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Introduction

Generalized circle numbers have been discussed for l2,p-circles in Rich-
ter [2008a,b] and for ellipses in Richter [2011]. All these numbers cor-
respond on the one hand to an area content property of the considered
discs which is based upon the usual, i.e. Euclidean, area content measure
and a suitably adopted radius variable. On the other hand, they reflect
a circumference property of the considered generalized circles w.r.t. a
non-Euclidean length measure which is generated by a suitably chosen
non-Euclidean disc. Several basic and specific properties of the circum-
ference measure have been discussed in Richter [2008a,b, 2011]. We refer
here to only two of them which are closely connected with each other by
the main theorem of calculus. The first one is that the generalized cir-
cumference of the generalized circle coincides with the derivative of the
area content function w.r.t. the adopted radius variable. The second one
is that, vice versa, the area content of the circle disc equals the integral
of the generalized circumferences of the circles within the disc w.r.t. the
adopted radius variable. Integrating this way may be considered as a
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generalization of Cavalieri’s and Torricelli’s method of indivisibles whe-
re the indivisibles are now the generalized circles within the given disc
and measuring them is based upon a non-Euclidean geometry. The far
reaching usefulness of this generalized method of indivisibles has been
demonstrated in Richter [2007, 2008a,b, 2011] where several applicati-
ons are dealt with and where it was also shown that integrating usual,
i.e. Euclidean, lengths of the same indivisibles does not yield the area
content, in general. In the present paper, we will prove that this method
still applies when generalized circle numbers are derived for general star
discs. In this sense, this paper deals with bounded and unbounded star
discs. Notice that because we shall not assume symmetry of the unit
disc, distances will depend on directions, in general.

To become more specific, let S be a star body in IR2 and let its
area content be defined as usual by its Lebesgue measure. Furthermore,
let us call the boundary of % times the star disc S the S-circle of S-
radius %, % > 0 and denote it by CS(%). If we define the perimeter
of S by using different length measures then we can observe different
perimeter-to-(two-times-S-radius) ratios and these ratios differ from the
corresponding (area-content)-to-(squared-S-radius) ratio, in general. If
we choose, however, the length measure in a certain specific way then
the first ratio coincides with the second one for all % > 0. In the most
famous case when S is the Euclidean disc and measuring circumference
is based upon Euclidean arc-length, the common constant value of the
two ratios is the well known circle number π.

If S is the symmetric and convex l2,p-circle, centered at the origin
and thus defining a norm then, according to Richter [2008a], the suitable
arc-length measure is based upon the dual norm, i.e. the norm which
is generated by the l2,p∗-circle {(x, y) : |x|p∗ + |y|p∗ = 1} with p∗ ≥ 1
satisfying the equation 1

p + 1
p∗ = 1.

Similarly, if S is an l2,p-circle, p ∈ (0, 1), corresponding to an anti-
norm (see Moszyńska and Richter [2011]) then, according to Richter
[2008b], the suitable arc-length measure is based upon the star disc
S(p∗∗) = {(x, y) ∈ IR2 : |x|p∗∗ + |y|p∗∗ ≥ 1} with p∗∗ < 0 satisfying
1
p + 1

p∗∗ = 1. The star disc S(p∗∗) corresponds to a specific semi-anti-
norm w.r.t. the canonical fan (see Moszyńska and Richter [2011]).

The situation for ellipses has been discussed in Richter [2011]. If
S = Da,b = {(x, y) ∈ IR2 : (xa )2 + (yb )2 ≤ 1} is an elliptically contoured
disc and E(a,b) = ∂S its boundary then the suitable arc-length measure
on the Borel σ-field of subsets of the ellipse E(a,b) is based upon the disc
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D( 1
b
, 1
a
). Note that again D(a,b) and D( 1

b
, 1
a
) correspond to dual norms.

