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Abstract

The general methods from skewed distributions theory and from the theory of geomet-
ric and stochastic representations of ln,p-symmetric distributions are combined here to
introduce skewed continuous ln,p-symmetric distributions.
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1. Introduction

The univariate skew-normal and its extension to a univariate skew-symmetric distribution
were introduced first in Azzalini (1985) and Azzalini (1985), respectively. Many authors
extended these considerations under various aspects and in different ways. E.g., a mul-
tivariate extension of the skew-normal distribution and its main properties are discussed
first in Azzalini and Dalla-Valle (1996) and then in Azzalini and Capitanio (1999). Then,
several multivariate skew-normal versions and their extensions to skew-elliptical distri-
butions have been introduced, see, e.g., Azzalini and Capitanio (1999) and Branco and
Dey (2001). Multivariate unified skew-normal and skew-elliptically contoured distributions
are considered in Arellano-Valle and Azzalini (2006). Genton (2004) gives an overview of
these efforts. The concept of fundamental skew distributions which unifies all at this time
known approaches has been developed in Arellano-Valle and Genton (2005). The authors
of Arellano-Valle et al. (2006b) bring a certain new structure into the widespread field and
unify many different approaches from a selection point of view.

The Gaussian measure indivisible-representation was first introduced in Richter (1985)
and later used in solving several problems in probability theory and mathematical statis-
tics. An overview of such applications is given in Richter (2009). Based upon a gener-
alized method of indivisibles which makes use of the notion of non-Euclidean surface
content, in the same paper a more general geometric measure representation formula for
ln,p-symmetric distributions is derived. This formula enables one to derive exact distribu-
tions of several types of functions of ln,p-symmetrically distributed random vectors. This
has been demonstrated there at once by generalizing the Fisher distribution, and also for
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several special cases in Richter (2007) and Kalke et al. (2011).
Here we extend the class of skewed distributions for cases where the underlying distri-

bution is an ln,p-symmetric one. To this end, we first exploit stochastic representations
which are based upon the geometric measure representation formula in Richter (2009) to
derive marginal and conditional distributions from ln,p-symmetric distributions. Then, the
general density formula for skewed distributions from Arellano-Valle et al. (2006b) applies,
and finally we follow the general concept in Arellano-Valle and Azzalini (2006).

The paper is structured as follows. We introduce in Section 2 the p-generalized normal
distribution Nn,p and consider partitions of correspondingly distributed random vectors.
Consequently, we generalize some results on Dirichlet distributions and on moments. Sec-
tion 3 deals with continuous ln,p-symmetric distributions; their moments, marginal and
conditional densities are derived and the scale mixture of the Nn,p-distribution is consid-
ered. Then we use the general ideas from Arellano-Valle et al. (2006b) and Arellano-Valle
and Azzalini (2006) to introduce in the final Section 4 skewed ln,p-symmetric densities.

2. Preliminaries

2.1 The p-generalized normal distribution

Let X = (X1, ..., Xn)T be a random vector following a p-generalized normal distribution,
denoted by X ∼ Nn,p, which in terms of its density is defined by

fX(x) = Cn
p e−

|x|pp
p , x = (x1, ..., xn)T ∈ Rn,

where |x|p = (
∑n

i=1 |xi|p)1/p and Cp = p1−1/p/2Γ(1/p), p > 0. Clearly, this is equivalent
to X1, . . . , Xn are independent and identically distributed (i.i.d.), with power exponential
density Cpe

− 1
p
|x|p , x ∈ R.

Let now Rp = |X|p be the p-functional of the random vector X which is a norm if p ≥ 1
and an antinorm if 0 < p < 1, see Moszyńska and Richter (2012). Since, |X1|p, . . . , |Xn|p
are i.i.d. G (1/p, 1/p) random variables, we have Rp

p = |X|pp =
∑p

i=1 |Xi|p ∼ G (n/p, 1/p),
where G(α, λ) denotes the gamma distribution with shape parameter α > 0 and scale
parameter λ > 0. Hence, the random variable Rp has density given by

fn,p(x) =
I(0,∞)(x)

p
n

p
−1Γ(n

p )
xn−1e−

xp

p .

As in Richter (2007), we refer this distribution by Rp ∼ χ(p, n). In particular, we have

E(Rk
p) = pk/pΓ[(n + k)/p]/Γ(n/p) for all k ≥ 0. In addition, 1

p |Xi|p iid∼ Ga (1/p, 1) , i =

1, ..., n, following that 1
p

∑l+k−1
i=l |Xi|p ∼ G (k/p, 1) and 1

pRp
p = 1

p

∑n
i=1 |Xi|p ∼ G (n/p, 1).

Moreover, since |X|pp =
∑n

i=1 |Xi|p we have straightforwardly that

( |X1|p
|X|pp , ...,

|Xn|p
|X|pp

)T

∼ Dn

(
1
p
, ...,

1
p
,
1
p

)
,

where Dm+1(α1, ..., αm, αm+1), αi > 0, i = 1, . . . , m + 1, denotes de Dirichlet distribu-

tion. Similarly, the sub-random vector
(
|X1|p
|X|pp , ..., |Xk|p

|X|pp , 1−
k∑
1

|Xj |p
|X|pp

)T

follows a Dirichlet
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Dk+1

(
1
p , ..., 1

p , n−k
p

)
distribution, k ∈ {1, 2, ..., n− 1}, and the sub-vector (Y1, . . . , Yk)T =

( |X1|p
|X|pp , ..., |Xk|p

|X|pp
)T

has a density

hk(y1, ..., yk) =
Γ

(
n
p

)

Γ
(

1
p

)k
Γ

(
n−k

p

)
k∏

i=1

y
1
p
−1

i

(
1−

k∑

i=1

yi

)n−k

p
−1

, y1 > 0, ..., yk > 0,

k∑

1

yi < 1.

