ON THE π-FUNCTION FOR NONCONVEX $l_{2, p}$-CIRCLE DISCS

W.-D. Richter
Institut for Mathematics, University of Rostock, Universitätsplatz 1, 18051 Rostock, Germany
(e-mail: wolf-dieter.richter@uni-rostock.de)

Received January 03, 2008

Abstract

For $0<p<1$, circle numbers $\pi(p)$ are defined to reflect the Euclidean area-content property $A_{p}(r)=\pi(p) r^{2}$ and circumference property $A L_{p, p^{* *}}(r)=2 \pi(p) r$ of the $l_{2, p}$-circle discs with p-generalized radius r, where the arclength measure $A L_{p, p^{* *}}$ is based upon the nonconvex star-shaped set $S\left(p^{* *}\right)=\left\{\frac{1}{|x|^{p^{* *}}}+\frac{1}{|y|^{p^{* *}}} \geqslant 1\right\}$ with $p^{* *}>0$ satisfying $-\frac{1}{p^{* *}}+\frac{1}{p}=1$. The resulting π-function extends the function $p \rightarrow \pi(p)$ recently defined in [2] from the case of convex discs, $p \geqslant 1$, to the nonconvex case $0<p<1$. This function is continuous, increasing, and taking values in $(0,2)$.

The presented approach can be considered as reflecting a modified method of indivisibles in the sense that the indivisibles are the $l_{2, p}$-circles and that integrating their $S\left(p^{* *}\right)$-arc-lengths is equivalent to measuring the Euclidean area content.

Keywords: generalized circle numbers, generalized π, extended π-function, generalized perimeter, star-shaped arc-length measure, modified method of indivisibles, geometry of real numbers, p-generalized uniform distribution.

1 INTRODUCTION

The circle number π was recently generalized in [2] for $l_{2, p}$-circles $C_{p}(r)$ of p-generalized radius $r>0$ and with $p \geqslant 1$ in the following sense. Let $A_{p}(r)$ be the Euclidean area content of the disc $K_{p}(r)$ inside $C_{p}(r)$, and let $A L_{p, p^{*}}(r)$ be the $l_{2, p^{*}}$ arc-length of $C_{p}(r)$ with 'dual' $p^{*} \geqslant 1$ satisfying $\left(p, p^{*}\right)=(1, \infty)$ or $\frac{1}{p^{*}}+\frac{1}{p}=1$ for $p>1$. The ratios $A_{p}(r) / r^{2}$ and $A L_{p, p^{*}}(r) /(2 r)$ then do not depend on $r>0$, their actual values are the same, this common number is denoted by $\pi(p)$, and the function $p \rightarrow \pi(p)$ is called the π-function.

Measuring the $l_{2, p^{*}}$ arc-length of $C_{p}(r)$ can be equivalently considered as being based upon the convex set $K_{p^{*}}(1)$. Replacing this set by a suitably chosen star-shaped one is the basic idea of this paper for extending the π-function to the case of nonconvex circle discs.

To be more specific, let us recall that if $p \geqslant 1$ and $q \geqslant 1$, then the $l_{2, q}$-arc-length of the $l_{2, p}$-circle $C_{p}(r)$ is given by

$$
A L_{p, q}(r)=\int_{0}^{2 \pi}\left(\left|x^{\prime}(\varphi)\right|^{q}+\left|y^{\prime}(\varphi)\right|^{q}\right)^{1 / q} \mathrm{~d} \varphi,
$$

where $\varphi \rightarrow(x(\varphi), y(\varphi))$ is an arbitrary differentiable parameter representation for $C_{p}(r)$. If d_{K} denotes the Minkowski functional of a suitable star-shaped set K, then $A L_{p, q}(r)$ can also be written as

$$
\begin{equation*}
A L_{p, q}(r)=\int_{0}^{2 \pi} d_{K_{q}(1)}\left(\left(x^{\prime}(\varphi), y^{\prime}(\varphi)\right)\right) \mathrm{d} \varphi . \tag{1.1}
\end{equation*}
$$

This formula will be modified below for the nonconvex case $p \in(0,1)$ by replacing the convex disc $K_{q}(1)$ with a certain star-shaped set $S(q)$.

