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Abstract. Circle numbers are defined which reflect the Euclidean area-content-
and a suitably defined non-Euclidean, if p 6= 2, circumference-properties of the
l2,p-circles, p ∈ [1,∞]. The resulting function is continuous and monotonously
increasing and takes all values from [2, 4].
The actually chosen dual l2,p∗-geometry for measuring the arc-length is close-
ly connected with a generalization of the indivisiblen method of Cavalieri and
Torricelli in the sense that integrating such arc-lengths means measuring area
content. Moreover, this approach enables one to look in a new way onto the co-
area formula of measure theory which says that integrating Euclidean arc-lengths
does not yield area content unless for p = 2.
The new circle numbers play a natural role, e.g., as norming constants in geome-
tric measure representation formulae for p-generalized uniform probability distri-
butions on l2,p-circles.
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1. Introduction People are dealing with the Archimedes or Ludolph num-
ber π more or less explicitly since millenniums. For an excellent and considerable
complete introduction to the theme π we refer to [2, 3, 4, 6, 11]. Because of its
long history, the idea of π is for many people that of unchangeableness. However,
if we look nearer then we can see that things are nevertheless in motion. Without
going into any details, we refer to [1, 7, 8, 10, 15, 16, 17, 19, 20, 22, 23] where
several contributions were made on the geometric way to the generalization of π.
The famous name circle number is due to the following well known facts. Both
the ratio of the circle’s circumference to its diameter is the same for all circles
and the ratio of the inside disc’s area content to the square of the radius is the
same for all circles. The corresponding constants coincide and their value is just
π. What can we say about similar chosen ratios if we consider l2,p-circles for ar-
bitrary p ∈ [1,∞] and r > 0 ?
In the present paper, we let measuring the area content unchanged Euclidean and
use, for each p ∈ [1,∞], p 6= 2, that non-Euclidean geometry for measuring the
circumference of the l2,p-circle which is generated by the ’dual’ l2,p∗-circle. The
notion of the diameter will be replaced by twice the p-generalized radius.
Recall that the co-area formula of measure theory (see, e.g., in [9]) says that in-
tegrating the l2,2-arc-lengths of the l2,p-circles with radii r ∈ [0, R] does not yield
the area content of Kp(R) unless for p = 2. The present approach, however, is
based upon a disintegration formula for the Lebesgue measure which shows that
integrating the l2,p∗-arc-lengths of the l2,p-circles yields the area content of Kp(R).
This circumstance can also be interpreted as a generalization of the famous in-
divisiblen method of Cavalieri and Torricelli where the indivisibles are now the
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circles Cp(r). For the original probabilistic justification of this approach, we refer
to [18] from where we see, e.g., that the notion of the uniform distribution on the
unit circle Cp(1) is closely connected with the notion of the p-generalized circle
number presented here.
It turns out in the present paper that, just like in the Euclidean case, the area
content of the unit disc is suitable for defining this p-generalized circle number
for each p ∈ [1,∞]. The resulting π-function takes therefore all values from [2, 4].

2. Results The set Cp(r) = {(x, y) ∈ R2 : |x|p + |y|p = rp} will be considered
for p ≥ 1 as the l2,p-circle with p-generalized radius r > 0. The Euclidean area
content of the disc Kp(r) inside Cp(r) will be denoted by Ap(r). It is well known
that Ap(r) = Apr

2 where

Ap =
2Γ2(1

p
)

pΓ(2
p
)
. (1)

For defining the circumference of Cp(r), the circle will be considered as a subset
of a Minkowski plane (R2, dq), q ≥ 1 where dq((u, v)) = (|u|q + |v|q)1/q denotes
the l2,q-norm of the point (u, v) from R2 and q ≥ 1 will be chosen later.

Let z0, z1, ..., zn be an arbitrary successive partition of the circle Cp(r) and de-
fine the dq-arc-length ALp,q(r) of this circle as the supremum of

∑n
j=1 dq(zj−zj−1)

taken over all such partitions. We have then ALp,q(r) = rALp,q where ALp,q de-
notes the length of the unit circle.

Lemma (a) If p∗ satisfies the equation 1
p

+ 1
p∗

= 1 for p > 1 and p∗ = ∞ for
p = 1 then the following equation is valid for each p ≥ 1:

ALp,p∗ = 2Ap.

(b) The value of p∗ is unique in the sense that ALp,q > ALp,p∗ if q < p∗ and
ALp,q < ALp,p∗ if q > p∗.

Proof (a) It is well known that

ALp,q = 4

1∫
0

(1 + |y′(x)|q)1/qdx, y(x) = (1− xp)1/p.

On substituting u = xp, we get

ALp,q =
4

p

1∫
0

(u(1−p)q/p + (1− u)(1−p)q/p)1/qdu.