Hence, the density of (Z1, . . . , Zk)T =
( |X1|
|X|pp , ..., |Xk|

|X|pp
)T

is

gk(z1, . . . , zk) =
∂k

∂y1...∂yk
P

( |Xi|
|X|p ≤ yi, i = 1, ..., k

)
= hk(z

p
1 , ..., z

p
k)

k∏

i=1

(pyp−1
i ),

and the following lemma has thus been proved.

Lemma 2.1 The density of (Z1, . . . , Zk)T =
( |X1|
|X|pp , ..., |Xk|

|X|pp
)T

, where X = (X1, . . . , Xn)T ∼
Nn,p, is

gk(z1, . . . , zk) =
Γ

(
n
p

) (p
2

)k

Γ
(

1
p

)k
Γ

(
n−k

p

)
(

1−
k∑

i=1

zp
i

)n−k

p
−1

, z1 > 0, ..., zk > 0,
k∑

1

zi < 1.

This is a generalization of formula (1.26) in Fang et al. (1990).

2.2 Stochastic representation of a partitioned p-generalized normally
distributed random vector

It is known from Richter (2009) that X ∼ Nn,p allows the stochastic representation

X
d= RUp

where R
d= Rp and is independent of Up

d= X/Rp which follows a p-generalized uniform
distribution (i.e., the uniform distribution with respect to the p-generalized surface content
on the p-generalized unit sphere Sn,p = {x ∈ Rn : |x|p = 1}). Consider now the partition
of X

X = (X(1)T , X(2)T )T ,

where X(1) ∈ Rk and X(2) ∈ Rn−k, 0 < k < n. Similarly, we partition

Up = (UT
p,1, U

T
p,2)

T ,

where Up,1 is k-dimensional and so Up,2 is (n− k)-dimensional.

Lemma 2.2 The random vector Up allows the stochastic representation

(UT
p,1, U

T
p,2)

d= (R(p)
k,nU (k)

p , (1−R
(p) p
k,n )1/pU (n−k)

p )
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where the random elements R
(p)
k,n, U

(k)
p and U

(n−k)
p are independent, U

(k)
p and U

(n−k)
p are

any p-generalized uniformly distributed random vectors on Sk,p and Sn−k,p, respectively,
and R

(p) p
k,n is any random variable such that R

(p) p
k,n ∼ B (k/p, (n− k)/p), where B(α, β)

denotes the beta distribution with parameters α > 0 and β > 0.

Proof The random elements

X(1)

|X(1)|p
= U (k)

p ,
X(2)

|X(2)|p
= U (n−k)

p , |X(1)|p, |X(2)|p

are independent. We put R
(p)
k,n = |X(1)|p

|X|p . Then |X(2)|pp
|X|pp = 1−R

(p) p
k,n and

UT
p = (UT

p,1, U
T
p,2)

d=
XT

|X|p = (R(p)
k,nU (k)T

p , (1−R
(p) p
k,n )1/pU (n−k)T

p ).

Since 1
p |X(1)|pp ∼ G(k/p, 1) and 1

p |X(2)|pp ∼ G((n − k)/p, 1) and they are independent, we
then have

R
(p) p
k,n =

1
p |X(1)|pp

1
p |X(1)|pp + 1

p |X(2)|pp
∼ B

(
k

p
,
n− k

p

)
.

¥

Let us remark that one may think of R
(p)
k,n as, e.g., R

(p)
k,n = |X(1)|p

|X|p or as any random

variable following the same distribution as |X(1)|p
|X|p . This result generalizes Lemma 2 in

Cambanis et al. (1981) to the case of arbitrary p > 0.
The partition (X(1)T , X(2)T ) of XT allows according to this lemma the stochastic rep-

resentation

(X(1), X(2)) d= (RR
(p)
k,nU (k)

p , R(1−R
(p) p
k,n )1/pU (n−k)

p )

where R, R
(p)
k,n, U

(k)
p and U

(n−k)
p are independent. The meaning of the nonnegative random

variable R is quite different from that of the nonnegative variable R
(p)
k,n. According to

Richter (2007), R
(p)
k,n is the p-generalized cosine-value of the angle φ between the two

one-dimensional subspaces of Rn spanned up by 0 ∈ Rn and one of the vectors X and
(X(1) T , 0T )T , R

(p)
k,n = cosp(φ). Note that φ takes its values only in the interval [0, π/2].

2.3 Moments

Generalizing well known results from Fang et al. (1990) to the case of arbitrary p > 0,
in this section we compute some multivariate moments of a p-generalized normal vector
X ∼ Nn,p. For this, we need first some preliminary notations. We denote the sign of X
by sgn(X) = (sgn(X1), . . . , sgn(Xn))T and its absolute value by |X| = (|X1|, . . . , |Xn|)T .
Here, for any random variable Z which is a.s. different from 0, the sign of Z is defined by

sgn(Z) =
{

+1, if Z > 0;
−1 if Z < 0.
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It is clear by symmetry that the random vectors |X| and sgn(X) are independent, and that
sgn(X) has uniform distribution on {−1, +1}n. We formalize these results in the following
lemma, where the marginal distribution of |X| is also given. For further properties of
these random vectors in the context of a more general class of symmetric distributions,
see Arellano-Valle et al. (2002) and Arellano-Valle and del Pino (2004).

Lemma 2.3 If X ∼ Nn,p, then sgn(X) and |X| are independent random vectors, with
sgn(X) ∼ U({−1,+1}n) and f|X|(t) = 2nCn

p e−
1
p

∑n
i=1 tp

i , t = (t1, . . . , tn)T ∈ Rn
+.

For any vector s = (s1, . . . , sn)T , let D(s) be the diagonal n× n matrix given by

D(s) = diag(s1, . . . , sn).

