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Abstract. For0 < p < 1, circle numbersπ(p) are defined to reflect the Euclidean area-content propertyAp(r) = π(p)r2

and circumference propertyALp,p∗∗(r) = 2π(p)r of the l2,p-circle discs withp-generalized radiusr, where the arc-
length measureALp,p∗∗ is based upon the nonconvex star-shaped setS(p∗∗) = { 1

|x|p∗∗ + 1

|y|p∗∗ > 1} with p∗∗ > 0

satisfying− 1

p∗∗
+ 1

p
= 1. The resultingπ-function extends the functionp → π(p) recently defined in [2] from the case

of convex discs,p > 1, to the nonconvex case0 < p < 1. This function is continuous, increasing, and taking values
in (0, 2).

The presented approach can be considered as reflecting a modified method of indivisibles in the sense that the in-
divisibles are thel2,p-circles and that integrating theirS(p∗∗)-arc-lengths is equivalent to measuring the Euclidean area
content.

Keywords:generalized circle numbers, generalizedπ, extendedπ-function, generalized perimeter, star-shaped arc-length
measure, modified method of indivisibles, geometry of real numbers,p-generalized uniform distribution.

1 INTRODUCTION

The circle numberπ was recently generalized in [2] forl2,p-circles Cp(r) of p-generalized radiusr > 0
and withp > 1 in the following sense. LetAp(r) be the Euclidean area content of the discKp(r) inside
Cp(r), and letALp,p∗(r) be thel2,p∗-arc-length ofCp(r) with ‘dual’ p∗ > 1 satisfying(p, p∗) = (1,∞)

or 1
p∗

+ 1
p = 1 for p > 1. The ratiosAp(r)/r

2 andALp,p∗(r)/(2r) then do not depend onr > 0, their
actual values are the same, this common number is denoted byπ(p), and the functionp → π(p) is called the
π-function.

Measuring thel2,p∗-arc-length ofCp(r) can be equivalently considered as being based upon the convex set
Kp∗(1). Replacing this set by a suitably chosen star-shaped one is the basic idea of this paper for extending
theπ-function to the case of nonconvex circle discs.

To be more specific, let us recall that ifp > 1 andq > 1, then thel2,q-arc-length of thel2,p-circle Cp(r)
is given by

ALp,q(r) =

∫ 2π

0

(

∣

∣x′(ϕ)
∣

∣

q
+

∣

∣y′(ϕ)
∣

∣

q
)1/q

dϕ,

1
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whereϕ → (x(ϕ), y(ϕ)) is an arbitrary differentiable parameter representation for Cp(r). If dK denotes the
Minkowski functional of a suitable star-shaped setK, thenALp,q(r) can also be written as

ALp,q(r) =

∫ 2π

0
dKq(1)

(

(

x′(ϕ), y′(ϕ)
)

)

dϕ. (1.1)

This formula will be modified below for the nonconvex casep ∈ (0, 1) by replacing the convex discKq(1)
with a certain star-shaped setS(q).

The special role the ‘dual’p∗ plays in the convex case for the definition ofπ(p) is reflected by the
equation

Ap(r) =

∫ r

0
ALp,p∗(̺) d̺, p > 1, r > 0. (1.2)

This equation allows a comprehensive interpretation. First of all, it reflects a generalization of the method
of indivisibles of Cavalieri and Torricelli in the sense that the indivisibles are here the circlesCp(̺), ̺ ∈
[0, r], and measuring the area content of the convex discKp(r) means integrating just thel2,p∗-arc-lengths
ALp,p∗(̺) of the indivisibles. In comparison, the co-area formula of measure theory says that integrating the
Euclidean orl2,2-arc-lengths of the same indivisibles yields the area content of Kp(r) if and only if p = 2.

In this paper, we replace the convex discKq(1) with a star-shaped set in such a way that a formula
analogous to (1.2) can be also proved in the nonconvex casep ∈ (0, 1).

To this end, the arc-length measure for defining the circumference of thel2,p-circle in the casep ∈
(0, 1) will be based upon the star-shaped set{(x, y) ∈ R2 : 1

|x|p∗∗ + 1
|y|p∗∗ > 1} with p∗∗ > 0 satisfying

− 1
p∗∗

+ 1
p = 1. Using this notion,p-generalized circle numbers will be defined in the casep ∈ (0, 1)

analogously to those for convexl2,p-circle discs. The resulting extension of theπ-function from [2] is
continuous and increasing. The described approach can be considered as reflecting a certain modification
of the method of indivisibles in the sense that the indivisibles are now the boundaries of nonconvexl2,p-
circle discs and integrating their suitably chosen star-shaped arc-lengths means measuring the Euclidean
area content of the disc.

