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Ellipses numbers and geometric measure
representations

Wolf-Dieter Richter

Abstract. Ellipses will be considered as subsets of suitably defined Minkowski planes in
such a way that, additionally to the well known area content property A(r) = π(a,b)r

2, the
number π(a,b) = abπ reflects a generalized circumference property U(a,b)(r) = 2π(a,b)r
of the ellipses E(a,b)(r) with main axes of lengths 2ra and 2rb, respectively. In this sense,
the number π(a,b) is an ellipse number w.r.t. the Minkowski functional r of the reference
set E(a,b)(1) . This approach is closely connected with a generalization of the method of
indivisibles and avoids elliptical integrals. Further, several properties of both a generalized
arc-length measure and the ellipses numbers will be discussed, e.g. disintegration of the
Lebesgue measure and an elliptically contoured Gaussian measure indivisiblen represen-
tation, wherein the ellipses numbers occur in a natural way as norming constants.
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1 Introduction

The Archimedes or Ludolf number π was recently generalized in [3] for l2,p-circles
Cp with p ≥ 1 by certain p-circle numbers π(p). The main principle behind the
construction in [3] is a certain generalization of the method of indivisibles of Cav-
alieri and Torricelli which was developed in [2]. Thereby, the indivisibles are the
concentric l2,p-circles r · Cp, 0 ≤ r ≤ 1 and measuring their arc-lengths is based
upon the geometry induced by the ’dual’ circle Cq with q satisfying the equation
1
p + 1

q = 1. Unless for p = 2, this approach differs from that of measuring
the length of Cp as usual w.r.t. Euclidean geometry or based upon the geometry
generated by Cp itself as it was favored by several authors when discussing the
possibility of generalizing π.
It follows from the consideration in [3] that if one wants to generalize the circle
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number π for l2,p-circles with p ≥ 1 then one has to replace at least two elements of
the triple (area-content, circumference, diameter) with suitably defined quantities.
The author’s motivation to let the area content be unchanged the usual Euclidean
one comes from probabilistic applications where certain probability distributions
are absolutely continuous w.r.t. the Lebesgue measure or Euclidean area content.
The process of generalizing the circle number π is accompanied in [3] by the fol-
lowing aspects.
-) As mentioned already, π(p) has a suitably defined generalized circumference
property and the usual, i.e. Euclidean, area-content property.
-) The p-circle Cp is the solution to the q-isoperimetric problem and will actually
be measured w.r.t. the geometry generated by Cq.
-) The norming constants of certain density generating functions are identified to
be generalized circle numbers.
-) The circle numbers π(p) can also be defined for non-convex l2,p-circles and may
be even generalized for the multidimensional ln,p-balls.

The notion of the generalized circumference
-) allows to derive a specific disintegration formula for the Lebesgue measure in
two dimensions,
-) allows to define a generalization of the method of indivisibles,
-) allows to explain the p-generalized uniform distribution on Cp,
-) allows to formulate a so called thin-layers-property,
-) coincides with that of the mixed area content, i.e., it gives an additional expla-
nation for the notion of mixed volume in two dimensions
and
-) can be considered from a local point of view as a derivative and from a global
point of view as an integral.

In the present paper, we adopt a similar strategy for ellipses. An additional specific
aspect here is that the notion of the generalized circumference makes the notion of
an elliptical integral superfluous for our purposes.

We consider the ellipses E(a,b)(r) = rE(a,b), r > 0 with

E(a,b) = {(x, y) ∈ IR2 : ||(x, y)||(a,b) = 1}, 0 < b ≤ 1 ≤ a

and the discs K(a,b)(r) inside E(a,b)(r), where

||(x, y)||(a,b) =
√

(
x

a
)2 + (

y

b
)2.

Recognize that at any point (x, y) from E(a,b)(r) the value of the Minkowski func-
tional w.r.t. the set E(a,b) equals r.
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Let a parameter representation of the ellipse E(a,b)(r) be given by

x = ar cosϕ, y = br sinϕ, 0 ≤ ϕ < 2π. (PD1)

The Euclidean circumference of E(a,b)(r) can be written then as

U(r) = 4

π/2∫
0

√
x′2(ϕ) + y′2(ϕ)dϕ = 4ar

π/2∫
0

√
1− ε2 cos2(ϕ)dϕ,

ε2 = 1− (
b

a
)2 ∈ [0, 1).