Lemma 2.4 If X ∼ Nn,p, then X
d= D(S)T , where S and T are independent random

vectors such that S
d= sgn(X) and T

d= |X|.
Theorem 2.5 If X ∼ Nn,p, then for any integers ri ≥ 0, i = 1, . . . , n,

E

(
n∏

i=1

Xri

i

)
=





p
1
p

∑n
i=1 ri

∏n
i=1 Γ

(
ri+1

p

)

Γn

(
1
p

) , if ri is even for all i = 1, . . . , n,

0, if ri is odd for some i = 1, . . . , n.

Proof By Lemma 2.3 and the independence property, E (
∏n

i=1 Xri

i ) =∏n
i=1 E (Sri

i ) E (T ri

i ), where E (Sri

i ) equals 0 for ri odd and 1 for ri even, and the
proof follows by using that E (T ri

i ) = pri/pΓ[(ri + 1)/p]/Γ(1/p). ¥

Corollary 2.6 If X ∼ Nn,p, then E(X) = 0 and E(XXT ) = σ2
pIn, where σ2

p =
p2/pΓ(3/p)/Γ(1/p).

Obviously for p = 2 we have σ2
p = 1.

Corollary 2.7 Let Up = (U1, . . . , Un)T be a p-generalized uniform vector on Sn,p. Then,
for any integer ri ≥ 0, 1, . . . , n,

E

(
n∏

i=1

U ri

i

)
=





Γ
(

n

p

) ∏n
i=1 Γ

(
ri+1

p

)

Γ
(

n+
∑n

i=1 ri

p

)
Γn

(
1
p

) , if ri is even for all i = 1, . . . , n,

0, if ri is odd for some i = 1, . . . , n.

Proof Let X ∼ Nn,p and Rp = |X|p. According to Richter (2007) (see Subsection 2.1), Rp

follows the χ(p, n)-density fn,p(r) = rn−1e−
rp

p I(0,∞)(r)/
∞∫
0

rn−1e−
rp

p dr. Since X = RpUp,

where Rp and Up are independent, we have

E

(
n∏

i=1

Xri

i

)
= E

(
R

∑n
i=1 ri

p

)
E

(
n∏

i=1

U ri

i

)
,

from where the proof follows by Theorem 2.5 and E(Rs
p) = ps/pΓ[(n+ s)/p]/Γ(n/p) for all

p > 0 and s ≥ 0. ¥

This result generalizes one in Theorem 3.3 of Fang et al. (1990).

Corollary 2.8 Let Up be the p-generalized uniform vector on Sn,p. Then, E(Up) = 0
and E(UpU

T
p ) = τn,pIn, where τn,p = Γ(3/p)Γ(n/p)/(Γ(1/p)Γ[(n + 2)/p]).
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This result generalizes Theorem 2.7 in Fang et al. (1990). For the proof of this corollary,
we refer to Richter (2009).

From Corollary 2.8 we can note that if p = 2, then τn,p = 1/n following thus the well-
known result that V ar(Up) = (1/n)In.

3. Continuous ln,p-symmetric distributions

3.1 Notations for ln,p-spherical distributions

Following the notation in Fang et al. (1990), Henschel and Richter (2002) and Richter
(2009), we denote by R the set of all nonnegative random variables defined on the same
probability space as the random variable Rp and which are independent of the p-generalized
uniform random vector Up. Let F be any distribution function (d.f.) of a positive random
variable and put

Ln(F ) = {X : X
d= RUp, R ∈ R has distribution function F ,

R and Up are stochastically independent}.
From now on let X denote an arbitrary element of Ln(F ). The random vector X is called
ln,p-symmetric or -spherical distributed, or even ln,p-norm symmetric distributed if p ≥
1, and the corresponding random variable R ∈ R is called its generating variate. The
assumption X ∈ Ln(F ) implies that X has a density iff R has a density. In this case,
the density of X is of the form Cp(n, g)g(

∑n
i=1 |xi|p), where Cp(n, g) is a suitably chosen

normalizing constant and g : R+ → R+ is called the density generating function. It is
assumed that g satisfies the assumption In+2,g,p < ∞, where Ik,g,p =

∫∞
0 rk−1g(rp)dr. This

distribution is the p-generalized normal distribution if the density generating function is
g(r) = e−r/pI(0,∞)(r). In this case, we have 1/In,g,p = p1−n/p/Γ(n/p). In what follows,
we assume Cp(n, g) = 1, that is X follows an ln,p-symmetric distribution with density
generator g = g(n). For an ln,p-spherical distribution defined in this way, we shall use the
notation

X ∼ Sn,p(g)

and for its d.f. we write Fn,p(· ; g). Equivalently, the distribution of X is determined by
the density

fX(x) = g(n)(|x|pp), x ∈ Rn.

It follows by definition that X allows the stochastic representation X
d= RUp, where R is

a non-negative random variable with density

fR(r) = rn−1g(n)(rp), r > 0,

which is independent of the p-generalized uniform random vector Up. The cases p = 1, 2
concern the Gaussian distribution and the Laplace distribution, respectively.

3.2 Marginal and conditional densities

Let X = (X1, ..., Xn)T ∼ Sn,p(g) be a ln,p-symmetrically distributed random vector
with density generator g = g(n). We are interested in the marginal density of X(1) =
(X1, ..., Xk)T , 1 ≤ k < n. The following result generalizes Theorem 2.10 and formula
(2.23) in Fang et al. (1990).
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Lemma 3.1 Let X = (X1, ..., Xn)T ∼ Sn,p(g). Then, X(1) = (X1, ..., Xk)T ∼ Sk,p(g) and
has density

∂m

∂x1...∂xk
P (Xi ≤ xi, i = 1, ..., k) = g(k)

(
k∑

i=1

|xi|p
)

,

where the marginal density generator g(k) is given by

g(k)(u) =
2n−kΓ

(
1
p

)n−k

pn−kΓ
(

n−k
p

)
∞∫

u

g(n)(y)(y − u)
n−k

p
−1dy.