The special role the 'dual' p^{*} plays in the convex case for the definition of $\pi(p)$ is reflected by the equation

$$
\begin{equation*}
A_{p}(r)=\int_{0}^{r} A L_{p, p^{*}}(\varrho) \mathrm{d} \varrho, \quad p \geqslant 1, r>0 . \tag{1.2}
\end{equation*}
$$

This equation allows a comprehensive interpretation. First of all, it reflects a generalization of the method of indivisibles of Cavalieri and Torricelli in the sense that the indivisibles are here the circles $C_{p}(\varrho), \varrho \in$ $[0, r]$, and measuring the area content of the convex disc $K_{p}(r)$ means integrating just the $l_{2, p^{*}}$-arc-lengths $A L_{p, p^{*}}(\varrho)$ of the indivisibles. In comparison, the co-area formula of measure theory says that integrating the Euclidean or $l_{2,2}$-arc-lengths of the same indivisibles yields the area content of $K_{p}(r)$ if and only if $p=2$.

In this paper, we replace the convex disc $K_{q}(1)$ with a star-shaped set in such a way that a formula analogous to (1.2) can be also proved in the nonconvex case $p \in(0,1)$.

To this end, the arc-length measure for defining the circumference of the $l_{2, p}$-circle in the case $p \in$ $(0,1)$ will be based upon the star-shaped set $\left\{(x, y) \in R^{2}: \frac{1}{\mid x p^{p^{* *}}}+\frac{1}{|y|^{p^{* *}}} \geqslant 1\right\}$ with $p^{* *}>0$ satisfying $-\frac{1}{p^{* *}}+\frac{1}{p}=1$. Using this notion, p-generalized circle numbers will be defined in the case $p \in(0,1)$ analogously to those for convex $l_{2, p}$-circle discs. The resulting extension of the π-function from [2] is continuous and increasing. The described approach can be considered as reflecting a certain modification of the method of indivisibles in the sense that the indivisibles are now the boundaries of nonconvex $l_{2, p^{-}}$ circle discs and integrating their suitably chosen star-shaped arc-lengths means measuring the Euclidean area content of the disc.

When studying further properties of the present extension of the π-function, special emphasis will be on its asymptotic behavior as p tends to zero.

Just like in the convex case $p \geqslant 1$, it turns out that the area content of the unit disc is suitable for defining the p-generalized circle numbers for each $p \in(0,1)$. In this case, the resulting π-function therefore takes all values from $(0,2)$.

2 RESULTS

We consider the set $C_{p}(r)=\left\{(x, y) \in R^{2}:|x|^{p}+|y|^{p}=r^{p}\right\}$ for $0<p<1$ as the $l_{2, p}$-circle with p-generalized radius $r>0$. The Euclidean area content of the disc $K_{p}(r)$ inside $C_{p}(r)$ is denoted by $A_{p}(r)$. It is known that $A_{p}(r)=A_{p} r^{2}$, where

$$
\begin{equation*}
A_{p}=\frac{2 \Gamma^{2}\left(\frac{1}{p}\right)}{p \Gamma\left(\frac{2}{p}\right)} . \tag{2.1}
\end{equation*}
$$

For determining this constant using p-generalized polar coordinates, we refer to [1].
The length measure in a Minkowski plane is generated by a norm or, equivalently, by the corresponding convex body. In this paper, we leave the Minkowski plane and equip R^{2} instead with the star-shaped set

$$
S(q)=\left\{(x, y) \in R^{2}: \frac{1}{|x|^{q}}+\frac{1}{|y|^{q}} \geqslant 1\right\}, \quad q>0
$$

for generating an arc-length measure, where q will be chosen later. To this end, let the Minkowski functional of a star-shaped set S be defined as

$$
d_{S}(z)=\inf \{\lambda>0: \quad z \in \lambda S\}, \quad z \in R^{2},
$$

where $\lambda S=\left\{(\lambda x, \lambda y) \in R^{2}:(x, y) \in S\right\}$. Note that

$$
d_{S(q)}((x, y))=0 \quad \text { if } x=0 \text { or } y=0
$$

and

$$
d_{S(q)}((x, y))=\frac{1}{\left(\frac{1}{|x|^{q}}+\frac{1}{|y|^{q}}\right)^{1 / q}} \quad \text { for all other }(x, y) \in R^{2} .
$$

