 from Definition 2 can
be interpreted analogously to the special case p = 2 and the interpretation of
the variable r is that of the p-generalized radius rp.
Let arccosp denote the inverse function of cosp .

Theorem 1 The map SPHp is almost one-to-one and its inverse is given
for each p > 0 by

r = (
n∑

i=1

|xi|p)1/p, ϕi = arccosp(
xi

(
n∑

j=i
|xj|p)1/p

), i = 1, ..., n−2, ϕn−1 = arctan
xn

xn−1

.

In the next definition we introduce to ln,p-simplicial coordinates. These coor-
dinates will be used in the proof of Theorem 2.

Definition 3 The ln,p-simplicial coordinate transformations
Sim+(-)

p,n |Nn −→ Rn−1 × R+(-) with Nn = [0,∞)×N∗
n, N∗

n = [−1, 1]×(n−1) are

defined for each p > 0 by xi = r̃[
i−1∏
j=1

(1− |µj|p)
1
p ]µi, i = 1, ..., n− 1,

xn = +(-)r̃(1− |µ1|p)
1
p · . . . · (1− |µn−1|p)

1
p .

If n = 2 then this transformation is called l2,p-generalized standard triangle
coordinate transformation. For finding the inverse maps of Sim+(-)

p,n we refer to
Theorem 1. Because of the basic equation (*), one has only to put cosp(ϕi) =
µi, i = 1, ..., n−1 and can consider then cosp(ϕi) in Definition 2 playing the role

of the simplicial coordinate µi in Definition 3 and sinp(ϕi) that of (1−|µi|p)
1
p .

In other words, ln,p-simplicial coordinates can be interpreted in terms of l2,p-
generalized trigonometric functions. This connection between the two types of
coordinates arranges a corresponding connection between ”round balls” and
”angular simplicia” and will be exploited in the proof of the following theorem
which is basic in many applications of the new coordinates.

Theorem 2 The ln,p-spherical coordinate transformation is almost on-to-one
and its Jacobian satisfies for each p > 0 the representation
J(SPHp)(r, ϕ) = rn−1J∗(SPHp)(ϕ), (r, ϕ) ∈ Mn, ϕi 6= kπ/2,∀i,∀k ∈ N,

J∗(SPHp)(ϕ) =
n−1∏
i=1

(sin ϕi)
n−1−i/(Np(ϕi))

n+1−i.

Remark 1 The Jacobians J∗(SPHp) and J∗(SPH2) are connected by the

equation J∗(SPHp)(ϕ) = J∗(SPH2)(ϕ)/
n−1∏
i=1

(Np(ϕi))
(n+1−i)/p.
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4 Applications and interpretations

4.1 The p-generalized elliptical coordinates

The set Ep(κ) = {(x, y) ∈ R2 : |x
a
|p + |y

b
|p ≤ κp}, p > 0, κ > 0; a > 0, b > 0

may be considered as a p-generalized ellipse. Let the p-generalized elliptical
coordinate transformation POLa,b

p |[0,∞)× [0, 2π) → R2 be defined by

x = ar cosp(ϕ) and y = br sinp(ϕ). Then r = (|x
a
|p + |y

b
|p)1/p,ϕ = arctan(ay

bx
)

and the Jacobian is J(POLa,b
p )(r, ϕ) = abr. The p-generalized ellipse allows

the representation Ep(κ) = POLa,b
p ({(r, ϕ) : r ≤ κ}).

4.2 Volume and surface content of the p-generalized ball

Let λn be the Lebesgue measure in Rn, Mn(%) = [0, %) × M∗
n and Kn,p(%) =

SPHp(Mn(%)) the centered ln,p−ball of p-generalized radius %. Then

λn(Kn,p(%)) =
∫

Mn(%)

J(SPHp)dϕn−1dϕn−2...dϕ1dr =
%n

n
ωn,p

where ωn,p =
∫

M∗
n

J∗(SPHp)(ϕ)dϕ. It follows

d

d%
λn(Kn,p(%)) = %n−1ωn,p.