With cosϕ = sin(π2 − ϕ), ψ = π
2 − ϕ, it follows that U(r) = 4arE(ε), where

E(ε) =

π/2∫
0

√
1− ε2 sin2 ψ dψ

denotes the elliptical integral of second type which cannot be evaluated explicitly.

The area content of the disc K(a,b)(r) is

A(r) = abπr2.

Hence, integrating Euclidean circumferences yields area content,

A(r) =

r∫
0

U(r′)dr′ , (◦)

if and only if
2E(ε) = bπ. (×)

If a = b = 1 then ε = 0 and with E(0) = π
2 it follows (×).

If a = 1 and b→ +0 then the quantity on the right hand side of (×) tends to 0 and
that on the left hand side tends to 2E(1) = 2. Hence, relation (◦) does not hold in
general and no method of indivisibles applies in the sense that the indivisibles are
the ellipses E(a,b)(r

′), 0 ≤ r′ < r and integrating their Euclidean lengths gives the
area content of the disc K(a,b)(r).
Therefore, the principle of constructing ellipses numbers applied in the present pa-
per will essentially make use of a generalized method of indivisibles. This method
will be based upon a suitably defined arc-length measure which will be introduced
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in Section 2 using integration. In Section 3, we introduce an arc-length measure in
quite another way by taking the derivative of the area content of an ellipse-sector
w.r.t. the Minkowski functional r. This local approach will be shown then to lead
to the same result as the global one from Section 2. Finally, Section 4 deals with
geometric measure representations making use of the arc-length measure consid-
ered in Sections 2 and 3.

2 The ellipses numbers and their basic properties

We consider the Minkowski space (IR2, d(1/b,1/a)) where the metric d(1/b,1/a)|IR2×
IR2 → IR+is given by

d(1/b,1/a)((x, y), (s, t)) = (b2(x− s)2 + a2(y − t)2)1/2.

The corresponding norm in IR2 is ||(x, y)||(1/b,1/a) = d(1/b,1/a)((x, y), (0, 0)) and
the unit ball w.r.t. this norm is the discK(1/b,1/a)(1) = {(x, y) : b2x2+a2y2 ≤ 1}.
Applying Brunn-Minkowski Theory and results for mixed areas, Buseman [1]
proved a theorem from which it follows that the ellipse E(a,b) solves the d(1/b,1/a)-
isoperimetric problem, i.e. among all curves having d(1/b,1/a)-lengthL, L = 2πab,
the ellipse E(a,b) includes the area having maximum content, πab. We consider
now the ellipseE(a,b)(r) as a subset of the Minkowski plane (IR2, ||.||( 1

b
, 1
a
)) and de-

fine a generalized arc-length in the following way. Let (xi, yi), i = 0, 1, 2, ..., n be
an arbitrary successive partition of the ellipse and put (x0, y0) = (1, 0), (xn, yn) =
(1, 0), F (Z) = sup

i
||(xi, yi)− (xi−1, yi−1)||( 1

b
, 1
a
) and

S(Z) =
n∑
i=1

||(xi, yi)− (xi−1, yi−1)||( 1
b
, 1
a
).

Because of the triangle inequality

||(xi+2, yi+2)− (xi, yi)||( 1
b
, 1
a
) ≤

||(xi+2, yi+2)− (xi+1, yi+1)||( 1
b
, 1
a
) + ||(xi+1, yi+1)− (xi, yi)||( 1

b
, 1
a
),

the sequence of sums (S(Zn))n=1,2,... is increasing as a successive sequence of
partitions (Zn)n=1,2,... satisfies lim

n→∞
F (Zn) = 0. The sequence (S(Zn))n=1,2,...

is bounded above and hence convergent. The limit does neither depend on the
parameter representation of E(a,b)(r) nor on the sequence (Zn)n=1,2,....
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Definition 2.1. (a) The limit of the sequence (S(Zn))n=1,2,... will be called the
||.||( 1

b
, 1
a
)-arc-length of E(a,b)(r) and denoted by U(a,b)(r):

U(a,b)(r) = lim
F (Zn)→+0

n∑
i=1

||(xi, yi)− (xi−1, yi−1)||( 1
b
, 1
a
).