Proof Since X
d= RU , where R = Rp and U = X/Rp are independent, we have

P (Xi ≤ xi, i = 1, ..., k) = P
(
Ui ≤ xi

R
, i = 1, ..., k

)

=

∞∫

0

P
(
Ui ≤ xi

r
, i = 1, ..., k

)
P (R ∈ dr)

=

∞∫

0

x1
r∫

−1

...

xk
r∫

−1

∂k

∂ỹ1...∂ỹk
P (Ui ≤ ỹi, i = 1, ..., k)dỹ1...dỹkP (R ∈ dr).

It follows from Lemma 2.1 that

P (Xi ≤ xi, i = 1, ..., k) = C

∞∫

0

x1
r∫

−1

...

xk
r∫

−1

I{y(k):
∑k

i=1 |yi|p≤1}(ỹ(k))

(
1−

k∑

i=1

|ỹi|p
)n−k

p −1

dỹ1...dỹkdF (r),

where F is the d.f. of R and C = Γ (n/p) (p/2)k /Γ (1/p)k Γ ((n− k)/p) . Hence,

∂k

∂x1...∂xk
P (Xi ≤ xi, i = 1, ..., k) = C

∞∫

0

I{y(k):
∑k

i=1 |yi|p≤1}
(x(k)

r

) (
1−

k∑

i=1

|xi

r
|p

)n−k
p −1

r−kdF (r)

= C

∞∫

(
∑k

i=1 |xi|p)1/p

r−(n−p)

(
rp −

k∑

i=1

|xi|p
)n−k

p −1

dF (r)

= g(k)

(
k∑

i=1

|xi|p
)

,

where

g(k)(u) =
Γ

(
n
p

) (p
2

)k/2

Γ
(

1
p

)k
Γ

(
n−k

p

)
∞∫

u1/p

r−(n−p)(rp − u)
n−k

p
−1dF (r).
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It is known from Richter (2009) that dF (r) = I−1
n,g,pr

n−1g(n)(rp)I(0,∞(r)dr. Hence,

g(k)(u) =
Γ

(
n
p

) (p
2

) k

2

Γ
(

1
p

)k
Γ

(
n−k

p

)
pIn,g,p

∞∫

u

y−
(n−p)

p
+ (n−1)

p
+ (1−p)

p (y − u)(n−k)/p−1g(n)(y)dy.

Making use of the equation In,g,p = 1/nπn(p), where p → πn(p) =
2nΓn−k (1/p) /npn−1Γ (n/p) denotes the ball number function in Richter (2011), the lemma
follows. ¥

Consider again the partition X = (X(1)T , X(2)T )T , where as before X(1) and X(2) take
values in Rk (0 < m < n) and Rn−k, respectively. We are interested now in determining
the conditional density fX(1)|X(2)=x(2)(x(1)) of X(1) given X(2) = x(2).

It follows from Lemma 4.1 that X(2) follows a continuous ln−k,p-symmetric distribution
with a density generator g(n−k) satisfying the representation

g(n−k)(u) =
2kΓk

(
1
p

)

pkΓ
(

k
p

)
∞∫

u

g(n)(y)(y − u)
k

p
−1dy =

2kΓk
(

1
p

)

pkΓ
(

k
p

)
∞∫

0

g(n)(z + u)z
k

p
−1dz.

Hence,

fX(1)|X(2)=x(2)(x(1)) =
g(n)(|x(1)|pp + |x(2)|pp)

g(n−k)(|x(2)|pp)
=: g

(k)
[a] (|x(1)|pp)

where a = |x(2)|pp. The following lemma has thus been proved.

Lemma 3.2 Let X = (X(1)T , X(2)T )T follow the ln,p-symmetric distribution with the
density generator g(n). The conditional density of X(1) given X(2) = x(2) is then a lk,p-
symmetric density satisfying the representation

fX(1)|X(2)=x(2)(x(1)) = g
(k)
[a] (|x(1)|pp), a = |x(2)|pp,

with the uniquely defined conditional density generator

g
(k)
[a] (u) =

pkΓ
(

k
p

)
g(n)(a + u)

2kΓ
(

1
p

)k ∞∫
0

g(n)(z + a)z
k

p
−1dz

.

In other words, we have (X(1)|X(2) = x(2)) ∼ Sk,p

(
g
(k)
[|x(2)|pp]

)
.

This lemma generalizes a corresponding formula in Section 2.4 of Fang et al. (1990). In
the special case of the generalized Nn,p-distribution, g(n)(u) = Cn

p e−
u

p , u > 0, Lemma 3.2

yields g
(k)
[a] (u) = g(m)(u) = Cm

p e−
u

p , u > 0, for all a > 0.
According to the stochastic representation in Subsection 2.2 it may be remarked here

that the components (1−ap)1/pU
(k)
p and aU

(n−k)
p of the vector ((1−ap)1/pU

(k)
p , aU

(n−k)
p ) are

obviously independent. Moreover, the stochastic representation from the end of Subsection
2.2 may be reformulated as follows.
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Corollary 3.3 If the random vector X = (X(1)T , X(2)T )T follows a continuous ln,p-
symmetric distribution, then the following statements are true:
(a) The sub-vectors X(1) and X(2) allow the stochastic representations X(1) d= R1U

(k)
p and

X(2) d= R2U
(n−k)
p , where R1

d= RR
(p)
k,n, R2

d= R(1−R
(p)p
k,n )1/p, and where (R1, R2), U

(k)
p and

U
(n−k)
p are independent.

(b) A random vector following the conditional distribution of X(1) given X(2) = x(2)

allows the stochastic representation (X(1)|X(2) = x(2)) d= R[|x(2)|pp]U
(k)
p , where, for each

fixed |x(2)|p, the random variable R[|x(2)|pp]
d= (Rp − |x(2)|pp)1/p and is independent of U

(k)
p .

