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0. Introduction. The present paper is motivated by results obtained by
the second author (see [12] and [13]). As can be seen in Remark 6.4, those
results have roots in probability theory.

Our idea is to consider antinorms (that are ”relatives” of norms) and semi-
antinorms(”relatives” of semi-norms) and characterize them geometrically in
terms of their ”generalized Minkowski balls”. These characterizations (Theo-
rems 3.5 and 4.3) are analogues of the well known relationship between norms
and convex bodies symmetric w.r.t. the origin. The generalized Minkowski
balls are some star bodies (in the case of antinorms) or some closed but
possibly unbounded star-shaped sets with nonempty interior (in the case of
semi-antinorms). In both cases they are symmetric at the origin. For basic
relations between the family of convex and of star-shaped sets we refer to [8]
and [7].

At the end of our paper we show that this approach cannot be replaced
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by that (see for instance [2]) using sectors of Rn instead of the symmetric star
bodies (see Remarks 6.2 and 6.3). These two points of view are essentially
different.

As is well known (see Proposition 1.1.6 in [16]), for any Minkowski space
(Rn, ‖ · ‖), the set

B‖·‖ := {x ∈ Rn | ‖x‖ ≤ 1} (0.1)

is a convex body in Rn symmetric with respect to the origin, that is called
the unit ball generated by the norm ‖ · ‖.

Conversely, for any convex body B in Rn, symmetric with respect to 0,
the function ‖ · ‖B : Rn → R+ defined by

‖x‖B := inf{α ≥ 0 | x ∈ αB} (0.2)

is a norm (see Proposition 1.1.8 in [16]). Moreover, these two maps, ‖ · ‖ 7→
B‖·‖ and B 7→ ‖ · ‖B, are mutually inverse.

The function defined by formula (0.2) is called a Minkowski functional or
the gauge function of B (see [15]). Its restriction to Rn \ {0} coincides with
the reciprocal of the radial function ρB : Rn \ {0} → R+ of B that is defined
by the formula

ρB(x) := sup{λ ≥ 0 | λx ∈ B}. (0.3)

The radial function of a convex body is positive and continuous (see [10]).

Let us now consider compact sets that are not necessarily convex, and
observe that

• for any positively homogeneous function g : Rn → R+ the formula (0.1)
(with ‖ ·‖ replaced by g) defines a star-shaped set Bg in Rn, symmetric
with respect to 0;

• for any star-shaped set B in Rn symmetric with respect to 0 the formula
(0.2) (with ‖ · ‖B replaced by gB) defines a positively homogeneous
function gB : Rn → R+;

• the maps g 7→ Bg and B 7→ gB are mutually inverse.
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We shall study relationships between properties of B and properties of
the function gB, which is the Minkowski functional of B. We begin with
antinorms, a counterpart of the notion of norm, with the triangle inequality
replaced partially by the ”reverse triangle inequality” (Section 3). Next, we
pass to semi-antinorms, a counterpart of the notion of semi-norm, with the
triangle inequality again replaced partially by the reverse triangle inequality
(Section 4). It is a remarkable property of such functions that, in contrast
to semi-norms, they may degenerate for various reasons (Section 5).

Let us notice that properties of the Minkowski ball are usually expressed
in terms of linear space. When we use topological terminology (for instance,
we say that B has nonempty interior instead of saying that it is absorbing),
then we always refer to the Euclidean topology in Rn.

For any Minkowski unit ball B, the topology determined by the norm ‖·‖B
coincides with the Euclidean topology. What are the topologies induced by
semi-norms or other functionals is a separate problem, not considered in the
present paper.

To avoid confusion, let us mention that in the literature the terms ”re-
verse triangle inequality” and ”antinorm” have been used in quite different
meanings (see, for instance, [1], [3], [4], [11], and [9]).

1. Preliminaries. Let (e1, ..., en) be the canonical basis in Rn: ei =
(δ1i , ..., δ

n
i ), where

δji =
{

1 if i = j
0 if i 6= j

.

