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Summary The ball number function was recently defined in [6] for ln,p-balls. It was shown there that
ball numbers occur naturally in factorizations of the normalizing constants of density generating func-
tions if such functions depend on the ln,p-norm. For an analogous situation in the case of ellipsoids we
refer to [7] and [8]. Here, we discuss some additional properties of the ball number function and state the
problem of extending it to sets which are generated by arbitrary norms or anti-norms (for definition, see
[4]), and to even more general balls. As an application, we present a method for deriving new specific
representation formulae for values of the Beta function.
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1 Introduction
The circle number π reflects in a well known sense the area content property and the circumfe-
rence property of Euclidean circles. The Euclidean ball number function extends these proper-
ties to arbitrary dimension n ≥ 2 and reflects the volume property and surface content property
of Euclidean balls. If V (r) and O(r) denote volume and surface content of the n-dimensional
Euclidean ballB(r) with radius r > 0 then the ratios V (r)/rn andO(r)/(nrn−1) do not depend
on the radius of the ball and their constant values coincide with each other. Hence, it is natural
to think of the actual value of this constant as a ball number. If this will be denoted by πn then

V (r)

rn
= πn =

O(r)

nrn−1
, ∀r > 0

and

πn = V (1) =
O(1)

n
=

2πn/2

nΓ(n
2
)
.

It may be surprising that in fact many books on geometry and analysis although giving explicit
expressions for V (r) andO(r) do not mention these relations which connect volume and surface
content with each other. In what follows, let λ and O denote the Lebesgue measure and the
Euclidean surface measure in IRn, respectively. Further, let S(r) be the Euclidean sphere of
radius r. The obvious conclusions from the above equations,

V ′(r) = O(r) and V (r) =

∫ r

0

O(%)d%,

are closely related to the method of indivisibles of Cavalieri and its extension by Torricelli which
is nowadays basically reflected by the S(r)-adapted disintegration formulae for the Lebesgue
measure,

λ(A) =

∫ ∞
0

O(A∩S(r))dr = nπn

∫ ∞
0

rn−1F(A, r)dr for A ∈ Bn satisfying λ(A) <∞.
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Here, Bn denotes the Borel σ-algebra in IRn and

F(A, r) :=
O(1

r
A ∩ S(1))

O(1)

is the Euclidean intersection percentage function of the set A. These conclusions, which refer
to the main theorem of calculus, are furthermore closely related to the thin layers property of
the Lebesgue measure which is expressed by the asymptotic equivalence relation

λ(r ≤ ||x|| ≤ r + ε) ∼ nπnr
n−1ε, ε→ +0.

Let us describe the upper half-sphere of radius r by

y(x) := (r2 −
n−1∑
1

x2i )
1/2, i = 1, ..., n− 1,

n−1∑
1

x2i < r2.

The normal vector to this surface at the point (x, y(x)) with
∑n−1

1 x2i < r2 is

N(x) =
n−1∑
1

[
∂

∂xi
y(x)]ei − en

where e1, ..., en are standard unit vectors in IRn. The surface content of a half-sphere may be
represented as∫

∑n−1
1 x2i<r

2

||N(x)||dx =
1

2
O(r)

where ||.|| denotes the Euclidean norm in IRn. The resulting equation

2

∫
∑n−1

1 x2i<r
2

||N(x)||dx = V ′(r)

may therefore be thought of as reflecting both the global look and the local look at the notion of
surface content which reflect integrating the norm of the normal vector and taking the derivative
of the volume function, respectively.

2 The ln,p-ball number function
While all ingredients for defining the ball number function n 7→ πn for Euclidean balls in the
last section were known from the literature already for a long time the situation is quite different
in the case of arbitrary ln,p-balls. We start this section with explaining a background problem for
this case coming from measure theory. A conclusion which follows from the co-area-formula
(see, e.g. [3]) for the function

f(x) := |x|p, |x|p := (
n∑
1

|xi|p)1/p, x ∈ IRn, p > 0, p 6= 1

2



is that for A ∈ Bn satisfying λ(A) <∞∫ ∞
0

O(A ∩ f−1(r))dr =

∫
A

J(f)(x)dx =: ν(A).

Here, f−1(r) = {x ∈ IRn : (
n∑
1

|xi|p)1/p = r} =: Sn,p(r) denotes the ln,p-sphere of ’p-radius’ r

and J(f)(x) = ( |x|2p−2

|x|p )p−1 is the Jacobian of f . The measure ν satisfies the relations

ν(A)


<

=

>

λ(A) if and only if p


>

=

<

2.