(c) The vectors X(1) and X(2) are conditionally independent given |X(2)|p,

X(1) ⊥⊥ X(2)| |X(2)|p.

Proof The assertion in (a) is known from Subsection 2.2. Statement (b) is, because of
the geometric measure representation theorem in Richter (2009), just a reformulation of
the distributional statement in Lemma 3.2. From (b), it follows that

(X(1)| |X(2)|p = a) d= R[ap]U
(k)
p .

Moreover,

(X(2)| |X(2)|p = a) d= aU (m)
p

and

(X(1), X(2)| |X(2)|p = a) d= (R[ap]U
(k)
p , aU (m)

p )

where R[ap]U
(k)
p and aU

(m)
p are independent. ¥

The first part of this corollary generalizes formula (2.6.9) of Theorem 2.6.6 in Fang
and Zhang (1990); the part (b) generalizes (2.29)-(2.30) of Theorem 2.13 in Fang et al.
(1990). The part (c) is a consequence of (b) and generalizes the same result for spherical
distributions (see e.g. Arellano-Valle et al. (2006a)).

3.3 Scale mixture of the Nn,p-distribution

Let R = V −1/pRp, where Rp ∼ χ(n, p) and is independent of V , which is a non-negative
mixing variable with d.f. G which does not depend on n. Suppose that R is independent
of U (n), the p-generalized uniform vector of Rn. Then, the random vector defined by
Y = RU (n) = V −1/pRpU

(n) = V −1/pX, where X ∼ Nn,p and is independent of V ∼ G.
We then have Y ∼ Sn,p(g(n)), where the generator function g(n) will be defined below. The
density of V −1/pRp is

f(u) =
I(0,∞)(u)un−1

p
n

p
−1Γ(n

p )

∫ ∞

0
v

n

p e−
v

p
up

dG(v).

This density defines an important class of ln,p-symmetric distributions, which extends the
scale mixtures of normal distributions to the scale mixtures of p-generalized normal distri-
butions. An important member is the n-dimensional p-generalized Student-t distribution
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with ν > 0 degrees of freedom, denoted here by Y ∼ tn,p(ν), for which V ∼ Ga(ν/p, ν/p).
In this case, V −1/pRp has the density

f(u) =
un−1I(0,∞)(u)

p
n

p
−1Γ

(
n
p

)
Γ

(
ν
p

)
(

ν

p

) ν

p

∞∫

0

v
n+ν

p
−1e−

v

p
(up+ν)dv.

The functions f and g(n) satisfy according to Richter (2009) the equation

f(r) =
2nΓ

(
1
p

)n

pn−1Γ(n
p )

rn−1g(n)(rp)I(0,∞)(r).

Hence, Y follows the ln,p-symmetric density

fY (y) =
|y|n−1

p I(0,∞)(y)

p
n

p
−1Γ

(
ν
p

)
Γ

(
n
p

)
∫ ∞

0
v[(n+ν)/p]−1e−

ν+|y|pp
p dv,

that is,

fY (y) = Dn,p,ν

{
1 +

|y|pp
ν

}− ν+n

p

, Dn,p,ν =

(p
2

)n Γ
(

ν+n
p

)

Γ
(

ν
p

)
Γ

(
1
p

)n
ν

n

p

.

Definition 3.4 The distribution of a random vector Y following the density

tn,p(y; ν) := Dn,p,ν

{
1 +

|y|pp
ν

}− ν+n

p

, y ∈ Rn, p > 0, ν > 0,

will be called the n-dimensional p-generalized Student-t distribution with ν degrees of
freedom.

This class of p-generalized Student densities was introduced in Richter (2007) for n = 1.
For p = 2, see Arellano-Valle and Bolfarine (1995). It follows from there, that in the case
of the p-generalized Student-t distribution, one can think of V as

V =
|Z1|p + ... + |Zν |p

ν
with (Z1, ..., Zν)T ∼ Nn,p in Rν .

The following theorem has thus been proved.

Theorem 3.5 If Y = (Y (1)T , Y (2)T )T ∼ Nn+ν,p where Y (1) and Y (2) take values in Rn

and Rν , respectively, then ν1/p

|Y (2)|p Y (1) follows the density tn,p(y; ν), y ∈ Rn.

This theorem has been proved for n = 1 in Richter (2007) and for p = 2 in Arellano-Valle
and Bolfarine (1995).

If Y = (Y (1)T , Y (2)T )T ∼ tn,p(ν), where Y (1) ∈ Rk and Y (2) ∈ Rn−k (0 < k < n), then
we have by construction that the density generator of Y (1) satisfies the representation

g(k)(u) = Dk,p,ν

{
1 +

u

ν

}−(ν+k)/p
,
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that is, Y (1) ∼ tk,p(ν), with density tk,p(y(1), ν). The conditional density of Y (1) given
Y (2) = y(2) is therefore

fY (1)|Y (2)=y(2)(y(1)) =
(

ν + n− k

ν + a

) k

p

tk,p

((
ν + n− k

ν + a

) 1
p

y(1); ν + n− k

)
,

with a = |y(2)|pp, that is, this conditional density is an lk,p-symmetric one, but rescaled by
the factor (ν + a)1/p/(ν + n− k)1/p.

3.4 Moments

To compute the mixed moments of an ln,p-symmetric random vector X ∼ Sn,p, we obtain

from the stochastic representation X
d= RU (n) that

E

(
n∏

i=1

Xri

i

)
= E

(
R

∑n
i=1 ri

)
E

(
n∏

i=1

U ri

i

)
,

provided that E
(
R

∑n
i=1 ri

)
is finite, and where E (

∏n
i=1 U ri

i ) is given in Corollary 2.7. In
particular, by Corollary 2.8 we have E(X) = 0 if E(R) is finite and E(XXT ) = σ2

p,gIn,
where σ2

p,g = τpE(R2), if E(R2) is finite. It is convenient to emphasize here that similarly
to the case of p = 2, the univariate variance component σ2

p,g = τpE(R2) does not depend
on n.