We use, in principle, standard terminology and notation following [15].
In particular, for any subset A of Rn, we write convA and affA for convex
hull and affine hull of A, respectively; furthermore, linx := {αx | α 6= 0},
pos x := {αx | α ≥ 0}, linA :=

⋃
x∈A linx, and pos A := conv

⋃
x∈A pos x =

conv
⋃
α≥0 αA.

As usual, clA, intA, and bdA are closure, interior, and boundary of A.
If A is a subset of an affine subspace E of Rn with dimE < n, then relative
interior and relative boundary of A are relintA (interior of A with respect to
E) and relbdA (boundary of A with respect to E).

For any affinely independent set {x0, ..., xk} in Rn, with k ≤ n, let
∆(x0, ..., xk) be the k-dimensional simplex with vertices x0, ..., xk, i.e. ∆(x0, ..., xk) =
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conv{x0, ..., xk}; in particular, if x 6= y, then ∆(x, y) is the segment with end-
points x, y.

The Minkowski sum A1 + A2 := {a1 + a2 | ai ∈ Ai, i = 1, 2} of subsets
A1, A2 of Rn will be called their direct sum and denoted by A1⊕A2 if linA1⊕
linA2 = Rn (compare [15], p. 142).

For any convex polytope P in Rn, an (n − 1)-dimensional face of P is
called facet; the collection of facets of P will be denoted by F(P ).

We would like to warn the reader that different authors use sometimes
essentially different definitions for some basic notions of convex geometry,
such as body, convex body, and star body. Of course, it is necessary to
decide which definitions we are going to follow. Thus, when defining these
notions, we give appropriate references to the bibliography.

• A nonempty subset A of Rn is a body whenever A is compact and is
equal to the closure of its interior: cl intA = A (see [6] or [10]).

• Clearly, the set A is convex whenever ∆(x, y) ⊂ A for any pair of
distinct points x, y ∈ A.

It is well known that a compact, convex subset A of Rn is a body if and
only if intA 6= ∅.

Let us note that Schneider in [15] refers to a larger family of convex sets
as convex bodies. However, we follow [15] (and [10]) when speaking about
star-shaped sets and star bodies.

• A subset A of Rn is star-shaped with respect to a point a ∈ A whenever
for every x ∈ A\{a} the segment ∆(a, x) is contained in A. The kernel,
kerA, of a set A consists of all points a ∈ A such that A is star-shaped
with respect to a.

It can be shown that kerA is convex; hence, if A is symmetric with
respect to 0 and kerA 6= ∅, then 0 ∈ kerA and formula (0.3) applies.

• The set A is a star body if A is a body with kerA 6= ∅. (Gardner in
[6] deals with a much larger family of star bodies, which is useful in
geometric tomography.)

It is evident that every convex set is star-shaped with respect to any of
its points, and thus every convex body is a star body.
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• A subset C of Rn is a cone with vertex 0 whenever tx ∈ C for every
x ∈ C and t ≥ 0 ([6]).

• Any closed convex cone C in Rn containing no half-space, with vertex
0 and non-empty interior, will be called a sector of Rn.

• A finite collection C of sectors in Rn will be called a fan if its mem-
bers have pairwise disjoint interiors and their union is Rn (compare
”complete fan” in [5], Def. 1.7).

• The generalized ball Bg (determined by a Minkowski functional g) is
radially concave with respect to a sector C whenever C \Bg is convex.

• Bg is radially concave with respect to a fan if Bg is radially concave
with respect to every sector in this fan.

Consider the following example of fan. Let Hi = {x = (x1, ..., xn) ∈
Rn | xi = 0}, let

H+
i = {x = (x1, ..., xn) | xi ≥ 0}

and H−i = −H+
i .

We can define the fan C(n) by induction on the dimension n as follows:

• For n = 2:

C1(2) := H+
1 ∩H+

2 , C2(2) := H−1 ∩H+
2 ,

C3(2) := H−1 ∩H−2 , C4(2) := H+
1 ∩H−2 .

Then C(2) := {Ci(2) | i = 1, ..., 4} is a fan.