When studying further properties of the present extension of the π-function, special emphasis will be on
its asymptotic behavior asp tends to zero.

Just like in the convex casep > 1, it turns out that the area content of the unit disc is suitablefor defining
thep-generalized circle numbers for eachp ∈ (0, 1). In this case, the resultingπ-function therefore takes all
values from(0, 2).

2 RESULTS

We consider the setCp(r) = {(x, y) ∈ R2 : |x|p + |y|p = rp} for 0 < p < 1 as thel2,p-circle with
p-generalized radiusr > 0. The Euclidean area content of the discKp(r) insideCp(r) is denoted byAp(r).
It is known thatAp(r) = Apr

2, where

Ap =
2Γ 2(1

p)

pΓ (2
p)

. (2.1)

For determining this constant usingp-generalized polar coordinates, we refer to [1].
The length measure in a Minkowski plane is generated by a normor, equivalently, by the corresponding

convex body. In this paper, we leave the Minkowski plane and equip R2 instead with the star-shaped set

S(q) =
{

(x, y) ∈ R2 :
1

|x|q +
1

|y|q > 1
}

, q > 0,
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for generating an arc-length measure, whereq will be chosen later. To this end, let the Minkowski functional
of a star-shaped setS be defined as

dS(z) = inf{λ > 0: z ∈ λS}, z ∈ R2,

whereλS = {(λx, λy) ∈ R2 : (x, y) ∈ S}. Note that

dS(q)

(

(x, y)
)

= 0 if x = 0 or y = 0

and

dS(q)

(

(x, y)
)

=
1

( 1
|x|q + 1

|y|q )1/q
for all other(x, y) ∈ R2.

The functiondS(q) is symmetric w.r.t. the origin,

dS(q)

(

(x, y)
)

= dS(q)

(

(|x|, |y|)
)

, (x, y) ∈ R2,

nonnegative and homogeneous,

dS(q)(λz) = |λ|dS(q)(z), z ∈ R2, λ ∈ R.

For defining nowALp,q, let an arbitrary differentiable parameter representation of the circleCp(r) be
given by

Cp(r) =
{

(

x(ϕ), y(ϕ)
)T

, 0 6 ϕ < 2π
}

.

DEFINITION. TheS(q)-based arc-length of thel2,p-circle Cp(r) is defined for0 < p < 1 and0 < q < ∞
as

ALp,q(r) =

∫ 2π

0
dS(q)

(

x′(ϕ), y′(ϕ)
)

dϕ.

Note thatALp,q(r) = rALp,q, whereALp,q means the length of the unit circle.

Lemma. (a) If p∗∗ > 0 satisfies− 1
p∗∗

+ 1
p = 1, then, for allp ∈ (0, 1),

ALp,p∗∗ = 2Ap.

(b) The value ofp∗∗ is unique in the sense that

ALp,q > ALp,p∗∗ if q > p∗∗ andALp,q < ALp,p∗∗ if q < p∗∗.

Proof. (a) Making use of thep-generalized trigonometric functions defined in [1], a concrete parameter
representation ofCp(1) is given byx(ϕ) = cosp(ϕ) andy(ϕ) = sinp(ϕ), 0 6 ϕ < 2π. Hence,

ALp,q =

∫ 2π

0
dS(q)

(

(

cos′p(ϕ), sin′
p(ϕ)

)T
)

dϕ.

According to [1], it follows that

ALp,q =

∫ 2π

0
dS(q)

(− sin ϕ| sin ϕ|p−2

Np(ϕ)p−1
,
cos ϕ| cos ϕ|p−2

Np(ϕ)p−1

)

dϕ

N2
p (ϕ)
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with Np(ϕ) = (| sin ϕ|p + | cos ϕ|p)1/p. SinceNδ(ϕ) = dKδ(1)(cos ϕ, sin ϕ), δ > 0, we can rewriteALp,q as

ALp,q =

∫ 2π

0

(

dKp(1)(cos ϕ, sin ϕ)

dK(1−p)q(1)(cos ϕ, sin ϕ)

)1−p dϕ

N2
p (ϕ)

. (2.2)

Under the assumption of the lemma, we have(1 − p)p∗∗ = p and

ALp,p∗∗ =

∫ 2π

0

dϕ

N2
p (ϕ)

.

