Lithuanian Mathematical Journal, Vol. 48, No. 3, 2008, pp71

ON THE 7m-FUNCTION FOR NONCONVEX [, ,,-CIRCLE DISCS

W.-D. Richter

Institut for Mathematics, University of Rostock, Univaégsplatz 1, 18051 Rostock, Germany
(e-mail: wolf-dieter.richter@uni-rostock.gle

Received January 03, 2008

Abstract. For0 < p < 1, circle numbers(p) are defined to reflect the Euclidean area-content propgity) = «(p)r>
and circumference propertyL,, ,--(r) = 27 (p)r of thel, ,-circle discs withp-generalized radius, where the arc-

length measurelL, ,+- is based upon the nonconvex star-shapedépt*) = {m% + W > 1} with p™* > 0

satisfying—p% + % = 1. The resultingr-function extends the functiom— (p) recently defined in [2] from the case
of convex discsp > 1, to the nonconvex cade < p < 1. This function is continuous, increasing, and taking value
in (0,2).

The presented approach can be considered as reflecting isdadethod of indivisibles in the sense that the in-
divisibles are thé, ,-circles and that integrating thes(p**)-arc-lengths is equivalent to measuring the Euclidean area
content.

Keywords: generalized circle numbers, generalize@xtendedr-function, generalized perimeter, star-shaped arc-tengt
measure, modified method of indivisibles, geometry of remhbersp-generalized uniform distribution.

1 INTRODUCTION

The circle numbetr was recently generalized in [2] fds ,-circles C,(r) of p-generalized radius > 0
and withp > 1 in the following sense. Le#l,(r) be the Euclidean area content of the disg(r) inside
Cy(r), and letAL, ,-(r) be thel, ,--arc-length ofC,(r) with ‘dual’ p* > 1 satisfying(p,p*) = (1,00)
or -+ = 1for p > 1. The ratiosA,(r)/r* and AL, ,-(r)/(2r) then do not depend on > 0, their
actual values are the same, this common number is denote(bbyand the functiom — 7 (p) is called the
m-function.

Measuring thé, ,,--arc-length ofC), () can be equivalently considered as being based upon thexcseve
K,-(1). Replacing this set by a suitably chosen star-shaped ohe isésic idea of this paper for extending
the w-function to the case of nonconvex circle discs.

To be more specific, let us recall thapif> 1 andg > 1, then thel, ,-arc-length of thd, ,,-circle C,(r)
is given by

AL = [ (Wl + W) ag.
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wherep — (z(¢),y(y)) is an arbitrary differentiable parameter representatorct,(r). If dx denotes the
Minkowski functional of a suitable star-shaped #&tthen AL, ,(r) can also be written as

ALy q(r) = 0% dic,n (@' ()9 (9))) de. (1.1)

This formula will be modified below for the nonconvex case (0,1) by replacing the convex disk,(1)
with a certain star-shaped s&fq).

The special role the ‘dualp* plays in the convex case for the definition ofp) is reflected by the
equation

Ay (r) :/0 ALy, (0)do, p>1,7>0. (1.2)

This equation allows a comprehensive interpretation.tifsll, it reflects a generalization of the method
of indivisibles of Cavalieri and Torricelli in the sense thhe indivisibles are here the circl€s, (o), 0 €
[0, 7], and measuring the area content of the convex fis@") means integrating just thig ,--arc-lengths
AL, - (o) of the indivisibles. In comparison, the co-area formula efasure theory says that integrating the
Euclidean orl, »-arc-lengths of the same indivisibles yields the area auraeK () if and only if p = 2.

In this paper, we replace the convex di&g(1) with a star-shaped set in such a way that a formula
analogous toX.2) can be also proved in the nonconvex case (0, 1).

To this end, the arc-length measure for defining the circueniee of thel, ,-circle in the case <

(0,1) will be based upon the star-shaped §et, y) € R*: = + == > 1} with p™* > 0 satisfying

EE

—% + % = 1. Using this notion,p-generalized circle numbers will be defined in the case (0,1)
analogously to those for convey,-circle discs. The resulting extension of thefunction from [2] is
continuous and increasing. The described approach canrsdeoed as reflecting a certain modification
of the method of indivisibles in the sense that the indivesbare now the boundaries of nonconvgy-
circle discs and integrating their suitably chosen stapsid arc-lengths means measuring the Euclidean
area content of the disc.

When studying further properties of the present extensfaheor-function, special emphasis will be on
its asymptotic behavior gstends to zero.

Just like in the convex cage> 1, it turns out that the area content of the unit disc is suité&nelefining
the p-generalized circle numbers for eagle (0,1). In this case, the resulting-function therefore takes all
values from(0, 2).