• For n ≥ 3:

Assume that we already have the fan C(n − 1) = {Ci(n − 1) | i ∈
{1, ..., 2n−1}}. Let

Ci(n) :=

{
Ci(n− 1)⊕ posen if i ∈ {1, ..., 2n−1}
Ci(n− 1)⊕ pos(−en) if i ∈ {2n−1 + 1, ..., 2n} .

Then the family C(n) defined by

C(n) := {Ci(n) | i ∈ {1, ..., 2n}}

is a fan.
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This fan will be referred to as canonical fan.

Let us now consider a function g : Rn → R+. Recall that

• g is positively homogeneous if and only if for every t ∈ R and x ∈ Rn

g(tx) = |t|g(x);

• g is non-degenerate if and only if for every x ∈ Rn

g(x) = 0⇐⇒ x = 0;

• g is subadditive if and only if for every x, y ∈ Rn

g(x+ y) ≤ g(x) + g(y). (1.1)

The inequality (1.1) is often referred to as the triangle inequality.

• g is a semi-norm provided it is positively homogeneous and subadditive;

• a semi-norm is a norm provided that it is non-degenerate.

A well known characterization of norms was mentioned in the Introduc-
tion. For the completeness of our presentation, let us give a characterization
of semi-norms, although it is probably well known, too. We use definitions
(0.1) and (0.2) with ‖ · ‖ replaced by g.

PROPOSITION 1.1. Let g : Rn → R+ be a positively homogeneous
function and let Bg be the corresponding generalized unit ball. Then the
following are equivalent:

(i) g is a semi-norm;
(ii) V := g−1(0) is a k-dimensional linear subspace of Rn with k ∈

{0, ..., n}, the function g|V ⊥ is a norm in V ⊥, and Bg is invariant under
the translations along V , i.e.,

Bg + V = Bg. (1.2)

(See Fig. 1.)

Proof. (i) =⇒ (ii):
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Since g is subadditive, it follows that V is a linear subspace. The function
g|V ⊥ is non-degenerate and thus is a norm. Finally, if x ∈ Bg and y ∈ V ,
then g(x) ≤ 1 and g(y) = 0, whence g(x + y) ≤ g(x) + g(y) ≤ 1 , i.e.
x+ y ∈ Bg; thus Bg + V ⊂ Bg. The converse inclusion is evident.

(ii)=⇒ (i):
By the assumption, g is positively homogeneous. It remains to show that

it is subadditive. If either x, y ∈ V or x, y ∈ V ⊥, then by (ii),

g(x+ y) ≤ g(x) + g(y).

Let x ∈ V ⊥ and y ∈ V ; then by (0.2) combined with (ii),

g(x+ y) = inf{α ≥ 0 | x+ y ∈ αBg + V }

= inf{α ≥ 0 | x ∈ αBg} = g(x) = g(x) + g(y).2
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W

Bg

Bg|W

V

a-a 0

VV1 V2

Bg|W W

Figure 1: n=3, W = V ⊥; Left: k=1, Bg|W -plane convex set, Bg-cylinder
over Bg|W ; Right: k=2, Bg|W = ∆(−a, a), Bg-strip bounded by the planes
V1, V2||V

2. Convex polytopes; the triangle equality case. We begin this
section with two well known examples.

EXAMPLE 2.1. Let ‖ · ‖ be a generalized l1-norm in Rn:

‖(x1, ..., xn)‖ := Σn
i=1ti|xi|

for some t1, ..., tn > 0.
Then the corresponding unit ball is the convex polytope P(ti) with vertices

ei
ti

and −ei
ti

for i = 1, ..., n.
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If x, y ∈ Ci(n) for some i and ‖ · ‖ = ‖ · ‖P(ti)
, then

‖x+ y‖P (ti) = ‖x‖P (ti) + ‖y‖P (ti). (2.1)

EXAMPLE 2.2. Let ‖ · ‖ be the max-norm in Rn:

‖(x1, ..., xn)‖ := max{|xi| | i = 1, ..., n}.