(b) For {(x(ϕ), y(ϕ)), ϕ ∈ [0, 2π)} being an arbitrary parameter representation of
E(a,b), we write

U(a,b)(r) =

2π∫
0

||(x′(ϕ), y′(ϕ))||( 1
b
, 1
a
)dϕ, (∗)

and using the representation x→ y(x) of the upper half-ellipse

E+
(a,b)(r) = {(x, (r

2 − (
x

a
)2)1/2b ),−r ≤ x ≤ r},

we write alternatively

U(a,b)(r) = 2

r∫
−r

||(1, y′(x))||( 1
b
, 1
a
)dx. (∗∗)

Notice that the notations (∗) and (∗∗) are well motivated by the relations

U(a,b)(r) = lim
F (Zn)→+0

n∑
i=1

(|b∆xi|2 + |a∆yi|2)1/2

∆ϕi
∆ϕi

and

U(a,b)(r) = lim
F (Zn)→+0

n∑
i=1

(|b|2 + |a∆yi|2

|∆xi|2
)1/2

∆xi.

On the one hand side, the following lemma can be understood as an immediate
consequence of solving the q-isoperimetric problem. For an easier understanding
of which technical role plays the chosen metric, however, we present this lemma
together with a short proof.

Lemma 2.2. For all r > 0, U(a,b)(r) = 2abπr.

Proof. By definition and symmetry,

U(a,b)(r) = 4

π/2∫
0

(b2x′2(ϕ) + a2y′2(ϕ))1/2dϕ.
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On choosing (PD1) as a parameter representation of E(a,b)(r), we get the result

U(a,b)(r) = 4

π/2∫
0

(b2a2r2(sin2 ϕ+ cos2 ϕ))1/2dϕ = 4abr
π

2

which in fact does not depend on the actually chosen parameter representation.

Corollary 2.3. The Lebesgue measure λ satisfies the following (first) disintegra-
tion formula:

r∫
0

U(a,b)(r
′)dr′ = λ(K(a,b)(r)), r > 0.

This formula may be considered as reflecting a generalization of the method of
indivisibles of Cavalieri and Torricelli in the sense that the indivisibles of the disc
K(a,b)(r) are the ellipses E(a,b)(r

′), 0 < r′ < r and measuring the latter is based
upon the geometry of the Minkowski plane (IR2, ||.||( 1

b
, 1
a
)).

Summarizing what is already known, we have, for all r > 0,

A(r)

r2
(1)
= a b π

(2)
=
U(a,b)(r)

2 r
, r > 0.

Definition 2.4. (a) The properties of the ellipses E(a,b)(r) which are expressed by
the relations (1) and (2) are called the area-content and generalized circumference-
properties of the ellipses.
(b) For fixed a, b, the quantity a b π =: π(a,b) will be called ellipse number.

3 Properties of the generalized arc-length measure

While we have considered yet a generalized arc-length from a certain global point
of view as an integral, we will consider it now from a certain local point of view
as a derivative. It follows immediately from the consideration in Section 2 that

d

d%
A(%) = 2π(a,b)% = U(a,b)(%), % > 0. (♥)

The following definition is therefore well motivated. To this end, let A(a,b) denote
the σ-field consisting of all measurable subsets of E(a,b). Further, for arbitrary
A ∈ A(a,b), let

CPC(a,b)(A) = {(x, y) ∈ IR2 :
(x, y)

||(x, y)||(a,b)
∈ A}
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denote the central projection cone induced by the set A and

sector(a,b)(A, %) = CPC(a,b)(A) ∩K(a,b)(%)

the ellipse-sector induced by the set A.

Definition 3.1. The measure U(a,b)|A(a,b) → IR+ defined by

U(a,b)(A) = f ′(1) with f(%) = λ(sector(a,b)(A, %))

is called the E(a,b)-generalized circumference- or arc-length measure.