Further, the area content of the unit disc can be written asAp =
∫

Kp(1) d(x, y). Changing Cartesian with
p-generalized polar coordinates, we have

Ap =

∫ 1

̺=0

∫ 2π

ϕ=0

̺

N2
p (ϕ)

d(̺, ϕ) =
1

2

∫ 2π

0

dϕ

N2
p (ϕ)

.

(b) The ratio under the integral sign in (2.2) satisfies

dKp(1)(cos ϕ, sin ϕ)

dK(1−p)q(1)(cos ϕ, sin ϕ)
> (<)1 (∀ϕ ∈ [0, 2π)) if q > (<)p∗∗. ⊓⊔

Summarizing what is already known, we have, for allr > 0,

Ap(r)

r2
=

ALp,p∗∗(r)

2r
= Ap (2.3)

and

ALp,p∗∗(r) =
d

dr
Ap(r). (2.4)

Equation (2.4) can be rewritten in the sense of (1.2) and may therefore be considered as reflecting a
modification of the method of indivisibles of Cavalieri and Torricelli which says that the indivisibles are
the circlesCp(̺), ̺ ∈ [0, r] and measuring the area content of the nonconvex discKp(r) means integrating
thedS(p∗∗)-based arc-lengths of the indivisibles.

Hence, the geometry of the plane(R2, dS(p∗∗)) is suitable for defining the circumference of anl2,p-circle
if p ∈ (0, 1). Therefore, and in accordance with the notation in [1], the special star-shaped ordS(p∗∗)-based
arc-lengthALp,p∗∗(r) = A′

p(r) of the l2,p-circle Cp(r) will be called itsl2,p-generalized circumference.
Equations (2.3) may be interpreted now for arbitraryp ∈ (0, 1) as reflecting the Euclidean area-content-

and thel2,p-generalized circumference-properties of thel2,p-circle Cp(r). The following definition is there-
fore well motivated.

DEFINITION. For p ∈ (0, 1), the Euclidean area contentAp of the l2,p-unit discKp(1) is called thel2,p-
circle number and henceforth denoted byπ(p).

From this definition it follows immediately that the function p → π(p), p ∈ (0, 1), is continuous and
increasing and satisfies the relations0 = limp→0+ π(p) < π(p) < limp→1− π(p) = 2. Hence, theπ-function
which was recently defined in [2] for the convex case has been extended here tol2,p-circles with0 < p < 1.
All numbers from(0, 2) are therefore geometrically interpretable as suchl2,p-circle numbers for nonconvex
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Table 1. Values of selectedl2,p-circle numbers

p 0,113 1/4 0,3 1/3 1/2 0,607 0,783 0,99995

π(p) 0,0001 2/35 0,1323 1/5 2/3 0,9992 1,5 1,9999

discs. Note further thatlimp→1− π(p) coincides with the circle numberπ(1) = 2 which was introduced in
[2]. In Table 1, the numerical values of somep-generalized circle numbers are given.

It can be proved word by word in the same way as Theorem in [2] that the l2,p-circle numbersπ(p),
p ∈ (0, 1), satisfy the representation formulae

π(p) = 4

∫ 1

0
(1 − yp)

1

p dy = 4

∫ ∞

0
(1 + τp)−

2

p
−1 dτ = 2

∫ 1

0
(1 − µp)

1−p

p dµ. (2.5)

Let us now consider a few specific properties of theπ-function for arguments from(0, 1).

Remark.From (2.1) and from the definition of the Gamma function it follows immediately that thel2, 1/k-
circle numbers satisfy the representation formula

π(
1

k
) =

(2k!)2

(2k)!
, k = 2, 3, . . .

These numbers tend to zero ask tends to infinity at least as fast as their upper bounds4 · 2−k. The
following theorem describes this asymptotic behavior moreprecisely.

Theorem. Theπ-function satisfies the asymptotic relation

π(p) =
4π1/2

p1/222/p

(

1 +
p

8
+ O(p2)

)

, p → +0.

Proof. Starting from (2.1) and using the asymptotic representation formula of the Gamma function

Γ (x + 1) = xxe−x
√

2πx

(

1 +
1

12x
+ O

( 1

x2

)

)

, x → ∞,

it follows that

π(p) =
2((−1 + 1/p)1/p−1/2e1−1/p

√
2π(1 + p

12(1−p) + O(p2)))2

p(−1 + 2/p)2/p−1/2e1−2/p
√

2π(1 + p
12(2−p) + O(p2))

, p → 0.