Then the corresponding unit ball is the cube Q := [−1, 1]n, with centre
0 and edges of length 2, each parallel to ei for some i ∈ {1, ..., n}. For any
facet F of this cube, if x, y ∈ posF and ‖ · ‖ = ‖ · ‖Q, then

‖x+ y‖Q = ‖x‖Q + ‖y‖Q. (2.2)

Proposition 2.4 below is a generalization of Examples 2.1 and 2.2. In its
proof we make use of the following statement.

LEMMA 2.3. Let E be a k-dimensional linear subspace of Rn and B ⊂ E
be a star-shaped subset of E, symmetric at 0. If φ : E → Rk is a linear
isomorphism, then for every x ∈ E

gφ(B)(φ(x)) = gB(x).

Proof. Since gB (and so also gφ(B)) is positively homogeneous, by (0.2) it
follows that

gφ(B)(φ(x)) = inf{α ≥ 0 | φ(x) ∈ α · φ(B)}

= inf{α ≥ 0 | x ∈ α ·B} = gB(x).

2

PROPOSITION 2.4. Let P be a centrally symmetric, n-dimensional con-
vex polytope in Rn and let F ∈ F(P ). If x, y ∈ posF , then

‖x+ y‖P = ‖x‖P + ‖y‖P . (2.3)

Proof. Let x, y ∈ posF . We may assume that 0, x, y are affinely indepen-
dent, because otherwise equality (2.3) follows from the positive homogenity
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of norm. Consider the plane E := aff{0, x, y}. Let φ : E → R2 be a lin-
ear isomorphism such that φ(E ∩ posF ) = C1(2) and put x0 := φ(x), y0 :=
φ(y), F0 := φ(E ∩ F ), (see Fig.2). Then F0 is a side of a convex polygon P0

in R2, symmetric w.r.t. 0 and, according to Example 2.1,

‖x0 + y0‖P0 = ‖x0‖P0 + ‖y0‖P0 .

x0

y0

F0

C (2)1

lin e1

lin e2

Figure 2:

In view of Lemma 2.3, this is equivalent to

‖x+ y‖P∩E = ‖x‖P∩E + ‖y‖P∩E

and thus to (2.3) as well. 2

3. Antinorms. We are now going to consider a counterpart of the notion
of norm, with subadditivity replaced by a (partial) ”superadditivity”.

DEFINITION 3.1. (i) A function g : Rn → R+ is superadditive in a sector
C if

g(x+ y) ≥ g(x) + g(y) for every x, y ∈ C. (3.1)

(ii) g is superadditive in a fan C if it is superadditive in every sector in
the fan C.
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DEFINITION 3.2. (i) A function g : Rn → R+ is an antinorm if g is
continuous, positively homogeneous, non-degenerate, and superadditive in
some fan.

(ii) The inequality (3.1) is referred to as the reverse triangle inequality.

THEOREM 3.3. Let B be a star body in Rn symmetric with respect to 0,
with positive and continuous radial function, and let gB be the corresponding
Minkowski functional.

Then for any sector C the following conditions are equivalent:

(i) the set B is radially concave with respect to the sector C;

(ii) for any points x, y ∈ C

gB(x+ y) ≥ gB(x) + gB(y); (3.2)

equality holds if and only if either x = y or ∆(x′, y′) ⊂ bdB for x′ ∈ posx ∩
bdB and y′ ∈ posy ∩ bdB.

Proof.
(i) =⇒(ii):
Assume (i). Since the radial function ρB is positive and continuous (see

[10]), for every x ∈ C \ {0} there is a unique point x′ ∈ (posx) ∩ bdB.
Take x, y ∈ C. If x = y, then obviously the equality in (3.2) holds. Let

x 6= y.
By (0.2), for any t > 0 and z ∈ Rn

gtB(z) =
1

t
gB(z).

Hence, if t > 0, then each of the two conditions (i) and (ii) is equivalent to
the corresponding condition (i’) or (ii’) with B replaced by tB. Consequently,
without loss of generality we may assume that

x ∈ B and y ∈ bdB,

that is,

gB(x) ≤ gB(y) = 1.