Hence, there is no extension of the disintegration formula for the Lebesgue measure if the indi-
visibles are ln,p-spheres and measuring them will be done using the Euclidean surface content.
If one measures, however, the ln,p-spheres Sn,p(r) by another surface content than the Euclidean
one then it may become possible to extend the S(r)-adapted method of indivisibles to the case
that the indivisibles are ln,p-spheres.

It has been proved in [5] that this actually holds if one defines the surface measure as follows.
Let the upper half of the ln,p-sphere Sn,p(r) be described by

y(x) := (rp −
n−1∑
1

|xi|p)1/p,
n−1∑
1

|xi|p < rp, p > 0.

Making use of the normal vector to this surface, N(x) =
∑n−1

i=1 [ ∂
∂xi
y(x)]ei− en, we define now

a surface measure for Borel subsets D from the upper half sphere by

Op(D) :=

∫
G(D)

|N(x)|qdx, G(D) := {x = (x1, ..., xn−1) :
n−1∑
1

|xi|p < rp and (x1, ..., xn) ∈ D}

where

1

p
+

1

q
= 1, i.e., q =

p

p− 1
∈

{
[1,∞] if p ∈ [1,∞]

(−∞, 0) if p ∈ (0, 1).

If Vp(r) and Op(r) denote volume and Op-surface content of the ln,p-ball with p-radius r > 0
then, according to [6], the global look and the local look at the generalized surface content are
reflected by the equation

2

∫
n−1∑
1
|xi|p<rp

|N(x)|qdx = V ′p(r).

By combining this with the well known explicit formula for Vp(r), we obtain

Vp(r)

rn
= πn(p) =

Op(r)

nrn−1
, ∀r > 0
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where

πn(p) := Vp(1) =
Op(1)

n
=

2nΓn(1
p
)

npn−1Γ(n
p
)
, p > 0.

In the next section, we shall study some properties of this ball number function (n, p) 7→ πn(p)
which was defined in [6]. Before doing this, let us emphasize the remarkable circumstance that
two generalizations are going here hand in hand. Changing the Euclidean surface measure with
Op, on the one hand the ball number function (n, p) 7→ πn(p) extends the function n 7→ πn
from the set of Euclidean balls to the set of ln,p-balls and on the other hand the ln,p-adapted
disintegration formula for the Lebesgue measure is a generalization of the S(r)-adapted one.
This can be seen from the following result in [5] and has been observed in an analogous way in
[7] and [8] for ellipses and ellipsoids, respectively.

If a Borel measurable set A satisfies the assumption λ(A) <∞ then the Lebesgue measure
satisfies the following ln,p-adapted disintegration formulae

λ(A) =

∫ ∞
0

Op(A ∩ Sn,p(r))dr = nπn(p)

∫ ∞
0

rnFp(A, r)dr.

Here,

Fp(A, r) :=
Op(

1
r
A ∩ S(1))

Op(1)

is the (non-Euclidean) p-generalized intersection-percentage-function of the set A.
Finally, let us remark that our choice of the geometry for measuring the surface content is

closely connected with that one for solving the isoperimetric problem for Minkowski area in
[2]. It turns out that certain types of ”parallel sets” discussed there are similar to those which
occur when one is taking the derivative of the volume function Vp(r) w.r.t. the p-radius r. For
more details, we refer to [5].

3 Properties of the ln,p-ball number function
Theorem 1 For fixed dimension n, the ball number function p 7→ πn(p) is continuous and
increasing and satisfies the following relations

0 = lim
p→0

πn(p) < πn(p) < lim
p→∞

πn(p) =: π(∞) = 2n.

Proof :
All properties of the ln,p-ball number function mentioned in the theorem follow immediately
when thinking of πn(p) as the volume of the ln,p-unit ball �

Theorem 2 For fixed dimension n, the ball number function p 7→ πn(p) satisfies the following
asymptotic relations

πn(p) =
2

3n−1
2 π

n−1
2

p
n−1
2 n

n
p
+ 1

2

(1 +
n2 − 1

12n
p+O(p2)), p→ 0
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and

πn(p) = 2n(1− π2n(n− 1)

12p2
+O(

1

p3
)), p→∞.

Proof :
Proof of the first assertion follows essentially the line of the corresponding proof in the two-
dimensional case and may therefore be omitted here. We start now from the representation for
the ball number πn(p) = 2nΓn(1

p
)/(npn−1Γ(n

p
)), p > 0. Combining this with the asymptotic

relation

Γ(
k

p
) = p(1− γk

p
+
δk2

p2
)/k +O(

1

p3
), p→∞

where γ = 0, 577... is the Euler constant and δ is a suitably chosen other constant, (see [1]), we
obtain the second assertion �

It is an immediate conclusion from Theorem 1 that every positive number is a ball number. Mo-
reover, there are infinitely many possibilities to represent a positive number as a ball number.