For example, if X ∼ tn,p(ν), we have by Subsection 3.2 that R = V −1/pRp, where
V ∼ G(ν/p, ν/p) and is independent of Rp ∼ χ(n, p), implying that

E
(
R

∑n
i=1 ri

)
= E

(
V −∑n

i=1 ri/p
)

E
(
R

∑n
i=1 ri

p

)

=
ν

∑n
i=1 ri

p Γ
(

ν−∑n
i=1 ri

p

)
Γ

(
n+

∑n
i=1 ri

p

)

Γ
(

ν
p

)
Γ

(
n
p

) , ν >
n∑

i=1

ri.

Hence, for the tn,p(ν)-symmetric distribution, we have for ν >
∑n

i=1 ri that

E

(
n∏

i=1

Xri

i

)
=





ν

∑n
i=1 ri

p Γ
(

ν−∑n
i=1 ri

p

) ∏n
i=1 Γ

(
ri+1

p

)

Γ
(

ν

p

)
Γn

(
1
p

) , if ri is even for all i = 1, . . . , n,

0, if ri is odd for some i = 1, . . . , n.

In particular, we have E(X) = 0 if ν > 1 and E(XXT ) = σ2
p,νIn if ν > 2, where σ2

p,ν =
νΓ[(ν − 2)/p]Γ(3/p)/Γ(ν/p)Γ(1/p).

3.5 Linear transformations

A further extension of the family of continuous ln,p-spherical distributions follows by con-
sidering the distribution of the linear transformation Y = µ + ΓX, where X ∼ Sm,p(g),
Γ ∈ Rn×m and µ ∈ Rn.

We recall that a density level set LS is a set of points from the sample space where
the density function attains one and the same value which is called the density level. In
the case of X every density level set is an lm,p-sphere which is centered at the origin.
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It is reasonable to call the set Dm · LS an axes-aligned p-generalized ellipsoid if Dm is
an m × m-diagonal matrix consisting of positive elements. Rotating such a set with an
orthogonal m × m-matrix Hm and shifting the resulting set then in the case m = n by
µ leads to a set which will be called a p-generalized ellipsoid with location vector µ and
shape matrix Γ = HnDn.

Since X
d= RUp, we have Y

d= µ+RΓUp. Y has location vector µ and if Γ = HnDn we say
that the random vector Y has shape matrix Γ. If E(R2) < ∞, then it is straightforward
to see that E(Y ) = µ and Cov(Y ) = σ2

p,gΣ, where Σ = ΓΓT and as was mentioned
σ2

p,g = τpE(R2) is the univariate variance component induced by the density generator
function g= g(n). Also, if m = n still holds, then the random vector Y has a density given
by

fY (y) = |Γ|−1g(n)(‖Γ−1(y − µ)‖p
p), y ∈ R.

Its d.f. FY (y) = P (Y ≤ y) is then

FY (y) = P (µ + ΓX ≤ y) =
∫

{x∈Rn:µ+Γx≤y}

g(n)(x)dx, y ∈ Rn,

where the sign of inequality ≤ means componentwise inequality. In what follows, we will
denote the d.f. of Y by Fn,p(y;µ,Σ, g), where Σ = ΓΓT , or by Fn,p(y; Σ, g) when µ = 0,
or simply by Fn,p(y; g) when µ = 0 and Σ = In. In the case of p = 2, Y has the usual
elliptically contoured distribution with location vector µ and dispersion matrix Σ and will
be commonly denoted by ECn(µ,Σ, g).

4. Skewed ln,p-symmetric distributions

We discuss next two ways to construct skewed ln,p-symmetric distributions.

4.1 Construction from selection mechanisms

Let X(1) ∈ Rk and X(2) ∈ Rm be two random vectors following a lk+m,p-symmetric joint
distribution with density generator g(k+m), i.e., they have joint density

fX(1),X(2)(x(1), x(2)) = g(k+m)(|x(1)|pp + |x(2)|pp), (x(1), x(2)) ∈ Rk+m.

For any fixed matrix Λ ∈ Rm×k, we study in that follows the distribution of X(1) when a
linear random selection mechanism of the form X(2) < ΛX(1) is considered. The following
result characterizes the density of this particular selection distribution.

Theorem 4.1 It holds

fX(1)|X(2)<ΛX(1)(z) =
1

F
(2)
m,p

(
0; Im + ΛΛT , g(m)

) fX(1)(z)F (1)
m,p

(
Λz; g(m)

[|z|pp]

)
, z ∈ Rm,

where F
(1)
m,p

(
x; g(m)

a

)
=

∫
Rm

+
g
(m)
a (|x − u|pp)du and F

(2)
m,p

(
x; Σ, g(m)

)
denotes the d.f. of ΓX

with Γ = (Λ,−Im) and Σ = ΓΓT = Im + ΛΛT .
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Proof According to Lemma ,

fX(1)(x(1)) = g(k)(|x(1)|pp), x(1) ∈ Rk.

With a matrix Λ : Rk → Rm, we set

U1 = X(1) and U2 = ΛX(1) −X(2)

which is equivalent to

X(1) = U1 and X(2) = ΛU1 − U2.

The Jacobian of this transformation is

J =
∣∣∣∣
Ik 0
Λ −Im

∣∣∣∣ ,

hence |J | = 1. The joint density of U1 and U2 is thus

fU1,U2(u1, u2) = fX(1),X(2)(u1,Λu1 − u2) = g(k+m)(|u1|pp + |Λu1 − u2|pp).

It follows that

fU2|U1=u1
(u2) =

g(k+m)(|u1|pp + |Λu1 − u2|pp)
g(k)(|u1|pp)

= g
(m)
[|u1|pp](|Λu1 − u2|pp). (1)

We note also that an interpretation of Λ follows from the fact that Cov(U2, U1) = σ2
p,gΛ.