It is well known that if p = 2 then d
d%

λn(Kn,p(%)) coincides with the surface

content of the ln,p-sphere Sn,p(%) which is the same as %n−1 times the surface
content of the unit sphere Sn,p(1). However, this is not so for arbitrary p > 0.
To see this, it suffices to deal with the case n = 2. To this end, let us consider
the special case of the p-generalized circle area

K2,p(%) =
⋃

0≤r≤%

C2,p(r)

where C2,p(r) = {(x, y) ∈ R2 : |x|p + |y|p = rp} = ∂K2,p(r), r > 0 is the p-
generalized circle line with the p-generalized radius r. The corresponding area
content and the arc-length are

λ2(K2,p(%)) =
∫

K2,p(%)

dxdy and L(C2,p(r)) = 8

π/4∫
0

(x′2(r, ϕ) + y′2(r, ϕ))1/2dϕ,
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respectively, where prime denotes the derivative with respect to the angle ϕ.
Changing Cartesian with l2,p-generalized polar coordinates

x = x(r, ϕ) = r cosp(ϕ), y = y(r, ϕ) = r sinp(ϕ), 0 ≤ ϕ ≤ π/2, 0 ≤ r ≤ %

we get r = (|x|p + |y|p)1/p, ϕ = arctan( y
x
) and D(x,y)

D(r,ϕ)
= r

(Np(ϕ))2
. Hence,

λ2(K2,p(%)) = 8

%∫
0

r[

π/4∫
0

dϕ

(Np(ϕ))2
]dr = 4%2

π/4∫
0

dϕ

(Np(ϕ))2

and d
d%

λ2(K2,p(%)) = 8%
π/4∫
0

dϕ
(Np(ϕ))2

. With the relations x′(ϕ) = −r sinp(ϕ) (sin ϕ)p−2

(Np(ϕ))p

and y′(ϕ) = r cosp(ϕ) (cos ϕ)p−2

(Np(ϕ))p , it follows that

L(C2,p(%)) = 8%

π/4∫
0

[(sinp(ϕ))2(sin ϕ)2(p−2) + (cosp(ϕ))2(cos ϕ)2(p−2)]1/2

(Np(ϕ))p
dϕ

= 8%

π/4∫
0

(1 + (tan ϕ)2p−2)1/2

(1 + (tan ϕ)p)1−1/p

dϕ

(Np(ϕ))2
.

Note that 0 ≤ tan ϕ ≤ 1 for 0 ≤ ϕ ≤ π/4. Further, we have 2p − 2 > p iff
p > 2 and p > 2 iff 1− 1/p > 1/2. In that case,

(1 + (tan ϕ)2p−2)1/2 < (1 + (tan ϕ)p)1−1/p.

The following theorem has thus been proved.

Theorem 3 The relations L(C2,p(%)) < (=)(>) d
d%

λ2(K2,p(%)) hold if and only

if p > (=)(<)2, respectively.

Remark 2 In the ”flat” case p = 1, we have the proportionality relation

L(C2,1(%)) =
√

2
d

d%
λ2(K2,1(%)).

4.3 The ln,p-generalized surface content of the ln,p−sphere

Methods for determining volumes of multi-dimensional solids and methods for
determining surface contents of the solid’s intersections with suitably chosen
(hyper-) planes are nearly connected with each other through Cavalieri’s fa-
mous indivisibeln method. This is analogously true in Torricelli’s extension of
this method using ln,2−spheres as indivisibeln. An additional weight function
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for the indivisibeln was introduced in [2] and [3] for deriving a geometric mea-
sure representation of the Gaussian law. For an extension of this approach to
ln,2−spherical distributions see [4] and also [5].
This subsection deals with a further extension of the indivisibeln method in
the sense of two aspects. The first one is that we shall consider indivisibeln
which are, in general, not parallel sets as in the case p = 2, but are ln,p-spheres
being non parallel for different p-generalized radii if p 6= 2. From this basic
effect, however, it results the following seemingly insuperable conflict. On the
one hand, in accordance with the method of Cavalieri-Torricelli, the deriva-
tion of the volume of the ln,2−ball with respect to its radius equals the surface
area content. On the other hand, however, as we have seen in the preceding
subsection, we cannot expect an analogous relation in the case of arbitrary
p > 0, i.e., if we consider the volume of a ln,p− ball and take its derivative
with respect to the p-generalized radius r = (