The second assertion in Theorem 2 motivates to consider normalized ln,p-ball numbers

π∗n(p) := πn(p)/2n,

see Figure 1.
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Figure 1: The normalized ball number function (n, p) 7→ π∗n(p) = πn(p)/2n

The following Figure 2 presents a more detailed look at the normalized ln,p-ball number function
for small values of p.
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Figure 2: π∗n(p) = πn(p)/2n for small values of p

The original, i.e. non-normalized, ln,p-ball number function for small values of p can be seen in
Figure 3.
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Figure 3: The ball number function (n, p) 7→ πn(p) for small values of p

Theorem 3 The Lebesgue measure has the ln,p-thin layers property

λ(r ≤ |x|p ≤ r + ε) ∼ nπn(p)rn−1ε, ε→ +0.

Proof :
We start from the ln,p-adapted disintegration formula for the Lebesgue measure and observe the
corresponding intersection percentage function of the set A = {x ∈ IRn : r ≤ |x|p ≤ r + ε},

Fp(A, ρ) = I(r,r+ε)(ρ), ρ > 0.

Hence,

λ(A) = nπn(p)

∫ ∞
0

ρn−1I(r,r+ε)(ρ)dρ.
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Finally, λ(A) = πn(p)[(r + ε)n − rn] �

Studying additional recurrence properties of the ln,p-ball number function, which are of interest
for their own, we prove the following specific formula for values of the Beta function of which
the author has not been aware.

Theorem 4 For all x > 0 and n ∈ {3, 4, ...}, the Beta function satisfies the representation

xB(x, (n− 1)x) =

∫ π/2

0

(sinϕ)n−2dϕ

((sinϕ)1/x + (cosϕ)1/x)nx
.

Proof :
It follows immediately from the explicit formula for πn(p) that the ln,p-ball number function
satisfies the (first) recurrence formula

(∗) πn(p) =
2

p
(
n− 1

n
)B(

1

p
,
n− 1

p
)πn−1(p), n = 3, 4, ...

where the starting value π2(p) allows several known integral representations. Change of Carte-
sian coordinates into p-generalized spherical coordinates from [5] in the integral∫

|x|p≤1

dx = Vp(1) = πn(p)

yields

πn(p) =

∫ 1

0

rn−1dr

∫ π

0

...

∫ π

0

∫ 2π

0

sinn−2 φ1 · ... · sinφn−2
Nn
p (φ1) · ... ·N3

p (φn−2)N2
p (φn−1)

dφn−1dφn−2...dφ1

with

Np(ϕ) = (| sinϕ|p + | cosϕ|p)1/p.

Hence, the ln,p-ball number function satisfies also the (second) recurrence formula

(∗∗) πn(p) = (
n− 1

n
)

∫ π

0

(
sinϕ

Np(ϕ)
)n−2

dϕ

N2
p (ϕ)

πn−1(p), n = 3, 4, ...,

π2(p) =

∫ π

0

dϕ

N2
p (ϕ)

.

Comparing (*) with (**), we obtain

1

p
B(

1

p
,
n− 1

p
) =

∫ π/2

0

(sinϕ)n−2dϕ

((sinϕ)p + (cosϕ)p)n/p
.

Finally, put x = 1
p

�
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As a consequence of Theorem 4 for n = 3 we obtain the following:

xΓ(x)Γ(2x)

Γ(3x)
=

∫ π/2

0

sinϕdϕ

((sinϕ)1/x + (cosϕ)1/x)3x
, x > 0.

Combining, e.g., this formula with the analogous one derived from Theorem 4 for n = 4 we
infer that

Γ2(3x)

Γ(2x)Γ(4x)
=

∫ π/2

0

sin2 ϕdϕ

((sinϕ)1/x + (cosϕ)1/x)4x
/

∫ π/2

0

sinϕdϕ

((sinϕ)1/x + (cosϕ)1/x)3x
, x > 0.

An additional representation formula for the ln,p-ball number function is given in the next
theorem.

Theorem 5 The ln,p-ball number function satisfies the equation

πn(p) =
2n−1π2(p)

n

n−2∏
i=1

π/2∫
0

dϕ

(1 + (cotϕ)p)i/pN2
p (ϕ)

.

Proof :
It can be seen from the second recurrence formula in the proof of Theorem 4 that

πn(p) =
1

n

n−2∏
i=1

∫ π

0

(
sinφ

Np(φ)
)i

dφ

N2
p (φ)

· 2π2(p).

