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1 Introduction
The class of skewed normal distributions appeared in [5] for the first time as a subclass of
special interest within a systematic approach to a more general class of distributions. Later
on many authors published results on this and more general classes of skewed distributions.
The book [7] reviews the state-of-the-art advances up to its appearance in the class of skew-
elliptical distributions in one and more dimensions. Because of the wide spread development
of this research area, there arose a need for finding as general and systematic approaches to it
as possible. Several authors contributed to this direction of development. To mention three of
them, we refer to [1], [2] and [3]. The recent paper [4] opens a new perspective for a further
significant generalization of the class of skewed distributions.
In the spirit of [5], a random variable Z is called a skew-normal one with parameter α ∈ R, for
brevity Z ∼ SN(α), if it has the pdf

g̃(z;α) = 2φ(1)(z)Φ(1)(αz), z ∈ R, (1)

where φ(1) and Φ(1) are the standard normal pdf and the standard normal cdf, respectively,
and R denotes the real line. Several results that explain to a certain extent the nature of the
SN distribution and its relation to some other distributions are discussed in the very beginning
of [7]. To be specific, we will refer to four of these results here as the following Propositions
1-4. These results establish a close connection between the one-dimensional skew-normal and
an underlying two-dimensional normal distribution.
Thereby Φ denotes the standard Gaussian measure in the two-dimensional Euclidean space R2

and Φρ the Gaussian measure with expectation vector zero and covariance matrix
(

1 ρ
ρ 1

)
, −1 <

ρ < 1. The sign ∼ is used if a vector on the left side of it is distributed according to the
distribution indicated on the right side of it.

Proposition 1 If (X,Y )T ∼ Φ, then L(X | αX > Y ) = SN(α).

Proposition 2 If (X,Y )T ∼ Φρ, then L(Y | X > 0) = SN

(
ρ√

1−ρ2

)
, −1 < ρ < 1.

Proposition 3 If (X,Y )T ∼ Φ, then L
(
δ|X|+

√
1− δ2Y

)
= SN

(
δ√

1−δ2

)
, −1 < δ < 1.

Proposition 4 If (X,Y )T ∼ Φρ, then L(max(X,Y )) = SN
(√

1−ρ
1+ρ

)
, −1 < ρ < 1.

Making use of some vector-algebra, the conditional probability dealt with in the distributional
statement of Proposition 1 may be reformulated as

P (X < z | αX > Y ) = 2Φ(A1(z)), z ∈ R,

and those of Propositions 2-4 as P (Y < z | X > 0) = 2Φ(A2(z)), P (δ|X| +
√

1− δ2Y <
z) = 2Φ(A3(z)), and P (max(X,Y ) < z) = 2Φ(A4(z)), z ∈ R, respectively. Here, Ai(z), i ∈
{1, 2, 3, 4}, are suitably defined elements of the Borel σ-algebra B2 in R2. The sets Ai(z), i ∈
{1, 2, 3, 4}, describe the events under consideration in Propositions 1-4 and will be described in
detail in Section 2. It will turn out that there is some "similarity" between the sets Ai(z), i =
1, 2, 3, 4 and that it is possible to transform each of them by a true similarity, being actually
an isometric transformation, into each other. Following this line, the aim of the present paper
is to introduce a new possibility of comparing different representations for the skewed normal
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distribution with each other and to introduce a more general representation for the skew normal
distribution which includes the four cited cases as special cases. First of all, we shall concentrate
our consideration to the representations in Propositions 1 to 4. Our method of comparison is
a geometric one. It is based upon a geometric measure representation for the two-dimensional
normal distribution. This representation applies to the probabilities Φ(Ai(z)), i ∈ {1, 2, 3, 4},
and gives certain new information on these quantities. The geometric measure representation
allows to look at the well known stochastic representation

ζ
d= R · U (2)

of a standard Gaussian two-dimensional random vector ζ in a new, geometric, way. Here, R and
U are independent and distributed according to the χ2-distribution and the uniform distribution
on the unit circle, respectively, and the sign d= indicates that the random elements on the left
and right side of it are equally distributed. The geometric measure representation was proved
with a more general multivariate setting in [9] first. It applied rather early to a problem from
engineering in [12]. Several other of its applications to probability theory and mathematical
statistics are reviewed in [11]. A slightly modification of the representation in [9], which is
more convenient for the purposes of the present paper, was proved in [10] and will be discussed
in Section 3. In Section 4, we apply this representation to the four sets Ai(z), considered
in Section 2. This allows us to reformulate and reprove the Propositions 1-4 from a unified
geometric point of view. As a result, later it will be much easier to further compare the present
four models of a SN(α)-distributed random variable with other similar models and even with
models from, until yet, not known distributions. Some of the lengthy calculations will be given
in the Appendix. Moreover, a g-generalization, where g denotes a density generating function, of
all four propositions will be given in Section 4. The necessary g-generalization of the geometric
measure representation for spherically distributed random vectors was introduced in [10]. The
geometric reformulations of Propositions 1-4 will be discussed in Section 5 and are the motivation
for a more general geometrically formulated new theorem on the SN(α)- distribution. To give
some hints for possible further work on this topic, several concluding remarks and directions of
future research are given in Section 6.