Let x′ ∈ (posx) ∩ (bdB) and y′ = y ∈ (posy) ∩ (bdB). Then, ∆(x′, y′) is
contained in a facet of a convex polytope B′ symmetric with respect to 0.
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Therefore, by Proposition 2.4,

gB′(x+ y) = gB′(x) + gB′(y). (3.3)

Since B ∩ pos{x, y} ⊂ B′ ∩ pos{x, y}, by (0.2) it follows that

gB(x+ y) ≥ gB(x) + gB(y).

Equality holds if and only if gB(x+ y) = gB′(x+ y), i.e., (pos x+y
2

) ∩ bdB =
(pos x+y

2
) ∩ bdB′, and consequently ∆(x′, y′) ⊂ bdB. Thus (ii) is satisfied.

To prove the converse implication, suppose (i) is not satisfied. Then there
exist x, y ∈ C ∩ bdB such that x+y

2
∈ intB, whence gB(x+y

2
) < 1.

Thus, gB(x+ y) < 2 = gB(x) + gB(y), because gB(x) = 1 = gB(y). Hence
(ii) is not satisfied.

This completes the proof. 2

We are now ready to give a geometric characterization of antinorms in
terms of their generalized balls (Theorem 3.5). Let us begin with the follow-
ing

LEMMA 3.4. For every star body B in Rn symmetric with respect to 0,
the radial function ρB is positive if and only if for every x ∈ Rn \ {0}

gB(x) =
1

ρB(x)
. (3.4)

If ρB(x) = 0 for some x 6= 0, then gB(x) is not defined.

Proof. The proof is based on (0.2) (with ‖ · ‖B replaced by gB) and (0.3).
Its details are left to the reader. 2

THEOREM 3.5. For any function g : Rn → R+ the following conditions
are equivalent:

(i) g is an antinorm;
(ii) Bg is a star body symmetric with respect to 0, with positive and con-

tinuous radial function, and radially concave with respect to every sector in
some fan.

Proof. (i) =⇒ (ii): Since g is positively homogeneous, it follows that Bg is
star-shaped at 0 and symmetric with respect to 0. Since g is non-degenerate,
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by Lemma 3.4 the radial function ρBg is positive, and it is continuous because
g is continuous. Furthermore, for every sector C in some fan, g satisfies
condition (ii), and so also (i), of Theorem 3.3, whence Bg is concave with
respect to C.

Let us show that Bg is a star body. Since the radial function of Bg is
continuous, it follows that Bg = cl intBg; hence it remains to prove that Bg

is compact.
By definition (see (0.1)),

Bg = g−1([0; 1]).

Let Sn−1 be the Euclidean unit sphere. Take a sequence (x(k))k∈N in Bg. Since
g is non-degenerate, we may assume that x(k) 6= 0 for every k, whence x(k) =
tk · uk for some tk > 0 and uk ∈ Sn−1. Since g is positively homogeneous,
it follows that g(x(k)) = tkg(uk) ≤ 1, whence tk ≤ 1

g(uk)
< ∞ and thus

(tk)k∈N has a convergent subsequence. By the compactness of Sn−1 we may
assume that (uk)k∈N is convergent in Sn−1. Hence, (x(k))k∈N has a convergent
subsequence, which proves the compactness of Bg.

The converse implication (ii) =⇒ (i) is a direct consequence of Theorem
3.3. 2

REMARK 3.6. In view of Proposition 2.4, the Minkowski functional of
an arbitrary convex polytope in Rn is simultanuously a norm and an anti-
norm. Thus the family of norms and the family of antinorms have nonempty
intersection.

4. Semi-antinorms. Following partially the convention that is com-
monly used for convex functions (see [15] or [14]), we extend the range R+

of positively homogeneous functions to R̄+ := R+ ∪ {∞}. We admit the
following rules:

∞+∞ =∞, ∞+t = t+∞ =∞ and ∞·t = t·∞ =∞ for any t > 0.