For a further description of this measure we shall make use of suitably defined
generalizations of trigonometric functions. Defining them, we adopt the basic
ideas developed in [2] to the present situation.

Definition 3.2. The E(a,b)-generalized sine- and cosine-values of the angle ϕ be-
tween the positive x-axis and the ray starting from the origin (0, 0) and passing
through the point (x, y) are defined as

cos(a,b)(ϕ) =
d(a,b)((0, 0), (x, 0))
d(a,b)((0, 0), (x, y))

and sin(a,b)(ϕ) =
d(a,b)((0, 0), (0, y))
d(a,b)((0, 0), (x, y))

,

respectively.

Notice that

cos(a,b)(ϕ) =
x

(x2 + (ay/b)2)1/2 and sin(a,b)(ϕ) =
y

((bx/a)2 + y2)1/2 .

Let us be given an angle ϕ ∈ [0, π/2), then there exists a uniquely determined
point (x, y) ∈ E(a,b) such that y/x = tanϕ. Because of

y = x tanϕ and ||(x, x tanϕ)||(a,b) = 1

it follows

x2 =
1

1
a2 +

tan2 ϕ
b2

and y2 =
tan2 ϕ

1
a2 +

tan2 ϕ
b2

.

Hence, the E(a,b)-generalized sine and cosine functions may be represented as

cos(a,b)(ϕ) =
b cosϕ

(a2 sin2 ϕ+ b2 cos2 ϕ)1/2
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and
sin(a,b)(ϕ) =

a sinϕ
(a2 sin2 ϕ+ b2 cos2 ϕ)1/2

.

Alternatively,

cos(a,b)(ϕ) =
cosϕ

aN(a,b)(ϕ)
and sin(a,b)(ϕ) =

sinϕ
bN(a,b)(ϕ)

where
N(a,b)(ϕ) = ||(cosϕ, sinϕ)||(a,b).

Definition 3.3. The E(a,b)-generalized elliptical polar-coordinate transformation

Pol(a,b)|[0,∞)× [0, 2π)→ IR2

is defined by
x = ar cos(a,b)(ϕ) and y = br sin(a,b)(ϕ). (PD2)

Let us denote the orthants in IR2 in the usual anticlockwise ordering by Q1 up
to Q4.

Theorem 3.4. The map Pol(a,b) is almost one-to-one, its inverse Pol−1
(a,b) is given

by

r = ||(x, y)||(a,b), arctan |y
x
| = ϕ in Q1, π − ϕ in Q2, π + ϕ in Q3, 2π − ϕ in Q4

and its Jacobian satisfies the representation

J(r, ϕ) = |d(x, y)
d(r, ϕ)

| = r

N2
(a,b)(ϕ)

.

Proof. We start with checking the generalized Pythagoras theorem

||(x, y)||2(a,b) = (
x

a
)2 + (

y

b
)2 = r2[

cos2 ϕ

a2N2(ϕ)
+

sin2 ϕ

b2N2(ϕ)
] ≡ r2,

N(ϕ) := N(a,b)(ϕ),

the relations for arctan | yx | being as in the case of usual polar coordinates. For
calculating now the Jacobian, define

x′ :=
∂

∂ϕ
x, and xr :=

∂

∂r
x.
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From

x′ = r(
cosϕ
N(ϕ)

)′ = r
− sinϕN(ϕ)− cosϕN ′(ϕ)

N2(ϕ)
= −y − xl, l = (lnN(ϕ))′

and

y′ = r(
sinϕ
N(ϕ)

)′ = r
cosϕN(ϕ)− sinϕN ′(ϕ)

N2(ϕ)
= x− yl; xr =

x

r
, yr =

y

r

it follows that

J(r, ϕ) = |

∣∣∣∣∣ −y − xl x
r

x− yl y
r

∣∣∣∣∣ | = | − x2 + y2

r
|

=
r2

r
(cos2 ϕ+ sin2 ϕ)

1
N2(ϕ)

=
r

N2(ϕ)

Let us denote the restriction of the mapPol(a,b) to the case r = 1 byPol∗(a,b)(ϕ) =

Pol(a,b)(1, ϕ) and its inverse by Pol∗−1
(a,b)|A(a,b) → B([0, 2π)).