∑
i |xi|p)1/p for p 6= 2. In other

words, the volume is not still the ”sum” or, more precisely, the integral of the
surface contents of the indivisibeln if p 6= 2. This circumstance is in some dual
sense expressed in the so called co-area formula of analysis where the integral
of suitably defined surface contents does not coincide with the corresponding
volume, in general. Instead, this integral can be interpreted as a certain gener-
alized volume. Hence, it may be a natural way out of this conflict that we shall
consider the derivation of the volume of the ln,p-ball with respect to the p-
generalized radius as the p-generalized surface content of the ln,p−sphere. This
is the second aspect of the present extension of the method of Cavalieri and
Torricelli. Before defining this formally, we introduce the following notions.
The Borel-σ field on Sn,p(1) will be denoted by BS,p. The set CPCp(A) =

{x ∈ Rn : x/(
n∑

i=1
|xi|p)1/p ∈ A} will be called the central projection cone of the

set A ∈ BS,p and the set sectorp(A, %) = CPCp(A) ∩Kn,p(%) will be called a
sector of the ball Kn,p(%), % > 0. Further, let Bn ∩ Sn,p(r) =: Bn,p(r) be the
Borel σ−field on the sphere Sn,p(r) with p-generalized radius r > 0.

Definition 4 The finite measure ν(r)
n,p|Bn,p(r) → R+ which is defined for each

p > 0 as ν(r)
n,p(A) = d

d%
λn(sectorp(

1
r
A, %))|%=r , A ∈ Bn,p(r), r > 0 will be called

the ln,p-generalized surface measure on the ln,p-sphere Sn,p(r).

At this stage of investigation, Definition 4 may still seem to be formally. This
yet possible impression will change, however, at the latest after having read
the remaining part of this subsection as well as Definition 8 and Remark 4 at
the end of Subsection 4.5.
The following theorem can be interpreted as a modified co-area formula or
disintegration formula for the n-dimensional Lebesgue measure λn. Differently
from known such formulas, the left hand side of our equation represents a
volume and the right hand side makes use of the just defined ln,p-generalized
surface measure which does, generally speaking, not coincide with the ordinary
surface content.
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Theorem 4 For all Borel measurable sets B ⊂ Rn, it is true that

λn(B) =
∞∫
0

ν(r)
n,p(B ∩ Sn,p(r)) dr.

Note that this formula overcomes the seemingly insuperable conflict described
at the beginning of this subsection. It follows from the consideration in the
preceding subsection that

ν(r)
n,p(B ∩ Sn,p(r)) = rn−1Qp(

1

r
B ∩ Sn,p(1)), B ∈ Bn,p(r)

where the finite measure Qp|BS,p → R+ is defined with SPH∗
p (ϕ) = SPHp(1, ϕ)

as
Qp(A) =

∫
SPH∗−1

p (A)

J∗(SPHp)(ϕ)dϕ, A ∈ BS,p.

Theorem 4 can therefore be reformulated as

vol(B) = ωn,p

∞∫
0

rn−1FB,p(r)dr, B ∈ Bn.

Here, according to [2-5, 10, 11], we call

r → FB,p(r) = Qp(
1

r
B ∩ Sn,p(1))/Qp(Sn,p(1))

the ln,p−sphere intersection percentage function of the set B.

Thus, if we look at the triple (volume, surface, radius) then the definition of
the volume remains unchanged here, as usual, but the definitions of the radius
and the surface content have been changed simultaneously.