2 RESULTS

We consider the sef,(r) = {(z,y) € R*: |z[P + |y|P = rP} for 0 < p < 1 as thely ,-circle with
p-generalized radius > 0. The Euclidean area content of the disg(r) insideC),(r) is denoted byA,(r).
It is known thatA,(r) = A,r?, where

2r(l)
4= pl(2)"

(2.1)

For determining this constant usipggeneralized polar coordinates, we refer to [1].
The length measure in a Minkowski plane is generated by a mormquivalently, by the corresponding
convex body. In this paper, we leave the Minkowski plane aqueR? instead with the star-shaped set

11
_ 2,
S(q) = {(z,y) € B*: ErRATTES i}, >0,
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for generating an arc-length measure, whevéll be chosen later. To this end, let the Minkowski functidbn
of a star-shaped sét be defined as

ds(z) =inf{\ > 0: z€ \S}, =z¢€ R?
where\S = {(A\z, \y) € R?: (x,y) € S}. Note that
dg(g)((z,y)) =0 ifz=00ry=0

and

1
(ﬁ + ﬁ)l/q
The functiondg,) is symmetric w.r.t. the origin,

ds(q) ((,y)) = for all other (z,y) € R>.

ds(g)((.9)) = ds() (2], ly),  (2,y) € R?,
nonnegative and homogeneous,
ds(g)(A2) = [Nds(g)(2), z€ R’ AER.

For defining nowAL, ,, let an arbitrary differentiable parameter represematibthe circleC,(r) be
given by

Gplr) = {(a(0),u(0)) "0 < < 2},

DEFINITION. The S(q)-based arc-length of thig ,,-circle C,,(r) is defined ford < p < 1 and0 < ¢ < oo
as
27

ALy 4(r) = | ds (@' (9), ¥ (0)) deo.

Note thatAL, ,(r) = rAL, 4, whereAL, , means the length of the unit circle.

Lemma. (@)If p™ >0 satisfies—pl* + % =1, then, for allp € (0,1),
ALy pee = 24,
(b) The value op*™* is unique in the sense that
ALy 4> ALy - ifg>p™andAL, , < ALy, if ¢ < p™.

Proof. (a) Making use of ther-generalized trigonometric functions defined in [1], a cete parameter
representation of’,(1) is given byz(y) = cos, () andy(y) = sin,(¢),0 < ¢ < 27. Hence,

AL, , = 27Tal ((cos'( ), sin’ ( ))T)d
p7q_0 S(q) p\P ), Sl (P -

According to [1], it follows that

2w

AL — g (—sin<p|singp|p_2 cos<p|cosg0|p_2> de
P Jo PONTTN (P Nyt ) N ()
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with N, () = (| sin @[P + | cos ¢[P)/P. SinceNs () = dg,(1)(cos p,sin ), § > 0, we can rewrited L, , as

or /1 d , si l=p
AL, :/ < K, (1) (cos ¢ s1n.90) ) ;i@ ' 2.2)
0 \dg,_,,1)(cosp,sing) N3 ()

Under the assumption of the lemma, we héve- p)p** = p and

2w dcp

N2 (p)

ALZLP** =

Further, the area content of the unit disc can be writtedlas= [, ;) d(z,y). Changing Cartesian with
p-generalized polar coordinates, we have

1 27 1 21 d(p
A:/ / 2 (o, :—/ .
Ll N S 1o R Gl il S ey

(b) The ratio under the integral sign i8.p) satisfies

d, (1)(cos ¢, sin )
dK(l_p)q(l) (COS P, sin SO)

> ()1 (Vpel0,2m) if ¢>(<)p™. O

Summarizing what is already known, we have, forrait 0,

Ap(r) _ ALp,p**(T) -
2 =g = (2.3)

and

ALy (1) = S Ay(r). (2.9

Equation R.4) can be rewritten in the sense df.?2) and may therefore be considered as reflecting a
modification of the method of indivisibles of Cavalieri andriicelli which says that the indivisibles are
the circlesCy, (o), 0 € [0, 7] and measuring the area content of the nonconvexMige) means integrating
the dg(,--)-based arc-lengths of the indivisibles.

Hence, the geometry of the plang?, dg(p+)) is suitable for defining the circumference of @n-circle
if p € (0,1). Therefore, and in accordance with the notation in [1], thectal star-shaped afg,..\-based
arc-lengthA Ly, ,--(r) = A, (r) of thely ,-circle C,(r) will be called itsl, ,-generalized circumference.
Equations 2.3) may be interpreted now for arbitragye (0, 1) as reflecting the Euclidean area-content-
and thel, ,-generalized circumference-properties of thg-circle C,,(r). The following definition is there-
fore well motivated.

DEFINITION. Forp € (0,1), the Euclidean area contedt, of the /5 ,-unit disc K,(1) is called thely -
circle number and henceforth denoted7y).