The assertion of the theorem follows now immediately �

Finally, let g ≥ 0 be a density generating function satisfying the assumption In,g,p < ∞ where

In,g,p :=
∞∫
0

rn−1g(rp)dr. We recall from [6] that the normalizing constant of the corresponding

ln,p-symmetric density

ϕp,g(x) := Cp(n, g)g(|x|pp)

allows a factorization involving the geometric quantity πn(p) and the analytical one, In,g,p,

Cp(n, g) =
1

nπn(p) In,g,p
.

Examples of density generating functions are the p-generalized Gaussian one, gG(r) := e−r/pI(0,∞),
the Kotz-type one, gK(r) := rM−1e−βr

γ
I(0,∞), and the Pearson-VII-type one, gP (r) := 1

(1+ r
m
)M
I(0,∞).

4 Outlook: more general balls
Let us recall that in Sections 1 and 2 we considered the ball numbers πn and πn(p). Moreover,
the ellipsoid number function (n, a) 7→ πEn (a) is considered in [8]. It assigns a number πEn (a) to
each axes aligned ellipsoid with half-axes of lengths r · a1, ..., r · an. Here, a = (a1, ..., an), and
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r is the ”a-radius” of the ellipsoid which can be interpreted in terms of a Minkowski functional.
In this sense, one may think of the ellipsoid also as a generalized ball. This gives rise to search
for a more general approach to defining just one general ball number function. We shall do this
in such a way that the set of all specific ball (or ellipsoid) number functions studied so far may
be understood as a restriction of the new one. To this end, we consider a function

(n,B) 7→ πS
n (B), B ∈ S

where S denotes the set of all star bodies (with respect to 0) in IRn. The restriction of πS
n to any

subset T of S will be denoted by πT
n . In this sense, the ball number function (n, p) 7→ πn(p) is

the restriction of the function πS
n to the set T1 of all ln,p-balls and the ellipsoid number function

(n, a) 7→ πEn (a) is the restriction of πS
n to the set T2 of all exes aligned ellipsoids.

We recall that the notion of the Op-surface content of an ln,p-ball of radius r is defined by

Op(r) = 2

∫
|x|p<r

|N(x)|qdx

where in the case p ≥ 1,
|.|p is a norm
and
|.|q is the norm dual to |.|p : q = p

p−1 ∈ [1,∞].

Instead of assigning a ball number to each convex ln,p-ball, we could think of πS
n as a function

which assigns in this case a ball number to each ln,p-norm.
It could be then a reasonably restricted problem to consider ball numbers for all norms.
Let us recall the well known fact there is a biunique correspondence between the norms in Rn

and the convex bodies symmetric w.r.t. 0. This correspondence is extended in [4] over functio-
nals of another general type.
It follows as a special result from [4] that in the case p ∈ (0, 1),

|.|p is an anti-norm
and
|.|q is a semi-anti-norm : q = p

p−1 ∈ (−∞, 0).

Instead of assigning a ball number to each non-convex ln,p-ball, we could think of πS
n as a func-

tion which, in the present case, assigns a ball number to each ln,p-anti-norm. Hence, it could be
then another reasonably restricted problem to consider ball numbers for all anti-norms.

For suggesting a very first idea of the notions of an anti-norm and a semi-anti-norm, Figure 4
shows the l2,q-unit circles (and balls) of norms, q ∈ [1,∞], anti-norms, q ∈ (0, 1), and semi-
anti-norms, q ∈ [−∞, 0).
For the convenience of the reader, we summarize shortly the basic notions needed to define
those of anti-norm and semi-anti-norm which were introduced in [4].
Any closed convex cone C ⊂ IRn containing no half-space, with vertex 0 and non-empty inte-
rior, will be called a sector of IRn. A finite collection C of sectors in IRn will be called a fan if
its members have pairwise disjoint interiors and their union is IRn. A function g : IRn → R+ is
positively homogeneous iff for every t ∈ IR and x ∈ IR : g(tx) = |t|g(x). In what follows, the
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Figure 4: l2,q-unit circles

generalized ball Bg := {x ∈ IRn : g(x) ≤ 1} is assumed to be star-shaped, with positive and
continuous radial function, and symmetric w.r.t. 0. We call Bg radially concave w.r.t. a sector
C whenever C \ Bg is convex. Further, Bg is called radially concave w.r.t. a fan if it is radially
concave w.r.t. every sector in this fan. This property of a generalized ball is closely connected
with the following property of the function g generating this ball. A function g : IRn → IR+ is
superadditive in a sector C if g(x+y) ≥ g(x)+g(y) for every x, y ∈ C. The function g is su-
peradditive in a fan C if it is superadditive in every sector of the fan C. A function g : IRn → R+

will be called a semi-anti-norm provided that g is continuous, positively homogeneous and su-
peradditive in some fan. A function g : IRn → R+ is an anti-norm if g is a semi-anti-norm
which is non-degenerate.
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