The arc-length measure used for defining the p-generalized circle
number allows both for p ≥ 1 and for 0 < p < 1 the same additional
interpretation in terms of the derivative of the area content function
w.r.t. the p-radius variable. This way the notion of the p-generalized
circumference of the p-circle was introduced first in Richter [2007] un-
der more general circumstances and motivated there by several of its
applications. Several geometric interpretations of this notion in cases of
special norms and anti-norms have been discussed so far. As just to
refer to a few of them let us recall that this notion is a basic one for
the generalized method of indivisibles, that it allows to prove the so
called thin layers property of the Lebesgue measure and to think of a
certain mixed area content in a new way and that it is closely connected
with the solution to a certain isoperimetric problem. From a technical
point of view, a basic difference between the two situations is that in
the convex case one uses triangle inequality for showing convergence of
a sequence of suitably defined integral-sums and that one makes use of
the reverse triangle inequality from Moszyńska and Richter [2011] for
proving such convergence if the p-generalized circle corresponds to an
anti-norm.

The arc-length measure used for defining ellipses numbers has also an
interpretation in terms of the derivative of the area content function but
w.r.t. a generalized radius variable corresponding to E(a,b). The common
notion behind the different definitions of a generalized radius variable
discussed so far in the literatur is that of the Minkowski functional
(or gauge function) of a star body, but looking onto the motivating
applications, e.g. from probability theory and mathematical statistics,
let it become clear that further generalizations are desirable in future
work.

Here, we start our consideration with the definition of the S-generalized
circumference of an S-circle corresponding to a star body and shall dis-
cuss in Section 2 both its general geometric meaning and its specific
interpretation either when S is generated by an arbitrary norm or by
an anti-norm of special type.

It should be mentioned here that the Minkowski functional of a star
body generates a distance which is not symmetric in general, i.e., it
does not assign a length in the usual sense to a generalized circle but a
certain directed length.

In this sense, Section 2 deals mainly with generalized circle numbers
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for star bodies while Section 3 is devoted to a certain class of unbounded
star discs.

Definition 1. Let λ2 be the Lebesgue measure in IR2, S a star body and
AS(%) = λ2(%S) the corresponding area content function. Then

d

d%
AS(%) =: US(%), % > 0 (1)

will be called the S-generalized circumference of %S or the S-generalized
arc-length of the boundary CS(%) of %S, %S = {(%x, %y) ∈ IR2 : (x, y) ∈
S}.

It follows from the properties of the Lebesgue measure that

AS(%)

%2
=

US(%)

2%
= AS(1), ∀% > 0. (2)

The representation

AS(%) =

%∫
0

US(r)dr

may be understood as a generalized method of indivisibles for the Le-
besgue measure where the indivisibles are multiples of the boundary of
S and measuring their circumferences is based upon US . The equations
(2) may suggest on the one hand to call AS(1) the S-generalized circle
number. On the other hand, one may consider at this stage of conside-
ration a method of introducing generalized circle numbers which follows
basically the idea of the main theorem of calculus being rather elementa-
ry if not even trivial. However, the papers Richter [2007, 2008a,b, 2011]
which are closely connected with this approach allow a new look onto
a class of geometric measure representations or, similarly, onto a class
of stochastic representations which are quite fruitful for many applica-
tions. Several of these applications, especially in probability theory and
mathematical statistics, are discussed therein.

Clearly, there is always a necessity to give a geometric or other-
wise mathematical interpretation of the circumference US(%). In other
words, one naturally looks for a geometry such that the arc-length of
CS(%) w.r.t. this geometry coincides with the S-generalized circumfe-
rence US(%). The non-Euclidean geometries being identified in this way
may be considered as geometries ”being close to the Euclidean one” as
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those were discussed in Hilbert [1900] in connection with his fourth pro-
blem. If we can uniquely identify a geometry such that the arc-length
measure of S, ALS,S∗(%), which is based upon the geometry’s unit ball
S∗, satisfies the equation

ALS,S∗(%) = US(%), (3)

then we can observe already the non-trivial situation that

AS(%)

%2
=
ALS,S∗

2%
= AS(1), ∀% > 0. (4)

At such stage of investigation, it will then be already much more mo-
tivated that the area content of the unit star, AS(1), is called the S-
generalized circle number, π(S).

In this sense, the considerations in Richter [2008a,b, 2011] deal with
restrictions of the function S → π(S) to l2,p-balls, p > 0 and to axes
aligned ellipses.