2 Vector-algebraic reformulations of Propositions 1 to 4
The aim of this section is to reformulate the (partly conditional) probabilities studied in the
Propositions 1-4 in such a way that afterwards the geometric measure representation formula,
which will be presented in Section 3, applies.
Because P (αX > Y ) = 1

2 , the conditional probability P (X < z | αX > Y ) equals two times
the probability P (X < z, αX > Y ). But this may be written as P (X < z | αX > Y ) =
2P ((X,Y )T ∈ {(x, y)T ∈ R2 : x < z, y < αx}). Hence, the following proposition has been
proved.

Proposition 1a If (X,Y )T ∼ Φ, then

P (X < z | αX > Y ) = 2Φ(A1(z)), −∞ < z <∞,

with

A1(z) = {(x, y)T ∈ R2 : x < z, y < αx}.
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For an illustration of the set A1(z), we refer to Figure 1.
Analogously, the conditional probability P (Y < z | X > 0) may be written as
2P ((X,Y )T ∈ A∗2(z)) with A∗2(z) = {(x, y)T ∈ R2 : x > 0, y < z}. Assuming (X,Y )T ∼
Φρ, −1 < ρ < 1, the transformed random vector

(ξ, η)T = D ·O · (X,Y )T

satisfies

(ξ, η)T ∈ D ·O ·A∗2(z)

iff (X,Y )T ∈ A∗2(z). Here, D = diag( 1√
1+ρ ,

1√
1−ρ) is a diagonal matrix, O = 1√

2

(
1 1
1 −1

)
is an

orthogonal one and

D ·O ·A∗2(z) = {D ·O · (s, t)T : s > 0, t < z}
= {(x, y)T ∈ R2 :

√
1 + ρx+

√
1− ρy > 0,

√
1 + ρx−

√
1− ρy <

√
2z}.

Hence, the following proposition has been proved.

Proposition 2a If (X,Y )T ∼ Φρ, −1 < ρ < 1, then

P (Y < z | X > 0) = 2Φ(A2(z)), −∞ < z <∞,

with

A2(z) = {(x, y)T ∈ R2 :
√

1 + ρx+
√

1− ρy > 0,
√

1 + ρx−
√

1− ρy <
√

2z}.

For an illustration of the set A2(z), we refer to Figure 2.

Figure 1: The set A1(z) for z > 0, α > 1. Figure 2: The set A2(z) for z > 0, ρ > 0.

The reformulation of Proposition 3 follows immediately from the equation P (δ|X|+
√

1− δ2Y <
z) = 2P (δX +

√
1− δ2Y < z,X > 0).

Proposition 3a If (X,Y )T ∼ Φ, then

P (δ|X|+
√

1− δ2Y < z) = 2Φ(A3(z)), −∞ < z <∞, −1 < δ < 1,

with

A3(z) = {(x, y)T ∈ R2 : x > 0, δx+
√

1− δ2y < z}.
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For an illustration of the set A3(z), we refer to Figure 3.
The probability P (max(X,Y ) < z) can be written as P ((X,Y )T ∈ A∗4(z)) with A∗4(z) =
{(x, y)T ∈ R2 : x < z, y < z}. Using the same transformation method with the same ma-
trices D and O as for Proposition 2a, we get

D ·O ·A∗4(z) = {(x, y)T ∈ R2 :
√

1 + ρ

2 x+
√

1− ρ
2 y < z,

√
1 + ρ

2 x−
√

1− ρ
2 y < z}.

Considering the subset of the set above which is bounded by the lines y = 0 and
√

1+ρ
2 x +√

1−ρ
2 y = z, and a symmetry consideration, the following Proposition has been proved.

Proposition 4a If (X,Y )T ∼ Φρ, −1 < ρ < 1, then

P (max(X,Y ) < z) = 2Φ(A4(z)), −∞ < z <∞,

with

A4(z) = {(x, y)T ∈ R2 : y > 0,
√

1 + ρ

2 x+
√

1− ρ
2 y < z}.

For an illustration of the set A4(z), we refer to Figure 4.

Figure 3: The set A3(z) for z > 0, δ > 0. Figure 4: The set A4(z) for z > 0, ρ > 0.