Then, a function f : Rn → R̄+ is said to be continuous if for every x ∈ Rn

and every sequence (x(k))k∈N in Rn

lim
k
x(k) = x =⇒ lim

k
f(x(k)) = f(x);
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thus, in particular, if f(x) =∞, then limk f(x(k)) =∞.
We are now going to extend the notion of antinorm to that of semi-antinorm.

DEFINITION 4.1. A function g : Rn → R+ is a semi-antinorm provided
g is continuous, positively homogeneous, and there exists a fan C for Rn such
that g is superadditive in C for every sector C ∈ C.

The following theorem is an analogue of Theorem 3.3.

THEOREM 4.2. Let B be a star-shaped set in Rn (not necessarily com-
pact), symmetric with respect to 0, with cl intB = B and with positive and
continuous radial function ρB : Rn → R̄+. Let gB be the corresponding
Minkowski functional. Then for every sector C the following conditions are
equivalent:

(i) the set B is radially concave with respect to C;
(ii) for every x, y ∈ C

gB(x+ y) ≥ gB(x) + gB(y) (4.1)

with equality if and only if either x = y or ∆(x′, y′) ⊂ bdB for x′ ∈ posx ∩
bdB and y′ ∈ posy ∩ bdB.

Proof. The proof is analoguous to that of Theorem 3.3. 2

As an analogue of Theorem 3.5, we obtain a geometric characterization
of semi-antinorms, Theorem 4.3. Its proof is analogous to that of Theorem
3.5.

THEOREM 4.3. For every function g : Rn → R+ the following conditions
are equivalent:

(i) g is a semi-antinorm;
(ii) Bg is a set star-shaped at 0, symmetric with respect to 0, with positive

and continuous radial function ρBg : Rn → R̄+, and it is radially concave
with respect to C for every sector C in some fan.

The following statement is related to Proposition 1.1 characterizing semi-
norms.

PROPOSITION 4.4. Let g : Rn → R+ be a positively homogeneous
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function and let Bg be the corresponding generalized unit ball. If V := g−1(0)
is a linear subspace of Rn, the function g|V ⊥ is an antinorm in V ⊥ and
Bg + V = Bg, then g is a semi-antinorm.

Proof. Since g|V ⊥ is an antinorm, by Theorem 3.5 it follows that Bg|V ⊥ is
a star body in V ⊥, symmetric with respect to 0, with positive and continuous
radial function, and it is radially concave with respect to every sector in some
fan C0 in V ⊥. By the assumption, Bg+V = Bg, whence Bg = Bg|V ⊥⊕V , and
thus Bg is a star body in Rn symmetric with respect to 0, with positive and
continuous radial function. Moreover, Bg is radially concave with respect to
every sector of the fan C := {C ⊕ V |C ∈ C0}. Hence, in view of Theorem
4.3, the function g is a semi-antinorm. 2

As we shall show in Section 5, the converse implication does not hold
(see Remark 5.3); thus Proposition 4.4 is not a strict analogue of Proposi-
tion 1.1 concerning semi-norms. However, Proposition 4.4 combined with
Propositions 2.4 and 1.1 yields the following analogue of Remark 3.6.

REMARK 4.5. Any cylinder over a convex polytope corresponds to a
semi-norm and to a semi-antinorm. Thus, the family of semi-norms and the
family of semi-antinorms have non-empty intersection.

5. Examples of antinorms and semi-antinorms.

Let p 6= 0 and n ≥ 2. For every x = (x1, ..., xn) ∈ Rn, let

‖x‖n,p := (Σn
i=1|xi|p)

1
p . (5.1)

Formula (5.1) defines the so called ”ln,p-norm”, which is positively homo-
geneous and for p > 0 is non-degenerate; for p ≥ 1 it is subadditive (see [16],
Proposition 1.1.16) and thus is a norm.

EXAMPLE 5.1.
(a) For p ∈ (0, 1) the function g := ‖ · ‖n,p : Rn → R+ is an antinorm.