Star bodies

A subset S from IR2 is called a star body if it is star-shaped with respect
to the origin and compact and has the origin in its interior. A set of this
type has the property that for every z ∈ IR2 there exists a uniquely
determined % > 0 such that z/% ∈ ∂S where ∂S denotes the boundary
of the set S. This % equals the value of the Minkowski functional w.r.t.
the reference set S,

hS(x, y) = inf{λ > 0 : (x, y) ∈ λS},

at any point (x, y) ∈ ∂S. The function hS is often called the gauge
function of S (see, e.g., in Webster [1994]) and coincides, for (x, y) 6=
(0, 0), with the reciprocal of the radial function (see, e.g., in Thompson
[1996] and Moszyńska [2006] )

%S((x, y)) = sup{λ ≥ 0 : λ(x, y) ∈ S}.

The special cases that hS is a norm or an anti-norm are of particular
interest and will be separately dealt with in examples 14 and 15.

With a star body S, the pair (IR2, hS) may be considered as a ge-
neralized Minkowski plane. The star disc and the star circle of S-radius
% will be defined then by KS(%) = {r · s, s ∈ S, 0 ≤ r ≤ %} and
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CS(%) = ∂KS(%), respectively. The set S will be called the unit star
in this plane.

Let T be another star disc in IR2 which will be specified later. Whe-
never possible, we may define the T -arc-length of the curve CS(%) as
follows.

Definition 2. If Zn = {z0, z1, ..., zn = z0} denotes a successive and
positive (anticlockwise) oriented partition of CS(%) then the positive di-
rected T -arc-length of CS(%) is defined by

ALS,T (%) := lim
n→∞

n∑
j=1

hT (zj − zj−1)

if the limit exists for and is independent of all described partitions of
CS(%) with F (Zn) = max

1≤j≤n
hT (zj − zj−1) tending to zero as n→∞.

Using triangle inequality or its reverse, one can show that if hS is a
norm or anti-norm then taking the limit may be changed with taking
the supremum or the infimum, respectively. Notice that because hT is
in general not a symmetric function, the orientation in the partition
may have essential influence onto the value of ALS,T (%) and is therefore
assumed here always to be positive.

For studying ALS,T (%), let a parameter representation of the unit-
S-circle CS(1) be given by CS(1) = {RS(ϕ)(cosϕ, sinϕ)T , 0 ≤ ϕ < 2π}.
Later on we shall assume that RS is a.e. differentiable. From the relation

hS((x, y)T ) = 1,∀(x, y)T ∈ CS(1)

it follows that

hS((cosϕ, sinϕ)T ) = 1/RS(ϕ), 0 ≤ ϕ < 2π.

In other words, with the notation MS(ϕ) = hS((cosϕ, sinϕ)T ), we have

CS(1) = {(cosϕ/MS(ϕ), sinϕ/MS(ϕ))T , 0 ≤ ϕ < 2π}.

This motivates the following definition which generalizes more particular
notions from earlier considerations.
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Definition 3. For an arbitrary star body S, the S-generalized sine and
cosine functions are

sinS(ϕ) = sinϕ/MS(ϕ) and cosS(ϕ) = cosϕ/MS(ϕ), ϕ ∈ [0, 2π),

respectively.

Notice that there is an elementary geometric interpretation of these
generalized trigonometric functions when one considers a right-angled
triangle Tr = ((0, 0)T , (x, 0)T , (x, y)T ) with x > 0 and y > 0 as follows.
The S-generalized sine and cosine of the angle ϕ ∈ [0, 2π) between the
directions of the positive x-axes and the line through the points (0, 0)T

and (x, y)T are

sinS(ϕ) = y/hS((x, y)T ) and cosS(ϕ) = x/hS((x, y)T ),

respectively. These functions satisfy the equation

hS(cosS(ϕ), sinS(ϕ)) = 1

generalizing the well known formula cos2 ϕ+ sin2 ϕ = 1.