Example For a possible technical application of the notion of the p-generalized
surface content imagine the following situation. Let a workpiece being pro-
duced on a machine tool which is constructed like a l2,p−pair of compasses,
i.e. a ”pair of compasses” moving a tool along a l2,p−circle line of fixed p-
generalized radius r > 0. For refining the surface structure, the machine moves
in a second step another tool along the l2,p−circle line of radius r + ε, cre-
ating thereby a thin protective coat by applying a special material to the
workpiece’s surface. The consumed material has then approximately, that is
for small ε, the volume ε · ν

(r)
2,p(S2,p(r)), i.e., ε times the p-generalized arc-

length of the p-generalized l2,p−circle line of p-generalized radius r. Hence,
the ln,p−generalized surface measure allows a true geometric interpretation in
real life applications.
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4.4 Formal definitions of generalized sine and cosine functions

a) A characteristic first order differential equation system
Recall that there are different possibilities besides the geometric one to define
the trigonometric functions sine and cosine. One of them is to solve a suitable
differential equation system. To this end, let f and g denote real functions of
a real variable and assume that they satisfy the differential equations f ′(x) =
g(x), g′(x) = −f(x) and the initial conditions f(0) = 0, g(0) = 1. Then
f(x) = sin x, g(x) = cos x.
Which differential equation system should one start from if one would like
to define the p-generalized trigonometric functions in an analogous way? The
following consideration deals with this question. It follows from Section 2 that
for ϕ ∈ (0, 2π), ϕ 6= kπ/2, k ∈ {1, 2, 3}, we have

sin′p(ϕ) = cosp(ϕ)| cosp(ϕ)|p−2Np(ϕ)−2, cos′p(ϕ) = − sinp(ϕ)| sinp(ϕ)|p−2Np(ϕ)−2,

N ′
p(ϕ) = Np(ϕ)[cosp(ϕ) sinp(ϕ)| sinp(ϕ)|p−2 − sinp(ϕ) cosp(ϕ)| cosp(ϕ)|p−2].

In other words, the functions looked for satisfy the differential equation system

f ′(x) = g(x)
|g(x)|p−2

(h(x))2
, g′(x) = − f(x)

|f(x)|p−2

(h(x))2
,

h′(x) = h(x)f(x)g(x)
[
|f(x)|p−2 − |g(x)|p−2

]
with initial conditions f(0) = 0, g(0) = 1 and h(0) = 1.

b) Integral representation for the inverse p-generalized sine function
Another possibility besides the geometric one is to consider the integral

AS(x) =

x∫
0

dy√
1− y2

,−1 < x < 1

and to define the sine function as the inverse of the AS function. If one replaces
the integral AS by an elliptic integral then one gets a well known generalization
of the sine function. In the following theorem, we show that the inverse of the
p-generalized sine function is another generalization of the AS function.

Theorem 5 The p-generalized sine function is the inverse of the function

ASp(x) =

x∫
0

(
y2(1 + [

1

|y|p
− 1]2/p)(1− |y|p)1− 1

p

)−1

dy.
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4.5 The lp-generalizations of classical statistical distributions

Let X1, ..., Xn denote independent and identically distributed random vari-
ables and assume that their common density function is

f(x) = Cp exp{−|x|
p

p
}, x ∈ R with Cp = p1− 1

p /[2Γ(
1

p
)] .

This means that the distribution Np of the random vector X(n) = (X1, ..., Xn)
is the so called p-generalized n-dimensional normal distribution which was
introduced in [7]. In other words, X(n) follows the ln,p-spherical or, if p ≥ 1,
the ln,p-norm symmetric distribution Np. With the notation ξp = (|X1|p +
... + |Xn|p)1/p , we consider the following p-generalization of the well known
χ−distribution function with n degrees of freedom

Fp(x) = P (ξp < x) = Cn
p

∫
Kn,p(x)

exp{−1

p

n∑
i=1

|xi|p}dx1...dxn, x ∈ R.

Changing Cartesian with ln,p-spherical coordinates, we get

Fp(x) = Cn
p ωn,p

x∫
0

rn−1 exp{−rp

p
}dr.