Let Z denote a random vector which follows the conditional distribution of X(1) under
X(2) < ΛX(1),

Z
d= (X(1)|X(2) < ΛX(1)).

Then

Z
d= (U1| 0 < ΛX(1) −X(2))

and hence

Z
d= (U1| 0 < U2).

By the general representation formula for the density of the corresponding conditional
distribution in Arellano-Valle and del Pino (2004),

fZ(z) = fU1(z)
P (0 < U2|U1 = z)

P (0 < U2)
,

where fU1(z) = fX(1)(z) = g(k)(|z|pp).
By (1) and the change of variable w = Λz − u2, we have

P (0 < U2|U1 = z) =
∫

Rm
+

g
(m)
[|z|pp](|Λz − u2|pp)du2 = F (1)

m,p

(
Λz; g(m)

[|z|pp]

)
. (2)
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Hence,

fZ(z) = Cm,pg
(k)(|z|pp)F (1)

m,p

(
Λz; g(m)

[|z|pp]

)
,

with 1/Cm,p = P (0 < U2).

Since X
d= −X and U2 = ΓX, where Γ = (Λ,−Im), then U2 and −U2 have the

same distribution. Hence, P (0 < U2) = P (−U2 < 0) = P (U2 < 0). The d.f. of
U2 = ΓX will be denoted by F

(2)
m,p

(
u2; Σ, g(m)

)
, where Σ = ΓΓT = Im + ΛΛT , thus

1/Cm,p = F
(2)
m,p

(
0; Im + ΛΛT , g(m)

)
. ¥

Definition 4.2 The distribution of a random vector Z with density of the form

fZ(z) =
1

F
(2)
m,p

(
0; Im + ΛΛT , g(m)

) g(k)(|z|pp) F (1)
m,p

(
Λz; g(m)

[|z|pp]

)
, z ∈ Rk,

will be called skewed lk,p-symmetric distribution with dimensionality parameter m, density
generator g and skewness/shape matrix-parameter Λ. The notation Z ∼ SSk,m,p(Λ, g) will
be used for this distribution.

An important simplification is obtained when the matrix Im + ΛΛT is diagonal, where
F

(2)
m,p

(
0; Im + ΛΛT , g

)
= 1

2m by symmetry, following thus that

fZ(z) = 2mg(k)(|z|pp) F (1)
m,p

(
Λz; g(m)

[|z|pp]

)
, z ∈ Rk.

The skewed lk,p-symmetric subclass for m = 1 extends the skew-spherical class intro-
duced in Branco and Dey (2001), where p = 2. For this subclass, the above density reduces
to fZ(z) = 2g(k)(|z|pp) F

(1)
1,p

(
λT z; g(1)

[|z|pp]

)
, z ∈ Rk, for which F

(1)
1,p

(
u; g(1)

[|z|pp]

)
is a univariate

d.f. and is immediate to be computed numerically when it has not an explicit expression.
For m ≥ 1, the above definition extends the analoguous definition in Arellano-Valle and
Genton (2005), where p = 2.

Corollary 4.3 The conditional distribution of X(1) under X(2) < ΛX(1) is skewed lk,p-
symmetric with dimensionality parameter m, density generator g and skewness/shape
matrix-parameter Λ.

This corollary extends the corresponding results in Branco and Dey (2001) and Arellano-
Valle and Genton (2005) which deal with the cases m = 1, p = 2 and m ≥ 1, p = 2,
respectively.

Example 4.4 An important special case is the skewed Nn,p distribution, where
g(k)(|x|pp) = Ck

p e−
1
p
|x|pp =: φk,p(x) is Nk,p density function and F

(1)
k,p

(
x; Σ, g(k)

)
=∫

t<x φk,p(t; Σ)dt =: Φ(1)
k,p(x; Σ), x ∈ Rk, i.e. the d.f. of a non-singular linear transformation

Y = ΓX, with X ∼ Nn,p and ΓΓT = Σ. Denoting accordingly F
(2)
m,p(0; Im + ΛΛT , g(m)) =

Φ(2)
m,p(0, Im +ΛΛT ), we shall say that random vector Z has k-dimensional skew-Nn,p distri-

bution with dimensionality parameter m, density generator g and skewness/shape matrix
parameter Λ ∈ Rm×k, denoted by Z ∼ SNk,m,p(Λ), if its density is given by

fZ(z) =
1

Φ(2)
m,p(0; Im + ΛΛT )

φk,p(z)Φ(1)
m,p(Λz), z ∈ Rk.
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For m = 1 and p = 2 we obtain the multivariate skew-normal density fZ(z) =
2φk,p(z)Φ1,p(λT z), z ∈ Rk , which was introduced in Azzalini and Dalla-Valle (1996)
and studied systematically in Azzalini and Capitanio (1999). For m = k with Λ =
diag(λ1, . . . , λk), the components of the skew-Nn,p random vector Z = (Z1, . . . , Zk)T are
independent and have marginal densities fZi

(zi) = 2φ1,p(zi)Φ1,p(λizi), i = 1, . . . , k.

Example 4.5 Another important special case is the skew-tk,p(ν) distribution, which is

considered next, where g(k)(|x|pp) = Dk,p,ν

{
1 + |x|pp

ν

}−(ν+k)/p
=: tk,p(x; ν) is the tk,p(ν) den-

sity, and F
(1)
k,p (x; Σ, g) =

∫
t<x tk,p(t; Σ, ν)dt := T

(1)
k,p (x; Σ, ν) and T

(2)
m,p is defined accordingly.