The function $d_{S(q)}$ is symmetric w.r.t. the origin,

$$
d_{S(q)}((x, y))=d_{S(q)}((|x|,|y|)), \quad(x, y) \in R^{2},
$$

nonnegative and homogeneous,

$$
d_{S(q)}(\lambda z)=|\lambda| d_{S(q)}(z), \quad z \in R^{2}, \lambda \in R .
$$

For defining now $A L_{p, q}$, let an arbitrary differentiable parameter representation of the circle $C_{p}(r)$ be given by

$$
C_{p}(r)=\left\{(x(\varphi), y(\varphi))^{T}, 0 \leqslant \varphi<2 \pi\right\} .
$$

Definition. The $S(q)$-based arc-length of the $l_{2, p}$-circle $C_{p}(r)$ is defined for $0<p<1$ and $0<q<\infty$ as

$$
A L_{p, q}(r)=\int_{0}^{2 \pi} d_{S(q)}\left(x^{\prime}(\varphi), y^{\prime}(\varphi)\right) \mathrm{d} \varphi
$$

Note that $A L_{p, q}(r)=r A L_{p, q}$, where $A L_{p, q}$ means the length of the unit circle.
Lemma. (a) If $p^{* *}>0$ satisfies $-\frac{1}{p^{* *}}+\frac{1}{p}=1$, then, for all $p \in(0,1)$,

$$
A L_{p, p^{* *}}=2 A_{p}
$$

(b) The value of $p^{* *}$ is unique in the sense that

$$
A L_{p, q}>A L_{p, p^{* *}} \text { if } q>p^{* *} \text { and } A L_{p, q}<A L_{p, p^{* *}} \text { if } q<p^{* *} .
$$

Proof. (a) Making use of the p-generalized trigonometric functions defined in [1], a concrete parameter representation of $C_{p}(1)$ is given by $x(\varphi)=\cos _{p}(\varphi)$ and $y(\varphi)=\sin _{p}(\varphi), 0 \leqslant \varphi<2 \pi$. Hence,

$$
A L_{p, q}=\int_{0}^{2 \pi} d_{S(q)}\left(\left(\cos _{p}^{\prime}(\varphi), \sin _{p}^{\prime}(\varphi)\right)^{T}\right) \mathrm{d} \varphi
$$

According to [1], it follows that

$$
A L_{p, q}=\int_{0}^{2 \pi} d_{S(q)}\left(\frac{-\sin \varphi|\sin \varphi|^{p-2}}{N_{p}(\varphi)^{p-1}}, \frac{\cos \varphi|\cos \varphi|^{p-2}}{N_{p}(\varphi)^{p-1}}\right) \frac{\mathrm{d} \varphi}{N_{p}^{2}(\varphi)}
$$

with $N_{p}(\varphi)=\left(|\sin \varphi|^{p}+|\cos \varphi|^{p}\right)^{1 / p}$. Since $N_{\delta}(\varphi)=d_{K_{\delta}(1)}(\cos \varphi, \sin \varphi), \delta>0$, we can rewrite $A L_{p, q}$ as

$$
\begin{equation*}
A L_{p, q}=\int_{0}^{2 \pi}\left(\frac{d_{K_{p}(1)}(\cos \varphi, \sin \varphi)}{d_{K_{(1-p) q}(1)}(\cos \varphi, \sin \varphi)}\right)^{1-p} \frac{\mathrm{~d} \varphi}{N_{p}^{2}(\varphi)} . \tag{2.2}
\end{equation*}
$$

Under the assumption of the lemma, we have $(1-p) p^{* *}=p$ and

$$
A L_{p, p^{* *}}=\int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi}{N_{p}^{2}(\varphi)}
$$

Further, the area content of the unit disc can be written as $A_{p}=\int_{K_{p}(1)} \mathrm{d}(x, y)$. Changing Cartesian with p-generalized polar coordinates, we have

$$
A_{p}=\int_{\varrho=0}^{1} \int_{\varphi=0}^{2 \pi} \frac{\varrho}{N_{p}^{2}(\varphi)} \mathrm{d}(\varrho, \varphi)=\frac{1}{2} \int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi}{N_{p}^{2}(\varphi)}
$$