The corresponding probability density function is

fp(x) =
d

dx
Fp(x) = I(0,∞)(x)Cn

p ωn,px
n−1 exp{−xp

p
}.

Note that this distribution is a special Kotz type distribution. From our ap-
proach, however, it turns out to be natural to consider it as a p-generalization
of the well known χ−distribution. Similarly, the distribution of ξp

p may be
considered as a p-generalization of the χ2−distribution. Its density is

d

dx
P (ξp

p < x) =
1

p
x

1
p
−1fp(x

1
p ).

From the relation 1 = lim
x→∞

Fp(x) it follows (ωn,p)
−1 = Cn

p

∞∫
0

rn−1 exp{− rp

p
}dr

and with In,p =
∞∫
0

rn−1 exp{− rp

p
}dr = p

n
p
−1Γ(n

p
) we get

ωn,p =
2nΓ(1

p
)n

pn−1Γ(n
p
)
.
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The following definition has thus been well motivated and the subsequent
theorem has been just derived.

Definition 5 A continuous random variable Z is said to be distributed ac-
cording to the p-generalized χ − distribution with n degrees of freedom (d.f.)
if its density function is

fp(x) = I(0,∞)(x)
1

p
n
p
−1Γ(n

p
)
xn−1 exp{−xp

p
}, x ∈ R,

symbolically Z ∼ χ(p, n). A continuous random variable Y is said to be dis-
tributed according to the χp− distribution (or p-generalized χ2−distribution )
with n d.f. if its density function is

fn,p(x) = I(0,∞)(x)
1

p
n
p Γ(n

p
)
x

n
p
−1 exp{−x

p
}, x ∈ R,

symbolically Y ∼ χp(n). Here, n is a natural and p is a positive real number.

Theorem 6 If X(n) is a Np−distributed random sample then

ξp ∼ χ(p, n) and ξp
p ∼ χp(n).

Remark 3 If

f(x|n) =
x

n
2
−1e−x/2

2n/2Γ(n
2
)

I(0,∞)(x), x ∈ R

denotes the well known chi-square density function with n d.f. then it is pos-
sible to represent the χp-density formally with the help of the usual chi-square
density function as

fn,p(x) =
2

p
f(

2

p
x|2

p
n).

From an analytical point of view, one could like therefore to say that the
definition of the ordinary χ2− distribution is extended here to the case that
the degree of freedom is not necessary a natural number. From a statistical
as well as from a geometrical point of view, however, one should prefer to call
the quantity 2n

p
under this circumstances simply a positive parameter instead

of a degree of freedom. The following definition could therefore be considered
as a possible alternative to Definition 5.

Definition 6 A continuous random variable X is said to be distributed ac-
cording to a two parameter chi-square distribution with parameters n ∈ N and
p > 0 if its density function is fn,p.

Applications of spherical coordinates to the derivation of statistical distribu-
tions can be found in [8,9] and [2,10]. For another generalization of spherical

11



coordinates we refer to [1]. Multidimensional simplicial or Jacobi coordinates
and their application to statistical distributions were introduced in [11]. Fur-
ther applications of these coordinates to the derivation of statistical distribu-
tions can be found also in [12,13].

We consider now the following p-generalized Student type statistic

T (p) =
X1

( 1
n−1

[|X2|p + ... + |Xn|p])1/p
.

Definition 7 A continuous random variable Z is said to be distributed ac-
cording to the p-generalized Student-(or t-)distribution with n d.f. if its density
is

f(x) =
pΓ(n+1

p
)

2n1/pΓ(n
p
)Γ(1

p
)
(1 +

xp

n
)−

n+1
p , x ∈ R;

symbolically Z ∼ tn(p).

Theorem 7 If X(n) is a Np−distributed random sample then the p-generalized
Student type statistic follows the p-generalized t-distribution with n-1 d.f., i.e.,
T (p) ∼ tn−1(p).

As announced in Subsection 4.3., we come finally back to Definition 4 and the
ln,p-generalized surface measure introduced there.