From this definition it follows immediately that the funatip — = (p),p € (0,1), is continuous and
increasing and satisfies the relatidhs: lim,, o4 7(p) < 7(p) < lim, ., 7(p) = 2. Hence, ther-function
which was recently defined in [2] for the convex case has betamded here t, ,-circles with0 < p < 1.
All numbers from(0, 2) are therefore geometrically interpretable as sldghcircle numbers for nonconvex
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Table 1. Values of selecteth, ,,-circle numbers

D 0,113 1/4 0,3 /3 1/2 0,607 0,783 0,99995
m(p) 0,0001 2/35 0,1323 1/5 2/3 09992 1,5 1,9999

discs. Note further thaim,_.,_ 7(p) coincides with the circle number(1) = 2 which was introduced in
[2]. In Table 1, the numerical values of som@eneralized circle numbers are given.
It can be proved word by word in the same way as Theorem in [&f tie, ,-circle numbersr(p),
€ (0,1), satisfy the representation formulae

(p)=4/01(1—y y—4/ (L+7P)">" 7_2/ 1—4P) % d. (2.5)

Let us now consider a few specific properties of th&unction for arguments fron0, 1).

Remark.From @.1) and from the definition of the Gamma function it follows imdretely that thel, ; /.-
circle numbers satisfy the representation formula

These numbers tend to zero Adends to infinity at least as fast as their upper bouhd@=*. The
following theorem describes this asymptotic behavior narexisely.

Theorem. Ther-function satisfies the asymptotic relation

4r1/? (

p
") = ey (1§ +007), p— 40,

8

Proof. Starting from 2.1) and using the asymptotic representation formula of the i@arfunction

Tr —X 1
I'z+1)=x""V2r (14—?4—0(3:2)), T — 00,

it follows that

2((—1 + 1/p)V/r=1/2e1=1/p\ 27 (1 + ﬁ +0(p?)))? 0
m(p) = p(—1+ 2/ 12 =2n B (1 + s + O(p%)) p— 0.

Hence,
4/ 1+E+00p?)
m(p) = 5 P 2
22/p /p 1+ 5 +0(p?)
which immediately completes the proofO

as p — 0,

According to this theoremg(p) tends to zero a®p tends to zero. The asymptotic behavior of
ALy, -+ (r(p)) therefore strongly depends on the behavior-@f) asp — 0. Clearly, r(p) should tend
to infinity sufficiently fast forAL, ,--(r(p)) not tending to zero. The following corollary makes this more
precise.

Lith. Math. J., 48(3):1~7, 2008.
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Corollary. (a) If, for some constant’ > 0,

r(p)”%'\/ﬁ?”” as p— 0,

then
AL, p(r(p)) — C as p— 0.
(b) If r(p) = o(\/p - 22/P) asp — 0, then
AL, p(r(p)) — 0 asp — 0.

(©) If r(p)/ (/P 2%P) — oo @asp — 0, then
ALy e+ (r(p)) — 00 asp — 0.

Proof. Since of AL, ,--(0) = 207 (p), by Theorem we have

8 [m
ALy () ~ ) g 5 asp— .

Replacing here:(p) with one of the assumptions made on the asymptotic behayjorin a), b), or c),
we immediately get the asymptotic relation stated in a)pb);), respectively. O

A further justification for considering the geometry of thiame (Rz,ds(p**)) when measuring the
lengths of thel, ,,-circlesC,, () and when defining the circle numbergp) is given by the following prob-
abilistic application from [1]. Let a random vectQk, Y') be uniformly distributed or,,(1) or distributed
according to thep-generalized normal distribution. The normalized vectorn) = (X,Y)/(|X|P +

[Y'|P)1/? is thenp-generalized uniformly distributed on thig,-unit circle in the sense that, for arbitrary
Borel subsetd of C,(1),

_ S(p*)-arc-length ofA / /27r
P(Em € 4) = S(p**)-arc-length ofC),(1) POL:(A) N2 /

Here POL;~!(A) denotes the inverse image of the setinder the transformatioROL(¢) = POL,(1, ¢),

where thep-generalized polar coordinate transformati6tL,|[0,00) x [0,27) — R? is defined by
x =rcosp/Ny(p) andy = rsing/N,(¢). Since

1 12 dy
ALy =5 | Na(; ") (2.6)
it follows that
S(p*™*)-arc-length ofA 1 / dy
Pl e ) _ , 2.7
((€:m) ) 27 (p) 27(p) JroL:—'(4) NS(SO) @0

According to Egs.Z.3), formula .7) may also be interpreted as follows. Imagine that a point dving
on Cy(1). Then the equal areas

dep de
2 and / 2
/POL;:l(Al) Ng(@/ POL;™'(Az) Nﬁ(«p)/
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are swept out (from the origin) in equal “timed’} = P(({,n) € A1) and Ty = P((&,n) € As),
respectively.

For another application of the generalized circle numbéss,us continue the example from [1].
Imagine that a machine tool moves alonglap-circle line of p-generalized radius + ¢, creating thereby
a thin protective coat on a workpiece pfgeneralized radiug by applying a special material to its
surface. The consumed material then approximately (oe.sfallc) has the area conteftr(p)re.

Let us finally give an elementary probabilistic interprimt of the circle numbersvr(%) for k €
{2,3,...}. To this end, letny; be the total number of successes in a Bernoulli trial of lerygt with the
probability one half of a single success. It then immedjatellows from Eq. @.1) that

m(1/k) 1 B
VT T p— for k=2,3,.... (2.8)
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