Definition 4. The S-generalized polar coordinate transformation

PolS : [0,∞)× [0, 2π)→ IR2

is defined by

x = r cosS(ϕ), y = r sinS(ϕ), 0 ≤ ϕ < 2π, 0 ≤ r <∞.

Let us denote the quadrants in IR2 in the usual anticlockwise orde-
ring by Q1 up to Q4.

Theorem 5. The map PolS is almost one-to-one, for x 6= 0, its inverse
Pol−1S is given by

r = hS(x, y) and arctan(|y
x
|) = ϕ in Q1, π−ϕ in Q2, ϕ−π in Q3, 2π−ϕ in Q4

and its Jacobian satisfies

J(r, ϕ) =
D(x, y)

D(r, ϕ)
=

r

M2
S(ϕ)

.
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Proof :
The proof follows that of Theorem 8 in Richter [2011] and makes essen-
tially use of the fact that the derivatives of the S-generalized trigono-
metric functions sinS and cosS allow the representations

sin′S(ϕ) =
1

M2
S(ϕ)

[cosϕMS(ϕ)− sinϕM ′S(ϕ)]

and

cos′S(ϕ) =
1

M2
S(ϕ)

[− sinϕMS(ϕ)− cosϕM ′S(ϕ)].

�
Using S-generalized polar coordinates, we can write

CS(%) = {(% coss(ϕ), % sinS(ϕ))T , 0 ≤ ϕ < 2π, % > 0}.

We assume from now on that hT is positively homogeneous, put

hT (zj − zj−1) = hT ((∆jx,∆jy)T )

and consider

hT (zj − zj−1) = hT ((∆jx(ϕ)/∆jϕ,∆jy(ϕ)/∆jϕ)T )∆jϕ

for sufficiently thin partition Zn and ∆jϕ > 0. We get in the limit, which
was assumed in Definition 2 to be uniquely determined,

ALS,T (%) =

2π∫
0

hT (x′(ϕ), y′(ϕ))dϕ = %

2π∫
0

hT (x′(ϕ)/%, y′(ϕ)/%)dϕ

= %

2π∫
0

hT ((cos′S(ϕ), sin′S(ϕ))T )dϕ = %ALS,T (1).

It follows from the proof of Theorem 5 that

ALS,T (%) = %

2π∫
0

R2
S(ϕ)hT (MS(ϕ)

(
− sinϕ
cosϕ

)
+M ′S(ϕ)

(
− cosϕ
− sinϕ

)
)dϕ,

i.e.,

ALS,T (%) = %

2π∫
0

R2
S(ϕ)hT (O(ϕ)xS(ϕ))dϕ (5)
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with

O(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
, xS(ϕ) =

(
R′S(ϕ)/R2

S(ϕ)
1/RS(ϕ)

)
.

The following lemmas and corollaries represent certain steps towards
a reformulation of formula (5).

Lemma 6. In the case of their existence, the partial derivatives hS,x
and hS,y of the function (x, y)→ hS(x, y) satisfy the representation(

0 −1
1 0

)(
hS,x(r coss(ϕ), r sins(ϕ))
hS,y(r coss(ϕ), r sins(ϕ))

)
= O(ϕ)xS(ϕ).

Proof. It follows from the relation

hS(r cosS(ϕ), r sinS(ϕ)) = r

that the partial derivatives hS,x and hS,y satisfy the equation system

∂

∂ϕ
hS(cosS(ϕ), sinS(ϕ)) = 0,

∂

∂r
hS(r cosS(ϕ), r sinS(ϕ)) = 1.

Solving this differential equation system we get

hS,x(r coss(ϕ), r sins(ϕ)) =
1

R2
S(ϕ)

(RS(ϕ) cos(ϕ) +R
′
S(ϕ)) sin(ϕ)

and

hS,y(r coss(ϕ), r sins(ϕ)) =
1

R2
S(ϕ)

(RS(ϕ) sin(ϕ)−R′S(ϕ)) cos(ϕ).

Hence, (
hS,x(r coss(ϕ), r sins(ϕ))
hS,y(r coss(ϕ), r sins(ϕ))

)
=

(
0 1
−1 0

)
O(ϕ)xS(ϕ).