Definition 8 The normalized measure U (r)
n,p(A) = ν(r)

n,p(A)/ν(r)
n,p(Sn,p(r)), A ∈

Bn,p(r) will be called the ln,p-generalized uniform probability distribution on
the sphere Sn,p(r).

Remark 4 The ln,p-generalized uniform probability distribution U (1)
n,p on the

unit sphere Sn,p(1) as it was defined in Definition 8 coincides with a distri-
bution having a similar name, i.e., with the uniform distribution on Sn,p(1)
which was introduced in [1] and [6] in a different way and without any geomet-
ric interpretation. Note that the ln,p-generalized uniform distribution U (1)

n,p on
the unit sphere Sn,p(1) can be interpreted as a geometric probability measure
in terms of the ln,p-generalized surface content but not in terms of the (usual)
surface content, unless in the case p = 2. The name uniform distribution on
Sn,p(1) could therefore be used instead for the geometric probability measure
on Sn,p(1) in terms of the usual surface content. For details, see the proof of
this remark.

5 Proofs

Proof of Theorem 1

12



It follows from the equation | sinp(ϕn−1)|p + | cosp(ϕn−1)|p = 1 that

|xn−1|p + |xn|p = rp| sinp(ϕ1)|p · . . . · | sinp(ϕn−2)|p.

Iteratively, we see that

|xn−2|p + |xn−1|p + |xn|p = rp| sinp(ϕ1)|p · . . . · | sinp(ϕn−3)|p, ...,
n∑

j=i

|xj|p = rp| sinp(ϕ1)|p · . . . · | sinp(ϕi−1)|p, i = 2, ..., n− 1.

Finally, we have |x1|p + . . . + |xn|p = rp, i.e., r is uniquely defined as r =

(
n∑

i=1
|xi|p)1/p. It follows from the definition of the transformation SPHp that

cosp(ϕ1) = x1/r, hence ϕ1 ∈ [0, π) is uniquely defined as ϕ1 = arccosp(x1/r). It
follows also from the definition of SPHp that |x2|p = rp(1−| cosp(ϕ1)|p)| cosp(ϕ2)|p.
On combining this with

n∑
j=2

|xj|p = rp − |x1|p = rp(1− | cosp(ϕ1)|p), we get

| cosp(ϕ2)| = |x2|/(
n∑

j=2
|xj|p)1/p. Furthermore, sign{cosp(ϕ2)} = sign{x2}, i.e.

cosp(ϕ2) = x2/(
n∑

j=2
|xj|p)1/p. This means that ϕ2 ∈ [0, π) is uniquely defined

as ϕ2 = arccosp(x2/(
n∑

j=2
|xj|p)1/p). Continuing this way, we see finally that

ϕn−2 ∈ [0, π) is uniquely defined as ϕn−2 = arccosp(xn−2/(
n∑

j=n−2
|xj|p)1/p).

The last assertion of the theorem follows because ϕn−1 ∈ [0, 2π) satisfies
sign{cosp(ϕn−1)} = sign{xn−1}, sign{sinp(ϕn−1)} = sign{xn}

Proof of Theorem 2
The proof will be given in three steps. First, we recall that in the same way as
the Jacobian is derived, e.g., in [14] for the usual ln,2- spherical coordinates, one
can check that the ln,p-simplicial coordinate transformation has the Jacobian

J(Sim+(-)
p,n ) = | D(x1, ..., xn)

D(r̃, µ1, ..., µn−1)
| = r̃n−1J∗(Sim+(-)

p,n ),

J∗(Sim+(-)
p,n ) =

n−1∏
i=1

(1− |µi|p)(n−p−i)/p.

Changing now ln,p-simplicial coordinates with ln,p-spherical coordinates means
to consider in the second step the transformation SPHSIMp|Mn −→ Nn

being defined by r̃ = r, µi = cosp(ϕi), i = 1, ..., n− 1. Its Jacobian is

J(SPHSIMp) = |D(r̃, µ1, ..., µn−1)

D(r, ϕ1, ..., ϕn−1)
|

= | det diag(
d

dϕ1

cosp(ϕ1), ...,
d

dϕn−1

cosp(ϕn−1), 1)|

13



=
n−1∏
i=1

| sinp(ϕi)|
| sin ϕi|p−2

| sin ϕi|p + | cos ϕi|p
.