Indeed, it remains to prove that it is superadditive (continuity is evident).
For n = 2 it can be derived (by means of standard calculation) from

Theorem 3.3 for the canonical fan C(2). (For p = 1
2
, see Fig.3.)
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e2

-e2

-e1 e1

(1/4,1/4)

Figure 3: n=2, p=1
2
, Bg = {(x1, x2) |

√
|x1|+

√
|x2| ≤ 1}}

Let n ≥ 3 and let x, y ∈ Rn. We may assume that x, y are linear indepen-
dent and (by symmetry)that x, y ∈ C1(n). Let φ : R2 → lin(x, y) be a linear
isomorphism mapping C1(2) onto a subset of C1(n). In view of Lemma 2.3,
the reverse triangle inequality for x, y is equivalent to the reverse triangle
inequality for φ−1(x), φ−1(y).

(b) For p < 0, let

‖x‖n,p :=

 0 if x = (x1, ..., xn) ∈
n⋃
i=1

Hi

(Σn
i=1|xi|p)

1
p otherwise

. (5.2)

The function g := ‖ ·‖n,p is continuous. Moreover, it is a semi-antinorm. The
proof of superadditivity is the same as in (a).

In particular, let n = 2; then g(x) = (|x1|p + |x2|p)
1
p and

Bg = {(x1, x2) ∈ R2 | |x1|p + |x2|p ≥ 1}.

For p = −1, see Fig.4.
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e1-e1

e2

-e2

Figure 4: n=2, p=−1, Bg = {(x1, x2) | |x1x2| ≤ |x1|+ |x2|}}

EXAMPLE 5.2.(a) For n = 2, let

g(2)(x) :=
√
|x1x2|.

Then the boundary of the corresponding unit ball is the union of two hyper-
bolae whose common asymptotes are the coordinate axes. (See Fig. 5.)

e2

e1

e +e1 2

Figure 5: n=2, Bg = {(x1, x2) | |x1 · x2| ≤ 1}}
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The function g = g(2) is a semi-antinorm, since it is positively homoge-
neous, continuous, and, by Theorem 4.3, superadditive with respect to the
canonical fan. Moreover, the function g is degenerate because the inverse
image of 0 is line1 ∪ line2.

This example can be generalized to arbitrary n ≥ 2: let

g(n)(x) :=
√

Σi<j|xixj|.

By the same reasoning as in Example 5.1 (b), we infer that g = g(n) is
superadditive with respect to the canonical fan. Evidently it is positively
homogeneous and continuous, and thus it is a semi-antinorm. Moreover,
this function is degenerate because the inverse image of 0 is a union of 1-
dimensional linear subspaces.

(b) This example can be modified as follows. Let

g̃(x) := (
n∏
i=1

|xi|)1/n.

To prove that the function g = g̃ is superadditive with respect to the canon-
ical fan, we may restrict our consideration to C1(n) and apply Theorem 17,
p. 35 in [2].

Furthermore, it is continuous and positively homogeneous, whence it is a
semi-antinorm. Moreover, the inverse image of 0 is the union of the hyper-
planes H1, ..., Hn.

Let us now return to Proposition 4.4.

REMARK 5.3. Examples 5.1(b) and 5.2 show that the implication con-
verse to that in Proposition 4.4 does not hold, because in Examples 5.1(b)
and 5.2(b)

g−1(0) =
n⋃
i=1

Hi

while in Example 5.2(a)

g−1(0) =
n⋃
i=1

linei.

Hence, g−1(0) is not a subspace of Rn.
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6. Final remarks. The following theorem concerning the triangle in-
equality is a counterpart of Theorem 3.3, which concerns the reverse triangle
inequality.

THEOREM 6.1. Under the assumptions of Theorem 3.3, for any sector
C in Rn the following conditions are equivalent:

(i) the set B ∩ C is convex;
(ii) for every x, y ∈ C

gB(x+ y) ≤ gB(x) + gB(y).

Proof. We follow the proof of Theorem 3.3 until the formula (3.3). Fur-
thermore, since B ∩ C is convex and x′, y′ belong to the intersection of the
boundaries of B and B′, it follows that (pos{x, y}) ∩ B ⊃ (pos{x, y}) ∩ B′,
gB(x) = gB′(x), and gB(y) = gB′(y). Consequently, in view of (0.2) and (3.3),

gB(x+ y) ≤ gB′(x+ y) = gB(x) + gB(y).