We shall say that a random vector Z has skew-tk,p distribution with dimensionality pa-
rameter m and skewness/shape matrix parameter Λ ∈ Rm×k, denoted by Z ∼ Stk,m,p(Λ),
if its density is given by

fZ(z) =
1

T
(2)
m,p(0; Im + ΛΛT , ν)

tk,p(z; ν) T (1)
m,p

{(
ν + k

ν + |z|pp

)1/p

Λz; ν + k

}
, z ∈ Rk.

For m = 1 and p = 2 we have the multivariate skew-t distribution introduced in Branco
and Dey (2001), Gupta (2003) and Azzalini and Capitanio (2003).

A straightforward extension follows when we consider the conditional distribution of
X(1) given the selection mechanism X(2) < ΛX(1) + τ . In such as case, we have the more
general skew p-generalized lk,p-symmetric class of densities defined by

fZ(z) =
1

F
(2)
m,p (τ ; Im + ΛΛT g)

g(k)(|z|pp) F (1)
m,p

(
Λz + τ ; g(m)

[|z|pp]

)
, z ∈ Rk. (3)

The convenience of this more general class is because it is closed by marginalization and
also by conditioning when p = 2, while for τ = 0 it does not preserve this last property.
This class generalizes the unified skew-elliptical (SUE) family obtained for p = 2 and
studied systematically in Arellano-Valle and Genton (2010). See also Arellano-Valle and
Genton (2005) and Arellano-Valle and Azzalini (2006). We call this last class as SUE-p-
generalized family of distributions, and most of the above results could be be explored for
this class.

4.2 Construction from stochastic representations

Consider now the stochastic representation

Z
d= X(1) + ∆|X(2)|, (4)

where X(1) and X(2) are as before, i.e., with joint Sk+m,p(g)-distribution, and where ∆ ∈
Rk×m is fixed matrix. Consider also the linear transformation W1 = X(1) + ∆X(2) and
W2 = X(2). Note that W1 and W2 have joint density fW1,W2(w1, w2) = g(k+m)(|w1 −
∆w2|pp + |w2|pp), (w1, w2) ∈ Rk+m. Moreover, since

fX(1),|X(2)|(x, t) = fX(1),X(2)|X(2)>0(x, t) = Cg(k+m)(|x|pp + |t|pp), (x, t) ∈ Rk × Rm
+ ,
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we have (X(1), |X(2)|) d= (X(1), X(2)) | X(2) > 0, which is equivalent to (see Arellano-Valle
et al. (2002) and Arellano-Valle del Pino (2004)) X(1) ⊥⊥ sgn(X(2))| |X(2)|. Hence, we have

Z
d= (X(1) + ∆X(2)) | X(2) > 0 = W1 | W2 > 0,

following that the density of Z is

fZ(z) = fW1(z)
P (W2 > 0 | W1 = z)

P (W2 > 0)

= CfW1(z)P (W2 > 0 | W1 = z)

= C

∫

Rm
+

g(k+m)(|z −∆w|pp + |w|pp)dw, z ∈ Rk.

For p = 2, this density reduces to the skew-elliptical density given by

fZ(z) = 2mg(k)(Q(z))Fm

(
(Im + ∆T ∆)−1∆T z; (Im + ∆T ∆)−1, g

(m)
[Q(z)]

)
,

where Q(z) = zT [Ik −∆(Im + ∆T ∆)−1∆T ]z = zT (Ik + ∆∆T )−1z. For m = k, this skew-
elliptical class of distributions was introduced in Sahu et al. (2003). For extensions of this
family and its relation with other skew-elliptical families, see Arellano-Valle and Genton
(2005), Arellano-Valle and Azzalini (2006) and Arellano-Valle and Genton (2010).

One of the advantages of this route to obtain multivariate skew-symmetric distributions
turns out from the stochastic representation (4), which among other things allows to
compute easily the moments of Z (see Arellano-Valle et al. (2002) and Arellano-Valle del
Pino (2004)). In particular when the mean vector and covariance matrix of Z exist, we
have from (4) that they are given by

E(Z) = ∆E(|X(2)|) and Cov(Z) = Cov(X(2)
1 ) + ∆Cov(|X(2)|)∆T ,

where Cov(X(2)
1 ) = σ2

p,gIk. To compute E(|X(2)|) and Cov(|X(2)|) we can use the following
lemma, whose proof is straightforward from the results in Section 2.3.

Lemma 4.6 Let X = (X1, . . . , Xn)T ∼ Sn,p(g) and R = |X|p. Then,

E(|Xi|r|Xj |s) =





Γ( r+s+1
p

)

Γ( 1
p
)

Γ( n

p
)E(Rr+s)

Γ( n+r+s

p
)

, i = j,

Γ( r+1
p

)Γ( s+1
p

)

Γ2( 1
p
)

Γ( n

p
)E(Rr+s)

Γ( n+r+s

p
)

, i 6= j,

if E(Rr+s) is finite.

For the particular case of X ∼ Nn,p, the moments of the p-generalized normal radial
random variable Rp = |X|p satisfies the relation

Γ(n
p )E(Rk

p)

Γ(n+k
p )

= p
k

p .

Hence, for mean vector and covariance matrix of the corresponding skew-Nn,p random
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vector Zp
d= X

(1)
p + ∆|X(2)

p | we obtain

E(Zp) =
p

1
p Γ(2

p)

Γ(1
p)

∆1k and Cov(Zp) =
p

2
p Γ(3

p)

Γ(1
p)

{
Ik +

(
1−

Γ2(2
p)

Γ(1
p)Γ(3

p)

)
∆∆T

}
.

If Z is a scale-mixture of the skew-Nn,p random vector Zp, then there is a non-negative

random variable V which is independent of Zp such that Z
d= V −1/pZp. Hence, we

have E(Z) = E(V −1/p)E(Zp) if E(V −1/p) is finite and E(ZpZ
T
p ) = E(V −2/p)E(ZpZ

T
p )

if E(V −2/p) is finite, from where we can compute Cov(Z).
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