On combining these two maps, we get in the third step

J(SPHp) = J(SIM+(-)
p,n )J(SPHSIMp)

= rn−1
n−1∏
i=1

| sinp(ϕi)|n−p−i+1 | sin ϕi|p−2

| sin ϕi|p + | cos ϕi|p
,

i.e., J∗(SPHp)(ϕ) =
n−1∏
i=1

| sinp(ϕi)|n−1−i/(Np(ϕi))
2. Finally, sin ϕi ≥ 0 because

ϕi ∈ [0, π] for i = 1, ..., n− 2.

Proof of Theorem 4
The collection Sp of all sets of the type
sectorp(D, %2) \ sectorp(D, %1) =: Ap(D; %1, %2), 0 < %1 < %2 < ∞, D ∈ BS,p

is a semi ring. We consider a finite, additive set function on it by

λ∗n,p(Ap(D, %1, %2)) =
%2∫
%1

ν(r)
n,p(Ap(D, %1, %2) ∩ Sn,p(r))dr.

Denote the smallest ring including Sp by Rp. If (Ak) is a sequence from Rp

satisfying Ak+1 ⊂ Ak,∀k and
∞⋂

k=1
Ak = ∅ then λ∗n,p(Ak) → 0 as k → ∞, i.e.,

λ∗n,p is continuous at ∅ and therefore countable additive on Rp. Because

ν(r)
n,p(Ap(D, %1, %2) ∩ Sn,p(r)) = rn−1Qp(D), r ∈ (%1, %2), there holds

λ∗n,p(Ap(D, %1, %2)) = Qp(D)(
%n
2

n
− %n

1

n
).

Changing Cartesian with ln,p-spherical coordinates, we get further

vol([%1, %2] × D) = Qp(D)(
%n
2

n
− %n

1

n
). Hence, λ∗n,p and the Lebesgue measure

λn = vol coincide on Rp. It follows by measure extension theorem that λ∗n,p

and λn coincide on the σ-algebra of all Borel measurable sets B ⊂ Rn.

Proof of Theorem 5
Let Φ−1(x) be the inverse of the differentiable function y = Φ(x), then

d

dx
Φ−1(x) =

1

Φ′(Φ−1(x))
.

With Φ(x) = sinp(x) and Φ−1(x) = arcsinp(x), it follows that

d

dx
arcsinp(x) = (sin′p(y))−1|y=arcsinp(x) =

N2
p (arcsinp(x))

[cosp(arcsinp(x))]p−1
.

It follows from equation (*) that | cosp(arcsinp(x))|p = 1−|x|p. It remains now
to consider N2

p (arcsinp(x)). We have

sin(arcsinp(x)) = sinp(arcsinp(x))(| sin ϕ|p + | cos ϕ|p)1/p

14



with ϕ = arcsinp(x). If we put a = sin ϕ and b = cos ϕ then it follows
a = x(|a|p+|b|p)1/p. On combining this with the equation a2+b2 = 1, it follows

|b|p = (1− a2)p/2 , |a| = (1 + (
1

|x|p
− 1)2/p)−

1
2 = | sin(arcsinp(x))|,

|b| =
( 1
|x|p − 1)1/p

(1 + ( 1
|x|p − 1)2/p)1/2

= | cos(arcsinp(x))|.

Thus, we have

N2
p (arcsinp(x)) = (|a|p + |b|p)2/p =

1

x2 + (1− |x|p)2/p
,

d

dx
arcsinp(x) =

1

(x2 + (1− |x|p)2/p)(1− |x|p)(p−1)/p
.