Let B be a 2×2-matrix and BT = {B(x, y)T : (x, y)T ∈ T}. Clearly,

multiplying the set T by the matrix

(
0 −1
1 0

)
causes an anticlockwise

rotation of T through the angle π/2. Hence, if T is a star disc then BT
is a star disc, too.

9



Corollary 7. For positively homogeneous hT , differentiable hS, formula
(5) may be rewritten as

ALS,T (%) = %

2π∫
0

R2
S(ϕ)h 0 1

−1 0

T (∇hS(x, y)|(x,y)=PolS(r,ϕ))dϕ.

Proof :
Based upon Lemma 6 formula (5) may be reformulated as

ALS,T (%) = %

2π∫
0

R2
S(ϕ)hT (

(
0 −1
1 0

)(
hS,x(r coss(ϕ), r sins(ϕ))
hS,y(r coss(ϕ), r sins(ϕ))

)
)dϕ.

Because of

hT (

(
0 −1
1 0

)(
ξ
η

)
) = inf{λ > 0 :

(
0 −1
1 0

)(
ξ
η

)
∈ λT}

= inf{λ > 0 :

(
ξ
η

)
∈ λ

(
0 1
−1 0

)
T} = h 0 1

−1 0

T (

(
ξ
η

)
)

it follows the assertion.
�

Remark 8. The plug-in version ∇hS(x, y)|(x,y)=PolS(r,ϕ) of the gradient
∇hS(x, y) coincides with the image of the gradient ∇hS(x, y) after chan-
ging Cartesian with S-generalized polar coordinates, PolS(∇hS(x, y))(r, ϕ).

Proof. Changing Cartesian coordinates (x, y) with S-generalized polar
coordinates (r, ϕ), we have r = hS(x, y) and ϕ = arctan y

x . Starting from
the equation

∂

∂x
hS(x, y) =

∂

∂r
hS(x, y)

∂

∂x
r +

∂

∂ϕ
hS(x, y)

∂

∂x
ϕ,

and the analogous one for ∂
∂yhS(x, y), and taking into account that

∂

∂r
hS(x, y)|(x,y)=PolS(r,ϕ) =

∂

∂r
hS(r cosS(ϕ), r sinS(ϕ)) = 1
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and

∂

∂ϕ
hS(x, y)|(x,y)=PolS(r,ϕ) =

∂

∂ϕ
hS(r cosS(ϕ), r sinS(ϕ)) = 0,

it follows

∂

∂x
hS(x, y) =

∂r

∂x
|(x,y)=PolS(r,ϕ) = hS,x(r cosS(ϕ), r sinS(ϕ))

and

∂

∂y
hS(x, y) =

∂r

∂y
|(x,y)=PolS(r,ϕ) = hS,y(r cosS(ϕ), r sinS(ϕ)).

Remark 9. For positively homogeneous hT and differentiable Minkow-
ski functional hS of the star disc S, formula (5) may be rewritten as

ALS,T (%) = %

2π∫
0

R2
S(ϕ)h 0 1

−1 0

T (PolS(∇hS(x, y))(r, ϕ))dϕ. (6)

Definition 10. A star body S and a star disc T satisfy the rotated
gradient condition if

h 0 1
−1 0

T (∇hS(x, y)|(x,y)=PolS(r,ϕ)) = 1, a.e. (7)

Let us notice that, at the point (x, y) from CS(%), the gradient
∇hS(x, y) is normal to the level set CS(%), % > 0 of hS . The following
lemma is a consequence of the above consideration.

Lemma 11. For a star body S and a star disc S∗ satisfying the rota-
ted gradient condition (7), the positive directed S∗-arc-length of CS(%)
allows the representation

ALS,S∗(%) = %

2π∫
0

R2
s(ϕ)dϕ.
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We consider now the area function

AS(%) = %2AS(1) =
%2

2

2π∫
0

R2
S(ϕ)dϕ

where As(1) denotes the area content of the unit disc KS(1). The deri-
vative of the area function satisfies obviously the equation

d

d%
AS(%) = %

2π∫
0

R2
S(ϕ)dϕ.