(b) The ratio under the integral sign in (2.2) satisfies

$$
\frac{d_{K_{p}(1)}(\cos \varphi, \sin \varphi)}{d_{K_{(1-p) q}(1)}(\cos \varphi, \sin \varphi)}>(<) 1 \quad(\forall \varphi \in[0,2 \pi)) \text { if } q>(<) p^{* *}
$$

Summarizing what is already known, we have, for all $r>0$,

$$
\begin{equation*}
\frac{A_{p}(r)}{r^{2}}=\frac{A L_{p, p^{* *}}(r)}{2 r}=A_{p} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A L_{p, p^{* *}}(r)=\frac{d}{d r} A_{p}(r) \tag{2.4}
\end{equation*}
$$

Equation (2.4) can be rewritten in the sense of (1.2) and may therefore be considered as reflecting a modification of the method of indivisibles of Cavalieri and Torricelli which says that the indivisibles are the circles $C_{p}(\varrho), \varrho \in[0, r]$ and measuring the area content of the nonconvex disc $K_{p}(r)$ means integrating the $d_{S\left(p^{* *}\right)}$-based arc-lengths of the indivisibles.

Hence, the geometry of the plane $\left(R^{2}, d_{S\left(p^{* *)}\right.}\right)$ is suitable for defining the circumference of an $l_{2, p^{-} \text {-circle }}$ if $p \in(0,1)$. Therefore, and in accordance with the notation in [1], the special star-shaped or $d_{S\left(p^{* *}\right)}$-based arc-length $A L_{p, p^{* *}}(r)=A_{p}^{\prime}(r)$ of the $l_{2, p^{-}}$-circle $C_{p}(r)$ will be called its $l_{2, p^{-}}$-generalized circumference.

Equations (2.3) may be interpreted now for arbitrary $p \in(0,1)$ as reflecting the Euclidean area-contentand the $l_{2, p}$-generalized circumference-properties of the $l_{2, p}$-circle $C_{p}(r)$. The following definition is therefore well motivated.

Definition. For $p \in(0,1)$, the Euclidean area content A_{p} of the $l_{2, p}$-unit disc $K_{p}(1)$ is called the $l_{2, p^{-}}$ circle number and henceforth denoted by $\pi(p)$.

From this definition it follows immediately that the function $p \rightarrow \pi(p), p \in(0,1)$, is continuous and increasing and satisfies the relations $0=\lim _{p \rightarrow 0+} \pi(p)<\pi(p)<\lim _{p \rightarrow 1-} \pi(p)=2$. Hence, the π-function which was recently defined in [2] for the convex case has been extended here to $l_{2, p}$-circles with $0<p<1$. All numbers from $(0,2)$ are therefore geometrically interpretable as such $l_{2, p}$-circle numbers for nonconvex

Table 1. Values of selected $l_{2, p}$-circle numbers

p	0,113	$1 / 4$	0,3	$1 / 3$	$1 / 2$	0,607	0,783	0,99995
$\pi(p)$	0,0001	$2 / 35$	0,1323	$1 / 5$	$2 / 3$	0,9992	1,5	1,9999

discs. Note further that $\lim _{p \rightarrow 1-} \pi(p)$ coincides with the circle number $\pi(1)=2$ which was introduced in [2]. In Table 1, the numerical values of some p-generalized circle numbers are given.

It can be proved word by word in the same way as Theorem in [2] that the $l_{2, p}$-circle numbers $\pi(p)$, $p \in(0,1)$, satisfy the representation formulae

$$
\begin{equation*}
\pi(p)=4 \int_{0}^{1}\left(1-y^{p}\right)^{\frac{1}{p}} \mathrm{~d} y=4 \int_{0}^{\infty}\left(1+\tau^{p}\right)^{-\frac{2}{p}-1} \mathrm{~d} \tau=2 \int_{0}^{1}\left(1-\mu^{p}\right)^{\frac{1-p}{p}} \mathrm{~d} \mu \tag{2.5}
\end{equation*}
$$

Let us now consider a few specific properties of the π-function for arguments from $(0,1)$.
Remark. From (2.1) and from the definition of the Gamma function it follows immediately that the $l_{2,1 / k^{-}}$ circle numbers satisfy the representation formula

$$
\pi\left(\frac{1}{k}\right)=\frac{(2 k!)^{2}}{(2 k)!}, \quad k=2,3, \ldots
$$

These numbers tend to zero as k tends to infinity at least as fast as their upper bounds $4 \cdot 2^{-k}$. The following theorem describes this asymptotic behavior more precisely.