Proof of Theorem 7
Let us consider distribution function Gp(t) = P (T (p) < t), t ∈ R. Obviously,

Gp(t) = P (X1 ≤ 0) + Cn
p

∫
Cp(t)

exp{−1

p

n∑
i=1

|xi|p} dx1...dxn, t > 0

where the set Cp(t) = {x ∈ Rn : x1 > 0, x1

(|x2|p+...+|xn|p)1/p < t
(n−1)1/p} is a cone in

Rn. Using ln,p−spherical coordinates, from Section 2 we get xi/(
n∑

j=i
|xj|p)1/p =

cosp(ϕi), i = 1, ..., n−1. Consequently, | sinp(ϕi)| = (
n∑

j=i+1
|xj|p)1/p/(

n∑
j=i
|xj|p)1/p,

i = 1, .., n − 1. Recall that| sinp(ϕi)| = sinp(ϕi) for i = 1, ..., n − 2 because
ϕi ∈ [0, π), i = 1, ..., n − 2. On combining the last two equations it follows

cot ϕi = xi/(
n∑

j=i+1
|xj|p)1/p, i = 1, ..., n− 2 and therefore

Cp(t) = SPHp({(r, ϕ1, ..., ϕn−1) ∈ Mn : 0 ≤ cot ϕ1 < t
(n−1)1/p})

= SPHp({(r, ϕ1, ..., ϕn−1) : 0 ≤ r < ∞, 0 ≤ cot ϕ1 < t
(n−1)1/p ,

0 ≤ ϕi < π, i = 2, ..., n− 2, 0 ≤ ϕn−1 < 2π}).
In other words, we have
Cp(t) = SPHp({(r, ϕ1, ..., ϕn−1) ∈ Mn : arc cot( t

(n−1)1/p ) < ϕ1 ≤ π/2}). This
gives

Gp(t)− 1
2

= Cn
p

∞∫
0

rn−1 exp{− rp

p
}dr

∫
M∗

n∩{arc cot( t

(n−1)1/p
)<ϕ1≤π/2}

J∗(SPHp)(ϕ)dϕ

= ωn−1,p

ωn,p

π/2∫
arc cot( t

(n−1)1/p
)

(sinp(ϕ1))n−2

(Np(ϕ1))2
dϕ1.

The probability density function corresponding to this distribution is

gp(t) =
pΓ(n

p
)

2Γ(n−1
p

)Γ(1
p
)

(sinp(arc cot( t
(n−1)1/p )))n−2

(Np(arc cot( t
(n−1)1/p )))2

(
1

1 + t2

(n−1)2/p

)
1

(n− 1)1/p
.
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It follows from the relations

sin(arc cot x) =
1√

1 + x2
and cos(arc cot x) =

x√
1 + x2

that

Np(arc cot x) = ((
1√

1 + x2
)p + (

x√
1 + x2

)p)1/p = (
1 + xp

(1 + x2)p/2
)1/p

and

sinp(arc cot x) =
1

(1 + |x|p)1/p
.

Hence,

gp(t) =
pΓ(n

p
)

2Γ(n−1
p

)Γ(1
p
)(n− 1)1/p

(1 +
tp

n− 1
)−

n
p .

The last formula is true with t replaced by |t| for all t ∈ R because of the
symmetry of the Np− distribution.

Proof of Remark 4
Let us consider the random vector θ = X(n)/ξp. Obviously, it takes values
on the unit sphere Sn,p(1). The distribution U∗

n,p of θ, i.e., U∗
n,p(A) = P (θ ∈

A), A ∈ BS,p is formally dealt with in [1] and [6] in different ways as just the
uniform distribution on Sn,p(1). It can be written as

U∗
n,p(A) = P (Np ∈ CPCp(A)) = Cn

p

∫
CPCp(A)

exp{−1
p

n∑
i=1

|xi|p}dx1...dxn

= Cn
p Qp(A)

∞∫
0

rn−1 exp{− rp

p
}dr = Qp(A)/ωn,p = ν(1)

n,p(A)/ν(1)
n,p(Sn,p(1)) = Un,p(A).
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