The equality case is as in proof of Theorem 3.3.
To prove the converse implication, suppose (i) is not satisfied. Then there

exist x, y ∈ C ∩ bdB such that x+y
2
∈ C \ B, whence gB(x+y

2
) > 1. Thus

gB(x+ y) > 2 = gB(x) + gB(y), because gB(x) = 1 = gB(y). Hence (ii) is not
satisfied. This completes the proof. 2

REMARK 6.2. Let us notice that a continuous, positively homogeneous,
and non-degenerate function g : Rn → R+ may satisfy the triangle inequality
in each sector of some fan although g is not a norm. Equivalently, a star
body B in Rn symmetric with respect to 0, with positive and continuous
radial function, need not be convex while its intersection with every sector
in some fan is convex. For such an example derived from two ellipses, see
Fig. 6.
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B

Figure 6:

Then the gauge function gB is not subadditive, and thus it is not a norm.
In view of Theorem 3.5, it is not an antinorm, either.

REMARK 6.3. A star body B satisfying the assumptions of Theorem 6.1
(and so also of Theorem 3.3) may be radially concave with respect to every
sector in some fan but convex with respect to every sector in another fan.
(See Fig. 7.)

Indeed, consider the canonical fan C(2) and let C ′ be its image under the
rotation of R2 about 0 by π

4
. Let B be the star body whose boundary is the

union of the eight segments

∆(4e1, e1 + e2), ∆(e1 + e2, 4e2), ∆(4e2,−e1 + e2), ∆(−e1 + e2,−4e1),

∆(−4e1,−e1 − e2), ∆(−e1 − e2,−4e2), ∆(−4e2, e1 − e2), ∆(e1 − e2, 4e1).

Then the corresponding function gB is an antinorm (it is superadditive
in C(2)), but in view of Theorem 6.1 it is subadditive in each sector of the
fan C ′, because the set B ∩ C is convex for every sector C of this fan.
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4e2

4e1

e +e1 2

B

Figure 7: Sectors of the fan C ′ are marked with dotted lines

REMARK 6.4. For p ≥ 1 and 1
p

+ 1
q

= 1, the l2,q-unit ball, i.e. the

set {(x1, x2) ∈ R2 | (|x1|q + |x2|q)1/q ≤ 1}, was used in [12] to define the
arc-length of the l2,p-circle which was assumed to be the supremum of the
suitably defined ”integral sums”. This approach is based on the triangle
inequality, which cannot be used if 0 < p < 1. Let the set S(q) for q > 0 be
defined by

S(q) := {(x1, x2) ∈ R2 | 1

|x1|q
+

1

|x2|q
≥ 1}.

For 0 < p < 1 and 1
p
− 1

q
= 1, the set S(q) was used in [13] as the unit ball,

to define the arc-length of the l2,p-circle to be a certain integral. The results
of the present paper show that for p ∈ (0, 1) the reverse triangle inequality
can be used to prove that this integral is just the infimum of all suitable
”integral sums”. To this end, let us notice that if r := −q, then S(q) = Bg

for g := ‖ · ‖r. In view of Example 5.1(b), the function g is a semi-antinorm,
whence S(q) is the generalized ball generated by a semi-antinorm.

Furthermore, let us recall that according to Example 5.1(a) the l2,p-circle,
p ∈ (0, 1) corresponds to an antinorm.

Hence, for p ∈ (0, 1) and q satisfying 1
p
− 1

q
= 1, in [13] the arc-length of

the l2,p-circle corresponding to an antinorm was measured with respect to the
semi-antinorm g. These considerations have the following probabilistic back-
ground. For n = 2 and p > 0, the density level-sets of the p-generalized nor-
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mal distribution are l2,p-circles and the measuring them in the way described
above allows to prove powerful geometric measure representation formulae
for these distributions.
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