The following theorem has thus been proved.

Theorem 12. If the star body S and the star disc S∗ satisfy the rotated
gradient condition (7) then

US(%) = ALS,S∗(%), (8)

i.e., the S-generalized circumference of S coincides with the positive
directed S∗-circumference of S.

If relation (8) holds then

ALS,S∗(1) = 2AS(1). (9)

Consequently, the ratios AS(%)/%2 and ALS,S∗(%)/2% satisfy the relati-
ons

AS(%)

%2
(a)
= AS(1)

(c)
=
ALS,S∗(%)

2%
,∀% > 0. (10)

In this sense, the geometry and the arc-length measure generated by S∗

fulfill our expectations. The following definition is thus well motivated if
a star body S and a star disc S∗ are chosen in such a way that the limit
in Definition 2 is uniquely determined, hT is positively homogeneous, hS
is a.e. differentiable and the rotated gradient condition (7) is satisfied.

Definition 13. (a) The properties of the star bodies KS(%), % > 0,
which are expressed by the equations (a) and (c) in (10) are called the
area-content and the S-generalized circumference properties of the discs,
respectively.
(b) The quantity AS(1) =: π(S) is called the S-generalized circle number
of the star bodies KS(%), % > 0.
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We may write now the equations in (10) as

ALS,S∗(%) = 2π(S)% and AS(%) = π(S)%2. (11)

Notice that the circle number function S → π(S) assigns a generalized
circle number to any star body KS(%) satisfying assumption (7) . The
restrictions of this function to l2,p-balls or axes aligned ellipses were
considered in Richter [2008a,b, 2011].

Example 14. Here we consider a first, rather general case where the
rotated gradient condition (7) is satisfied. Let ||.||(p) and ||.||(d) denote a
(primary) C1-norm in IRn and the corresponding dual one, respectively.
It is proved in Yang [1991] that

|| ∇ || x ||(p) ||(d) = 1,∀ x ∈ IRn.

Hence, if S is a convex body, i.e. hS(x) = || x ||(p) is a (primary) norm,
and if (

0 1
−1 0

)
T = {x ∈ IRn : || x ||(d) ≤ 1} = S∗

is the unit ball w.r.t. the corresponding dual norm then the condition
(7) is satisfied.

For determining the actual value of a generalized circle number π(S) =
AS(1) we may refer, e.g., to Pisier [1999] where volumes of convex bodies
are dealt with. Alternatively, one may use S-generalized polar coordina-
tes for making the respective calculations in given cases. The particular
results for l2,p-circles with p ≥ 1 and of axes aligned ellipses as well
as the corresponding generalized circle numbers have been dealt with in
Richter [2008a, 2011].

Example 15. We consider now the non-convex l2,p-circles Cp = {(x, y) ∈
IR2 : |x|p+ |y|p = 1} with 0 < p < 1. Such generalized circles correspond
to anti-norms. A suitable arc-length measure for measuring Cp is based
upon the star disc S(p∗∗) = {(x, y) ∈ IR2 : |x|p∗∗ + |y|p∗∗ ≥ 1} with
p∗∗ < 0 satisfying 1

p + 1
p∗∗ = 1. The star discs S(p∗∗) are closely related

to a specific semi-anti-norms w.r.t. the canonical fan. The corresponding
generalized circle numbers have been determined in Richter [2008b]. As
because this was done without referring explicitely to (7), we may state
here the following problem.
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Problem 16. Give a general description of sets T satisfying condition
(7) for sets S being generated by anti-norms.

As was indicated in Richter [2008b], p-generalized circle numbers for
0 < p < 1 may occur, e.g., within certain combinatorial formulae. Notice
further that the reciprocal values of the coefficients of the binomial series
expansion

1

4
√

1− 4u
=
∞∑
n=0

1

π( 1
n)
· un, u ∈ (0,

1

4
),

are just the generalized circle numbers corresponding to the non-convex
l2,1/n-circles. One could also ask for a (possibly elementary geometric ?)
explanation of this fact.