Hence,

π(p) =
4
√

π

22/p√p

1 + p
6 + O(p2)

1 + p
24 + O(p2)

as p → 0,

which immediately completes the proof.⊓⊔

According to this theorem,π(p) tends to zero asp tends to zero. The asymptotic behavior of
ALp,p∗∗(r(p)) therefore strongly depends on the behavior ofr(p) as p → 0. Clearly, r(p) should tend
to infinity sufficiently fast forALp,p∗∗(r(p)) not tending to zero. The following corollary makes this more
precise.

Lith. Math. J., 48(3):1–7, 2008.
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Corollary. (a) If, for some constantC > 0,

r(p) ∼ C

8
√

π
· √p · 22/p as p → 0,

then

ALp,p∗∗(r(p)) → C as p → 0.

(b) If r(p) = o(
√

p · 22/p) asp → 0, then

ALp,p∗∗(r(p)) → 0 asp → 0.

(c) If r(p)/(
√

p · 22/p) → ∞ asp → 0, then

ALp,p∗∗(r(p)) → ∞ asp → 0.

Proof. Since ofALp,p∗∗(̺) = 2̺π(p), by Theorem we have

ALp,p∗∗(r(p)) ∼ r(p)
8

22/p

√

π

p
asp → 0.

Replacing herer(p) with one of the assumptions made on the asymptotic behaviorr(p) in a), b), or c),
we immediately get the asymptotic relation stated in a), b),or c), respectively. ⊓⊔

A further justification for considering the geometry of the plane (R2, dS(p∗∗)) when measuring the
lengths of thel2,p-circlesCp(r) and when defining the circle numbersπ(p) is given by the following prob-
abilistic application from [1]. Let a random vector(X,Y ) be uniformly distributed onKp(1) or distributed
according to thep-generalized normal distribution. The normalized vector(ξ, η) = (X,Y )/(|X|p +

|Y |p)1/p is thenp-generalized uniformly distributed on thel2,p-unit circle in the sense that, for arbitrary
Borel subsetA of Cp(1),

P
(

(ξ, η) ∈ A
)

=
S(p∗∗)-arc-length ofA

S(p∗∗)-arc-length ofCp(1)
=

∫

POL∗−1
p (A)

dϕ

N2
p (ϕ)

/

∫ 2π

0

dϕ

N2
p (ϕ)

.

HerePOL∗−1
p (A) denotes the inverse image of the setA under the transformationPOL∗

p(ϕ) = POLp(1, ϕ),
where thep-generalized polar coordinate transformationPOLp|[0,∞) × [0, 2π) → R2 is defined by
x = r cos ϕ/Np(ϕ) andy = r sin ϕ/Np(ϕ). Since

1

2
ALp,p∗ =

1

2

∫ 2π

0

dϕ

N2
p (ϕ)

= π(p), (2.6)

it follows that

P
(

(ξ, η) ∈ A
)

=
S(p∗∗)-arc-length ofA

2π(p)
=

1

2π(p)

∫

POL∗−1
p (A)

dϕ

N2
p (ϕ)

. (2.7)

According to Eqs. (2.3), formula (2.7) may also be interpreted as follows. Imagine that a point is moving
on Cp(1). Then the equal areas

∫

POL∗−1
p (A1)

dϕ

N2
p (ϕ)

/2 and
∫

POL∗−1
p (A2)

dϕ

N2
p (ϕ)

/2
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are swept out (from the origin) in equal “times”T1 = P ((ξ, η) ∈ A1) and T2 = P ((ξ, η) ∈ A2),
respectively.

For another application of the generalized circle numbers,let us continue the example from [1].
Imagine that a machine tool moves along anl2,p-circle line of p-generalized radiusr + ε, creating thereby
a thin protective coat on a workpiece ofp-generalized radiusr by applying a special material to its
surface. The consumed material then approximately (i.e., for smallε) has the area content2π(p)rε.

Let us finally give an elementary probabilistic interpretation of the circle numbersπ( 1
k ) for k ∈

{2, 3, ...}. To this end, letm2k be the total number of successes in a Bernoulli trial of length 2k with the
probability one half of a single success. It then immediately follows from Eq. (2.1) that

π(1/k)

4
=

1

4k · P (m2k = k)
for k = 2, 3, . . . . (2.8)
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