Under the assumptions of the lemma, it follows

ALp,p∗ =
4

p

1∫
0

(u−1 + (1−u)−1)(p−1)/pdu =
4

p

1∫
0

u
1
p
−1(1−u)

1
p
−1du =

4

p
B(

1

p
,
1

p
)

where B(. , .) denotes the Beta function. Hence, ALp,p∗ = 2Ap for all p ≥ 1.
(b) Let the positive quadrant part of Cp(1) be described by

x = cosϕ/Np(ϕ), y = sinϕ/Np(ϕ)
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where Np(ϕ) = (| sinϕ|p + | cosϕ|p)1/p and 0 ≤ ϕ < π/2. The arc-length ALp,q
can be written as

ALp,q = 8

π/4∫
0

(|x′(ϕ)|q + |y′(ϕ)|q)1/qdϕ

with

x′(ϕ) = − (sinϕ)p−1

(Np(ϕ))p+1
, y′(ϕ) =

(cosϕ)p−1

(Np(ϕ))p+1
.

Hence,

ALp,q = 8

π/4∫
0

((
sinϕ

Np(ϕ)
)(p−1)q + (

cosϕ

Np(ϕ)
)(p−1)q)1/q dϕ

N2
p (ϕ)

= 8

π/4∫
0

(1 + (tanϕ)q(p−1))1/q

(1 + (tanϕ)p)1−1/p

dϕ

N2
p (ϕ)

.

Because of 0 ≤ tanϕ ≤ 1 for 0 ≤ ϕ ≤ π/4 and

q(p− 1) = (>)(<)p⇔ q = (>)(<)p∗ ⇔ 1− 1/p = (>)(<)1/q

it follows that (1+(tanϕ)q(p−1))1/q

(1+(tanϕ)p)1−1/p = (<)(>)1 iff q = (>)(<)p∗, respectively �

Summarizing what we know so far, we have, for all r > 0,

Ap(r)

r2
=
ALp,p∗(r)

2r
= Ap (2)

and

ALp,p∗(r) = A′p(r). (3)

In the case p = 2, the equations (2) reflect the above mentioned well known
properties of the Euclidean circle which we shall refer to as its Euclidean area-
content- and its Euclidean circumference-properties. And, obviously, there holds
A2 = π.

Equation (3) allows a comprehensive interpretation. To start with, notice that
it may be rewritten as

Ap(r) =

r∫
0

ALp,p∗(%)d%. (4)

This representation formula for Ap(r) may be considered as reflecting a generali-
zation of the indivisiblen method of Cavalieri and Torricelli in the sense that the
indivisibles are the circles Cp(%), % ∈ [0, r] and measuring the area content means
to integrate the dp∗-arc-lengths of the indivisibles.
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For a further interpretation of equation (4), let us recall from [9] what the
co-area formula says in this connection:

r∫
0

ALp,2(%)d% =

∫
Kp(r)

(
||x||2p−2

||x||p
)p−1dx. (5)

The integral on the right side of equation (5), however, is larger or smaller than
Ap(r) iff 1 ≤ p < 2 or p > 2, respectively. Hence, integrating the Euclidean
arc-lengths of the indivisibles Cp(r) as on the left side of equation (5) does not
coincide with measuring the area content, unless for p = 2.

Let us come back again to equation (3). Busemann [5] studied the arc-lengths
ALp,q within a more general problem than considered here. He proved that ALp,q
may be understood as two times a mixed area (volume), say V (Kp(r), I), for a
certain set I. On combining this result with equation (3), it follows that A′p(r)
may be considered as two times this mixed area, and vice versa. This circumstance
may be considered both as an additional reason for considering here just the spe-
cial arc-length ALp,p∗(r) and as a characterization of the mixed area V (Kp(r), I)
in terms of the dp∗-arc-length.
Notice that the derivative of the area content function, A′p(r), in formula (3)
should not be confused with a congenial quantity which is frequently used in
convexity considerations and defined, e.g., in [24, p. 295] as, say, f ′p(0). Here,
fp(λ) = v2((Kp(r))λ) denotes the two-dimensional Lebesgue measure v2 of the
Minkowski sum Kp(r) + λ · K2(1). It is known that f ′p(0) equals two times a
mixed area which is nothing else than the Euclidean or l2,2-arc-length of Cp(r).
Hence, A′p(r) = f ′p(0) if and only if p = 2. For the origin of the theory of mixed
volumes, we refer to Minkowski [14].

All what was said in the discussion of equation (3) means that the non-
Euclidean, if p 6= 2, geometry of the Minkowski plan (R2, dp∗) is a suitable geo-
metry for defining the circumference of an l2,p-circle. Therefore, and according to
the notation in [18], the dp∗-arc-length of the l2,p-circle C2,p(r), ALp,p∗(r), will be
called its l2,p-generalized circumference. Additional justification for this approach
comes from the applications presented below and in [18].

The equations (2) may be interpreted now for arbitrary p ≥ 1 as reflecting
Euclidean area-content- and the l2,p-generalized circumference-properties of the
l2,p-circle Cp(r). The following definition is therefore well motivated.

Definition For arbitrary p ∈ [1,∞], the quantity Ap will be called the l2,p-
or p-generalized circle number and denoted by π(p).