Unbounded star discs

In this section, we consider a class of (truncated) unbounded Orlicz
discs. More generally than in the preceding section, a star-shaped subset
of IR2 is called a star disc if all its intersections with balls centered at
the origin are star bodies. The boundary of a star disc is called a star
circle. Notice that a star circle is not necessarily bounded. Special sets
of this type will be studied in this section. To be more specific, let us
consider, for arbitrary p < 0, the function

(x, y)→ |(x, y)|p = (|x|p + |y|p)1/p, x 6= 0, y 6= 0

which denotes a semi-anti norm, and the p-generalized circle

Cp = {(x, y) ∈ IR2 : |(x, y)|p = 1}.

The pairs of straight lines |y| = 1 and |x| = 1 represent asymptotes
for the circle Cp as |x| → ∞ or |y| → ∞, respectively. The intersection
point of the p-circle Cp with the line y = x is for positive coordinates
(x0, y0) = 2−1/p · (1, 1).

Let further Cp(r) = r · Cp, r > 0 denote the p-generalized circle
of p-generalized radius r > 0. It is the boundary of the unbounded
p-generalized disc of p-generalized radius r,

Kp(r) = {(x, y) ∈ R2 : |(x, y)|p ≤ r} = rKp, Kp = Kp(1).

As because
|(x, y)|p ≤ r ⇐⇒ |x|p + |y|p ≥ rp

14



⇐⇒ f(|x|) + f(|y|) ≥ f(r) for f(λ) = λp, λ ≥ 0,

one may call Kp(r) a two-dimensional Orlicz-anti-ball corresponding to
the Young function f . The disc Kp is a star-shaped but non-compact
set and therefore not a star body. For any (x, y) ∈ Cp(r) one may think
of r as the value of the Minkowski-functional w.r.t. the reference set
Kp. The area content and the Euclidean circumference of the unit p-
circle are obviously unbounded. That’s why we consider from now on
truncated p-circles. To this end, let us introduce truncation cones

C(x1) := {(x, y) ∈ IR2 :
||(x, y)−Π1(x, y)||
||Π1(x, y)||

<
||(x1, y1)−Π1(x1, y1)||

||Π1(x1, y1)||
}

= {(x, y) ∈ IR2 :
|x− y|
|x+ y|

<
|x1 − y1|
|x1 + y1|

}

where ||.|| denotes Euclidean norm, 1 = (1, 1), x1 is chosen according to

x1 > x0 = 2
− 1

p and |y1| = (1− |x1|p)1/p < 1.
The question of interest is now whether we may define in a reasona-
ble way circle numbers for the truncated p-discs Kx1

p (r) = rKx1
p the

boundaries of which are the p-circles Cx1p (r) = rCx1p of p-radius r and
where

Kx1
p := Kp ∩ C(x1) and Cx1p := Cp ∩ C(x1).

To this end, let Zn = (z0, z1, ..., zn) be an arbitrary successive antic-
lockwise oriented partition of the truncated circle Cx1p satisfying z0 =

(x0, (1− xp0)1/p) and zn = (x1, (1− xp1)1/p). We consider the sum

S(Zn) =

n∑
j=1

|zj − zj−1|q =

n∑
j=1

(|xj − xj−1|q + |yj − yj−1|q)1/q, q ∈ (0, 1)

and observe that due to the reverse triangle inequality it decreases mo-
notonously as

F (Zn) := sup
1≤j≤n

|zj − zj−1|q → 0.

According to the symmetry of Cx1p , the following remark is justified.

Remark 17. For q ∈ (0, 1), the l2,q-arc-length of the truncated circle
Cx1p is defined as

ALx1p,q = 8 lim
F (Zn)→0

S(Zn).
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If x → y(x) denotes an arbitrary parameter representation of the
truncated circle Cx1p then

1

8
ALx1p,q = lim

F (Zn)→0

n∑
j=1

(1 + |∆yj
∆xj
|q)1/q∆xj =

x1∫
x0

(1 + |y′(x)|q)1/qdx.

Let us denote the usual Euclidean area content of the truncated circle
disc Kx1

p by Ax1p .