Theorem. The π-function satisfies the asymptotic relation

$$
\pi(p)=\frac{4 \pi^{1 / 2}}{p^{1 / 2} 2^{2 / p}}\left(1+\frac{p}{8}+\mathrm{O}\left(p^{2}\right)\right), \quad p \rightarrow+0
$$

Proof. Starting from (2.1) and using the asymptotic representation formula of the Gamma function

$$
\Gamma(x+1)=x^{x} e^{-x} \sqrt{2 \pi x}\left(1+\frac{1}{12 x}+\mathrm{O}\left(\frac{1}{x^{2}}\right)\right), \quad x \rightarrow \infty
$$

it follows that

$$
\pi(p)=\frac{2\left((-1+1 / p)^{1 / p-1 / 2} e^{1-1 / p} \sqrt{2 \pi}\left(1+\frac{p}{12(1-p)}+\mathrm{O}\left(p^{2}\right)\right)\right)^{2}}{p(-1+2 / p)^{2 / p-1 / 2} e^{1-2 / p} \sqrt{2 \pi}\left(1+\frac{p}{12(2-p)}+\mathrm{O}\left(p^{2}\right)\right)}, \quad p \rightarrow 0
$$

Hence,

$$
\pi(p)=\frac{4 \sqrt{\pi}}{2^{2 / p} \sqrt{p}} \frac{1+\frac{p}{6}+\mathrm{O}\left(p^{2}\right)}{1+\frac{p}{24}+\mathrm{O}\left(p^{2}\right)} \quad \text { as } \quad p \rightarrow 0
$$

which immediately completes the proof.
According to this theorem, $\pi(p)$ tends to zero as p tends to zero. The asymptotic behavior of $A L_{p, p^{* *}}(r(p))$ therefore strongly depends on the behavior of $r(p)$ as $p \rightarrow 0$. Clearly, $r(p)$ should tend to infinity sufficiently fast for $A L_{p, p^{* *}}(r(p))$ not tending to zero. The following corollary makes this more precise.

Corollary. (a) If, for some constant $C>0$,

$$
r(p) \sim \frac{C}{8 \sqrt{\pi}} \cdot \sqrt{p} \cdot 2^{2 / p} \quad \text { as } \quad p \rightarrow 0
$$

then

$$
A L_{p, p^{* *}}(r(p)) \rightarrow C \quad \text { as } p \rightarrow 0 .
$$

(b) If $r(p)=\mathrm{o}\left(\sqrt{p} \cdot 2^{2 / p}\right)$ as $p \rightarrow 0$, then

$$
A L_{p, p^{* *}}(r(p)) \rightarrow 0 \quad \text { as } p \rightarrow 0 .
$$

(c) If $r(p) /\left(\sqrt{p} \cdot 2^{2 / p}\right) \rightarrow \infty$ as $p \rightarrow 0$, then

$$
A L_{p, p^{* *}}(r(p)) \rightarrow \infty \quad \text { as } p \rightarrow 0
$$

Proof. Since of $A L_{p, p^{* *}}(\varrho)=2 \varrho \pi(p)$, by Theorem we have

$$
A L_{p, p^{* *}}(r(p)) \sim r(p) \frac{8}{2^{2 / p}} \sqrt{\frac{\pi}{p}} \quad \text { as } p \rightarrow 0 .
$$

Replacing here $r(p)$ with one of the assumptions made on the asymptotic behavior $r(p)$ in $\mathbf{a})$, \mathbf{b}), or \mathbf{c}), we immediately get the asymptotic relation stated in a), b), or c), respectively.