As because Ap = Ap(1) is the area content of the unit disc, the function
p→ π(p), p ∈ [1,∞] is continuous and monotonously increasing and satisfies the
relations 2 = π(1) ≤ π(p) < lim

p→∞
π(p) =: π(∞) = 4. Hence, all numbers from

[2, 4] are geometrically interpretable as l2,p-circle numbers.

Let us give some numerical values of these numbers.

Table 1 Values of selected l2,p-circle numbers.
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p 1 12/11 1,482 2 3 4,245 5 10 255
π(p) 2 2,172 e π 3,533 3,736 3,801 3,9429 3,999

Theorem The l2,p-circle numbers satisfy the representation formulae

π(p) = 4

1∫
0

(1− yp)
1
pdy = 4

∞∫
0

(1 + τ p)−
2
p
−1dτ = 2

1∫
0

(1− µp)
1−p

p dµ. (6)

Proof The first equation in (6) reflects the definition of the area content inte-
gral and the second one follows on substituting 1 − yp = (1 + τ p)−1. The proof
of the third representation formula reflects the geometric nature of the circle
number π(p) in an additional way. To this end, let us consider the area inte-
gral Ap(R) =

∫
Kp(R)

dxdy,R > 0. Changing Cartesian with p-generalized standard

triangle coordinates from [18] separately for nonnegative and negative y’s, i.e.,
x = rµ, y = +(−)r(1− |µ|p)1/p, we get

Ap(R) = 2

R∫
0

1∫
−1

r(1− |µ|p)(1−p)/pdµdr

and therefore

ALp,p∗(R) = 4R

1∫
0

(1− µp)(1−p)/pdµ �

A further justification for considering the geometry of the Minkowski plane
(R2, dp∗) when measuring the lengths of the l2,p-circles Cp(r) and when defining
the circle numbers π(p) is given by the following probabilistic application from
[18]. Let the random vector (X, Y ) be uniformly distributed on Kp(1) or distri-
buted according to the p-generalized normal distribution. The normalized vector
(ξ, η) = (X, Y )/(|X|p + |Y |p)1/p is then p-generalized uniformly distributed on
the l2,p-unit circle in the sense that for arbitrary Borel subset A of Cp(1) it holds

P ((ξ, η) ∈ A) =
l2,p∗-arc-length of A

l2,p∗-arc-length of Cp(1)
=

∫
POL∗−1

p (A)

dϕ

N2
p (ϕ)

/

2π∫
0

dϕ

N2
p (ϕ)

.

Here, POL∗−1
p (A) denotes the inverse image of the set A under the transformation

POL∗p(ϕ) = POLp(1, ϕ) where the p-generalized polar coordinate transformation
POLp|[0,∞)× [0, 2π)→ R2 is defined in [18] by

x = r cosϕ/Np(ϕ), y = r sinϕ/Np(ϕ).

Because of

1

2
ALp,p∗ =

1

2

2π∫
0

dϕ

N2
p (ϕ)

= π(p), (7)

it follows

P ((ξ, η) ∈ A) =
l2,p∗-arc-length of A

2π(p)
=

1

2π(p)

∫
POL∗−1

p (A)

dϕ

N2
p (ϕ)

. (8)
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According to the equations (2), formula (8) may also be interpreted in the spirit
of Kepler’s second law as follows. Imagine a point is moving on Cp(1). Then, equal
areas

∫
POL∗−1

p (A1)

dϕ
N2

p (ϕ)
/2 and

∫
POL∗−1

p (A2)

dφ
N2

p (φ)
/2 are swept out (from the origin)

in equal ”times” T1 = P ((ξ, η) ∈ A1) and T2 = P ((ξ, η) ∈ A2), respectively. For
related considerations in the case p = 1, we refer to [23].

For another application of the generalized circle numbers, let us continue the
example from [18]. Imagine a machine tool which moves along an l2,p-circle line of
p-generalized radius r+ ε, creating thereby a thin protective coat on a workpiece
of p-generalized radius r by applying a special material to it’s surface. The con-
sumed material has then approximately, i.e. for small ε, the area content 2π(p)rε.

For another interpretation of the l2,p-circle numbers, notice that there is a
broad analytical research area dealing with constructing periodic functions which
are generalizations of the classical trigonometric functions and have a period dif-
ferently from 2π. This research direction was started with some work of Gauss
(unpublished, see, e.g., in [25, § 1.14.17]) in 1796 and Lundberg [13] in 1879 and
continued then by many authors. Following this way, and in the spirit of Landau,
Shelupsky [21] and Lindqvist and Peetre [12] defined for p ∈ {1, 2, ...} numbers
πp as πp/2 being the first positive zero point of a certain p-generalized cosine
function. For p ∈ {1, 2, ...}, the value of the l2,p-circle number π(p) defined here
coincides with that of πp. The third integral representation formula in (6) is just
what was proved in [21] for the quantities πp to hold and the second one corre-
sponds to a representation formula in [13].
The present paper, however, does not rely on this analytical approach to genera-
lizing π.

Acknowledgement The author thanks J.Merker and P.Lindqvist for aquain-
ting him with the papers [1] and [13], respectively.
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