Theorem 3.5. The E(a,b)-generalized arc-length measure U(a,b) satisfies for all
A ∈ A(a,b) the equations

U(a,b)(A) =

∫
Pol∗−1

(a,b)
(A)

dϕ

N2
(a,b)(ϕ)

(a)

and
U(a,b)(A) = 2λ(sector(a,b)(A, 1)). (b)

Notice that equation (b) is much more general than the equationA(1) = 1
2U(a,b)(1)

from Section 2.

Proof. Changing first Cartesian with E(a,b)-generalized elliptical polar coordi-
nates and changing then the order of integration, we get

λ(sector(a,b)(A, %)) =

∫
sector(a,b)(A,%)

d(x, y) =

%∫
r=0

∫
ϕ∈Pol∗−1

(a,b)
(A)

r

N2
(a,b)(ϕ)

d(ϕ, r)

=

%∫
0

rdr

∫
Pol∗−1

(a,b)
(A)

dϕ

N2
(a,b)(ϕ)

.

Taking the derivative w.r.t. % yields (a), for % = 1, and (b) follows then immedi-
ately.
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The next theorem states the equivalence of the global and local approaches to
the generalized arc-length measure considered in this paper. To this end, let us
assume w.l.g. that A belongs to the upper half-ellipse, A ∈ A+

(a,b), say.

Theorem 3.6. The ||.||( 1
b
, 1
a
)-arc-length of a set A ∈ A+

(a,b) coincides with the
E(a,b)-generalized arc-length of A, i.e.

AL( 1
b
, 1
a
)(A) =

∫
G(A)

||(1, ϕ′(x))||( 1
b
, 1
a
)dx = U(a,b)(A), A ∈ A+

(a,b)

with

G(A) = {x ∈ [−1, 1] : (x, ϕ(x)) ∈ A} and ϕ(x) = b

√
1− (

x

a
)2 .

Proof. It follows from the definition of ϕ that

ϕ′(x) = − bx/a2√
1− (x/a)2

and

||(1, ϕ′(x))||( 1
b
, 1
a
) = (b2 + a2 b2x2

a4(1− (x/a)2)
)1/2 = b(1 +

x2

a2 − x2 )
1/2

=
ab√

a2 − x2
.

Hence,

AL( 1
b
, 1
a
)(A) = ab

∫
G(A)

dx√
a2 − x2

.

Changing variables x = cosϕ
N(ϕ) = a cos(a,b)(ϕ) with N(ϕ) = N(a,b)(ϕ) gives

1/
√
a2 − x2 = 1/

√
a2 − cos2 ϕ/N2(ϕ) =

√
N2(ϕ)/(a2N2(ϕ)− cos2 ϕ)

=

√√√√ cos2 ϕ/a2 + sin2 ϕ/b2

cos2 ϕ+ a2

b2 sin2 ϕ− cos2 ϕ
=
b

a

N(ϕ)

sinϕ
.

With the notation dx
dϕ = x′(ϕ), it follows dx = x′(ϕ)dϕ where

x′(ϕ) =
− sinϕN(ϕ)− cosϕN ′(ϕ)

N2(ϕ)
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and

N ′(ϕ) =
1
2
(
cos2 ϕ

a2 +
sin2 ϕ

b2 )−1/2[
−2 cosϕ sinϕ

a2 +
2 sinϕ cosϕ

b2 ]

=
1

N(ϕ)
(− cosϕ sinϕ/a2 + cosϕ sinϕ/b2).

Hence,

x′(ϕ) =
− sinϕ( cos2 ϕ

a2 + sin2 ϕ
b2 )− cosϕ(− cosϕ sinϕ

a2 + cosϕ sinϕ
b2 )

N3(ϕ)
,

such that

x′(ϕ)N3(ϕ) = −sinϕ
b2 [sin2 ϕ+ cos2 ϕ] and x′(ϕ) = − sinϕ

b2N3(ϕ)
.