Lemma 18. Let for arbitrary p < 0 the number p∗ ∈ (0, 1) be uniquely
defined by the equation 1

p + 1
p∗ = 1. Then

Ax1p =
1

2
ALx1p,p∗ . (12)

Proof :
With

y(x) = (1− |x|p)1/p = (1− xp)1/p, y′(x) = −(1− xp)1/p−1xp−1,

it follows from the above formulae that

ALx1p,q = 8

x1∫
1/21/p

(1 + (1− xp)(1/p−1)qx(p−1)q)1/qdx.

Changing variables u = xp, dx = du/(pu(p−1)/p) causes a change of the
limits of integration:

ALx1p,q =
8

−p

1/2∫
xp1

(1+(1−u)
1−p
p
q
u

p−1
p
q
)
1
q
du

u
p−1
p

=
8

|p|

1/2∫
xp1

(u
1−p
p
q
+(1−u)

1−p
p
q
)
1
q du.

Assuming now 1
p + 1

q = 1, or equivalently q = p
p−1 =: p∗, it follows

ALx1p,p∗ =
8

|p|

1/2∫
xp1

(u−1 + (1− u)−1)
p−1
p du =

8

|p|

1/2∫
xp1

(
1− u+ u

u(1− u)
)
1− 1

pdu.

Hence,

ALx1p,p∗ =
8

|p|

1/2∫
xp1

u
1
p
−1

(1− u)
1
p
−1
du. (o)
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Now, what about the area content of the truncated circle Cx1p ? The l2,p-
generalized standard triangle coordinate transformation Tr from Rich-
ter [2007] is defined by

Trp(r, µ) = (x, y) with x = rµ, y = +(−)r(1− |µ|p)1/p.

Because of

{(x, y) : |x|p + |y|p = 1, x0 ≤ x ≤ x1} = Trp({1} × [x0, x1])

r{(x, y) : |x|p + |y|p = 1, x0 ≤ x ≤ x1} =

{(rx, ry) : |x|p + |y|p = 1, x0 ≤ x ≤ x1}

= {(ξ, η) : |ξ
r
|p + |η

r
|p = 1, x0 ≤

ξ

r
≤ x1}

= {(x, y) : |x|p + |y|p = rp, x0 ≤
x

r
(=: µ) ≤ x1}

= Trp({r} × [x0, x1])

it follows ⋃
0≤r≤1

r{(x, y) : |x|p + |y|p = 1, x0 ≤ x ≤ x1}

= Trp([0, 1]× [x0, x1]) = Kx1
p ,

i.e.,
Kx1
p = Trp([0, 1]× [x0, x1]). (∗)

Changing Cartesian with standard triangle coordinates in the integral

Ax1p =

∫
K

x1
p

d(x, y),

we get

Ax1p = 8

1∫
r=0

(

x1∫
µ=x0

r(1− µp)
1−p
p dµ)dr =

8

2

x1∫
2−1/p

(1− µp)1/p−1dµ.

Substituting y = µp, dydµ = py
p−1
p , it follows

Ax1p =
4

p

xp1∫
1/2

(1− y)1/p−1y1/p−1dy =
4

|p|

1/2∫
xp1

y1/p−1(1− y)1/p−1dy.

Hence, the lemma is proved. �
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Remark 19. Because of p < 0,

Ax1p →∞ as x1 →∞.

The following corollary and definition are now quite obvious and
well motivated.

Corollary 20. For arbitrary x1 > x0 = 2−1/p, the truncated star discs
Kx1
p have the area content and p-generalized circumference properties

(a∗) and (c∗), respectively,

Ax1p (r)

r2
(a∗)
= Ax1p

(c∗)
=

ALx1p,p∗(r)

2r
, (13)

from which it follows immediately

d

dr
Ax1p (r) = ALx1p,p∗(r). (14)

Remark 21. One may think of equation (14) as reflecting a generali-
zed method of indivisibles for each x1 > x0 where the truncated circles
Cx1p are the indivisibles and measuring them is based upon the geometry
generated by the disc Kp∗.

Definition 22. For arbitrary x1 > 2−1/p, the quantity Ax1p =: πx1(p)
will be called the circle number of the truncated circle Cx1p .
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