A further justification for considering the geometry of the plane $\left(R^{2}, d_{S\left(p^{* *)}\right)}\right)$ when measuring the lengths of the $l_{2, p}$-circles $C_{p}(r)$ and when defining the circle numbers $\pi(p)$ is given by the following probabilistic application from [1]. Let a random vector (X, Y) be uniformly distributed on $K_{p}(1)$ or distributed according to the p-generalized normal distribution. The normalized vector $(\xi, \eta)=(X, Y) /\left(|X|^{p}+\right.$ $\left.|Y|^{p}\right)^{1 / p}$ is then p-generalized uniformly distributed on the $l_{2, p}$-unit circle in the sense that, for arbitrary Borel subset A of $C_{p}(1)$,

$$
P((\xi, \eta) \in A)=\frac{S\left(p^{* *}\right) \text {-arc-length of } A}{S\left(p^{* *}\right) \text {-arc-length of } C_{p}(1)}=\int_{P O L_{p}^{*-1}(A)} \frac{\mathrm{d} \varphi}{N_{p}^{2}(\varphi)} / \int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi}{N_{p}^{2}(\varphi)}
$$

Here $P O L_{p}^{*-1}(A)$ denotes the inverse image of the set A under the transformation $P O L_{p}^{*}(\varphi)=P O L_{p}(1, \varphi)$, where the p-generalized polar coordinate transformation $P O L_{p} \mid[0, \infty) \times[0,2 \pi) \rightarrow R^{2}$ is defined by $x=r \cos \varphi / N_{p}(\varphi)$ and $y=r \sin \varphi / N_{p}(\varphi)$. Since

$$
\begin{equation*}
\frac{1}{2} A L_{p, p^{*}}=\frac{1}{2} \int_{0}^{2 \pi} \frac{\mathrm{~d} \varphi}{N_{p}^{2}(\varphi)}=\pi(p), \tag{2.6}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
P((\xi, \eta) \in A)=\frac{S\left(p^{* *}\right) \text {-arc-length of } A}{2 \pi(p)}=\frac{1}{2 \pi(p)} \int_{P O L_{p}^{*-1}(A)} \frac{\mathrm{d} \varphi}{N_{p}^{2}(\varphi)} . \tag{2.7}
\end{equation*}
$$

According to Eqs. (2.3), formula (2.7) may also be interpreted as follows. Imagine that a point is moving on $C_{p}(1)$. Then the equal areas

$$
\int_{P O L_{p}^{*-1}\left(A_{1}\right)} \frac{\mathrm{d} \varphi}{N_{p}^{2}(\varphi)} / 2 \text { and } \int_{P O L_{p}^{*-1}\left(A_{2}\right)} \frac{\mathrm{d} \varphi}{N_{p}^{2}(\varphi)} / 2
$$

are swept out (from the origin) in equal "times" $T_{1}=P\left((\xi, \eta) \in A_{1}\right)$ and $T_{2}=P\left((\xi, \eta) \in A_{2}\right)$, respectively.

For another application of the generalized circle numbers, let us continue the example from [1]. Imagine that a machine tool moves along an $l_{2, p}$-circle line of p-generalized radius $r+\varepsilon$, creating thereby a thin protective coat on a workpiece of p-generalized radius r by applying a special material to its surface. The consumed material then approximately (i.e., for small ε) has the area content $2 \pi(p) r \varepsilon$.

Let us finally give an elementary probabilistic interpretation of the circle numbers $\pi\left(\frac{1}{k}\right)$ for $k \in$ $\{2,3, \ldots\}$. To this end, let $m_{2 k}$ be the total number of successes in a Bernoulli trial of length $2 k$ with the probability one half of a single success. It then immediately follows from Eq. (2.1) that

$$
\begin{equation*}
\frac{\pi(1 / k)}{4}=\frac{1}{4^{k} \cdot P\left(m_{2 k}=k\right)} \quad \text { for } \quad k=2,3, \ldots \tag{2.8}
\end{equation*}
$$

REFERENCES

1. W.-D. Richter, Generalized spherical and simplicial coordinates, J. Math. Anal. Appl., 336:1187-1202, 2007.
2. W.-D. Richter, On $l_{2, p}$-circle numbers, Lith. Math. J., 48(2):228-234, 2008.