Recognize that in the range of integration x increases when ϕ decreases. It follows
that

AL( 1
b
, 1
a
)(A) = ab

∫
Pol∗−1

(a,b)
(A)

bN(ϕ)

a sinϕ
sinϕ

b2N3(ϕ)
dϕ

=

∫
Pol∗−1

(a,b)
(A)

dϕ

N2(ϕ)
= U(a,b)(A).

Remark 3.7. The derivatives of the generalized trigonometric functions sin(a,b)
and cos(a,b) which have been used in the proof of Theorem 3.6 satisfy the equations

cos′(a,b)(ϕ) = −
sin(a,b)(ϕ)

b
a cos2 ϕ+ a

b sin2 ϕ
and sin′(a,b)(ϕ) =

cos(a,b)(ϕ)
b
a cos2 ϕ+ a

b sin2 ϕ
.

Proof. It follows from the proof of Theorem 3.6 that

(a cos(a,b)(ϕ))
′ = − sinϕ

bN(ϕ)
· 1
bN2(ϕ)

.

The first equation in the remark follows now from the definition of sin(a,b) and

abN2(ϕ) =
b

a
cos2 ϕ+

a

b
sin2 ϕ.

The second equation in the remark follows analogously
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4 Geometric measure representations

Definition 4.1. The normalized generalized arc-length measure defined by

ω(a,b)(A) = U(a,b)(A)/U(a,b)(E(a,b))

is called the E(a,b)-generalized uniform probability distribution on A(a,b).

The following representation formula is a consequence of Theorem 3.5 and (2).

Corollary 4.2. ω(a,b)(A) =
1

2π(a,b)

∫
Pol∗−1

(a,b)
(A)

dϕ
N2

(a,b)
(ϕ)
, A ∈ A(a,b).

Remark 4.3. TheE(a,b)-generalized uniform probability distribution on A(a,b) sat-
isfies also the representation

ω(a,b)(A) =
λ(sector(a,b)(A, 1))

λ(K(a,b))

with λ(K(a,b)) = λ(K(a,b)(1)) = A(1) = π(a,b).

Example 4.4. (a) Let a random vector (ξ, η) follow the elliptically contoured Gaus-
sian density function

ϕ(a,b)(x, y) =
1

2π(a,b)
exp{−1

2
||(x, y)||2(a,b)}, (x, y) ∈ IR2, a > 0, b > 0.

The normalized vector (X,Y ) := (ξ, η)/||(ξ, η)||(a,b) takes its values on E(a,b).
Its distribution can be represented as

P ((X,Y ) ∈ A) = P ((ξ, η) ∈ CPC(a,b)(A))

=

∫
CPC(a,b)(A)

ϕ(a,b)(x, y)d(x, y), A ∈ A(a,b).

BecausePol−1
(a,b)(CPC(a,b)(A)) may be written as [0,∞)×Ãwith Ã = Pol∗−1

(a,b)(A),
it follows

P ((X,Y ) ∈ A) = 1
2π(a,b)

∞∫
r=0

∫
Ã

r exp{−1
2
r2} d(r, ϕ)

N2
(a,b)(ϕ)

=
1

2π(a,b)

∞∫
r=0

re−
1
2 r

2
dr

∫
Pol∗−1

(a,b)
(A)

dϕ

N2
(a,b)(ϕ)

.
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Hence, (X,Y ) follows the E(a,b)-generalized uniform distribution, i.e., (X,Y ) ∼
ω(a,b).
(b) Assume that a random vector (ξ, η) follows the uniform distribution on K(a,b),
i.e., (ξ, η) has the probability density function

f(x, y) =
1

π(a,b)
IK(a,b)

(x, y), (x, y) ∈ R2

where

IM (x) =

{
1 if x ∈M,

0 otherwise

denotes the indicator function of the set M . The normalized vector (X,Y ) :=
(ξ, η)/||(ξ, η)||(a,b) satisfies the equation ||(X,Y )||(a,b) = 1 and, for all A ∈
A(a,b), its distribution allows the representation

P ((X,Y ) ∈ A) = P ((ξ, η) ∈ sector(a,b)(A, 1)) =
1

π(a,b)

∫
sector(a,b)(A,1)

d(x, y)

=
1

π(a,b)

1∫
r=0

∫
ϕ∈Pol∗−1

(a,b)
(A)

rd(r, ϕ)

N2
(a,b)(ϕ)

=
1

2π(a,b)

∫
Pol∗−1

(a,b)
(A)

dϕ

N2
(a,b)(ϕ)

.

Hence, (X,Y ) ∼ ω(a,b).

Theorem 4.5. For arbitrary fixed a > 0, b > 0, the Lebesgue measure λ in IR2

satisfies the following (second) disintegration formula:

λ(M) =

∞∫
0

U(a,b)(M ∩ E(a,b)(r)) dr, M ∈ B2.

Notice that this formula is much more general than that in Corollary 2.3. Its
proof makes use of the standard technique coming from the measure extension
theorem and follows the proofs of similar statements in [2] and [3]. It will therefore
be omitted, here.
Let us recall that the l2,p-sphere intersection-percentage-function (i.p.f.) plays an
important role in dealing with l2,p-symmetric distributions. Something similar will
be considered now in the present situation.
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Definition 4.6. The E(a,b)-based i.p.f. F(a,b)(M, .) of an arbitrary set M ∈ B2 is
defined as

r →
U(a,b)(M ∩ E(a,b)(r))

U(a,b)(E(a,b)(r))
=: F(a,b)(M, r).

Remark 4.7. Based upon the notion of the i.p.f., the equation in Theorem 4.5 may
be reformulated as

λ(M) = 2π(a,b)

∞∫
0

F(a,b)(M, r) r dr, M ∈ B2.

Remark 4.8. The thin-layers property mentioned in the Introduction is

λ({(x, y) ∈ IR2 : r < ||(x, y)||(a,b) < r + ε}) ∼ 2π(a,b)rε, ε→ 0.

Proof. The E(a,b)-based i.p.f. %→ F(a,b)(M,%) of the set

M = {(x, y) ∈ IR2 : r < ||(x, y)||(a,b) < r + ε}

satisfies the representation

F(a,b)(M,%) = I(r,r+ε)(%), % > 0.

By Remark 4.7,

λ(M) = 2π(a,b)

r+ε∫
r

%d% = 2π(a,b)(rε+
ε2

2
).

The proof of the following geometric measure representation for the elliptically
contoured Gaussian law follows the proofs of analogous results in [2] and [3] and
will therefore also be omitted, here.

Theorem 4.9. If (ξ, η) ∼ ϕ(a,b) then

P ((ξ, η) ∈ A) =
∞∫

0

F(a,b)(A, r)re
− r2

2 dr.

Remark 4.10. If the random vector (ξ, η) follows the elliptically contoured Gaus-
sian density, (ξ, η) ∼ ϕ(a,b), then it allows the stochastic representation

(ξ, η)
d
= R · (X,Y )

where (X,Y ) follows theE(a,b)-generalized uniform distribution, (X,Y ) ∼ ω(a,b),
and R is a nonnegative random variable.
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Corollary 4.11. (a) The random variable R follows the Chi-distribution with two
d.f., R ∼ χ2.
(b) The random elements R and (X,Y ) are independent.

Proof. (a) Let x > 0, then

P (R < x) = P (R < x, (X,Y ) ∈ E(a,b)) = P ((ξ, η) ∈ K(a,b)(x)).

Theorem 4.9 applies with

F(a,b)(K(a,b)(x), r) = I(0,x)(r), r > 0

such that

P (R < x) =

x∫
0

re−
r2
2 dr.

(b) Let x > 0 and A ∈ A(a,b). As in Example 4.4 (a),

P (R < %, (X,Y ) ∈ A) =
∫

sector(a,b)

ϕ(a,b)(x, y)d(x, y)

=

%∫
r=0

re−
r2
2 dr

1
2π(a,b)

∫
Pol∗−1

(a,b)
(A)

dϕ

N2
(a,b)(ϕ)

= P (R < %)P ((X,Y ) ∈ A).
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