3 The geometric-measure theoretic approach to the two-dimensional
Gaussian law and its generalization

To simplify matters for the reader who is possibly not yet familiar with the geometric measure
representation of the multivariate standard Gaussian law, we give here a short introduction to
this representation in the case of dimension two. First of all, let us recall the famous principle
of Cavalieri (1635) for comparing the area content of two regions R1, R2 of dimension two. Let
R1 and R2 be located between two parallel lines in the Euclidean plane R2 as in Figure 5. If
every line l parallel to and between these two lines intersects both R1 and R2 in line segments
of equal lengths, then the two regions have equal area contents.
The line segments l∩R1 and l∩R2 are called the indivisibles of the sets R1 and R2, respectively,
and the principle of Cavalieri is often called the method of indivisibles, too. A modification
of this method which uses arc segments of circles S(r) = {(x, y)T ∈ R2 : x2 + y2 = r2} as
indivisibles is due to Torricelli, see Figure 6.

5



Figure 5: The principle of Cavalieri Figure 6: The modification of Torricelli

The method of weighted indivisibles was introduced in [9] for the (n-dimensional) Gaussian law
and extended in [10] to the case of spherical distributions. The correctness of this method is
proved, using modern measure and integration theory including the theorem of Fubini. The
weights of the indivisibles are the values which the density function

φ(x, y) = 1
2πexp{−

x2

2 −
y2

2 }, (x, y) ∈ R2,

attains on the indivisibles, i.e. 1
2πexp{−

r2

2 } on S(r), times the Jacobian r of the well known
polar coordinate transformation. It turns out that the standard Gaussian measure Φ satisfies
the representation formula

Φ(A) = 1
2π

∫ ∞
0

l(A ∩ S(r))e−
r2
2 dr, A ∈ B2,

where l(·) denotes the Euclidean arc length. It is common to rewrite this representation as

Φ(A) =
∫ ∞

0
F(A, r)re−

r2
2 dr, A ∈ B2, (3)

with the so-called intersection percentage function (ipf) of the set A:

F(A, r) = ω([1
r
A] ∩ S), A ∈ B2, r > 0,

where
ω(M) = l(M)/2π, M ∈ B(1) = B1 ∩ S,

denotes the uniform probability distribution on S = S(1) and

1
r
A = {(x

r
,
y

r
)T : (x, y)T ∈ A}, r > 0.

Formula (3) will be called the geometric measure representation of Φ or its indivisibles represen-
tation. Note that equations (2) and (3) are closely connected because U ∼ ω and they "reflect
the two sides of one and the same medal". Formula (3) was extended to the class of spherical
distributions in [10]. A two-dimensional random vector is called spherically distributed with
continuous density generating function (dgf) g : R+ → R+ if its density is

φ(x, y; g) = C(g)g(x2 + y2), (x, y) ∈ R2,

where the normalizing constant is

C(g) = 1/
(

2π
∫ ∞

0
rg(r2) dr

)
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and the integral I(g) =
∫∞

0 rg(r2) dr is assumed to satisfy the inequalities 0 < I(g) < ∞. The
uniquely defined one-dimensional marginal distribution may be considered as a generalization
of the normal distribution and its pdf and cdf will be denoted by φ(1)(·; g) and Φ(1)(·; g), respec-
tively. Note that the marginal variables are uncorrelated but not independent in general. The
probability measure Φ(·; g) corresponding to the density φ(·; g) allows the indivisibles represen-
tation

Φ(A; g) = 2πC(g)
∫ ∞

0
F(A, r)rg(r2) dr, A ∈ B2,

i.e.
Φ(A; g) = 1

I(g)

∫ ∞
0
F(A, r)rg(r2) dr, A ∈ B2. (4)

If a random vector (X,Y )T has the density φ(·; g), then the transformed vector (ξ, η)T = M ·
(X,Y )T has the density

(x, y) 7→ C(g)|det(M)|−1g((x, y)(M−1)TM−1(x, y)T ).

This pdf and the corresponding cdf will be denoted by φρ(·; g) and Φρ(·; g), respectively, if the
symmetric matrix MMT equals

( 1 ρ
ρ 1
)
with −1 < ρ < 1.

A considerable generalization of the method of indivisibles was proved in [11] and applied to the
skewed distribution theory in [4] through exploiting the corresponding stochastic representation,
which is a generalization of (2). Formula (3) applies to Propositions 1a-4a and all the results
may be extended under much more general model assumptions, using formula (4). The latter
will be done in the second part of the following section.

4 Geometric-measure theoretic reformulations of Propositions 1 to 4
and their generalization

4.1 The Gaussian case
In this section, at first we combine the results from Section 2 with the representation formula (3)
of the standard Gaussian measure given in Section 3. For i ∈ {1, 2, 3, 4}, we have to determine
the ipf of the set Ai(z), z ∈ R. The corresponding elementary geometric considerations can be
found in the Appendix. As announced above, it is possible to reprove the Propositions 1-4 in
a new, geometric way by taking derivatives in the resulting geometric integral representations.
The corresponding partly tedious calculations are also shifted to the Appendix.

Proposition 1b If (X,Y )T ∼ Φ, then

P (X < z | αX > Y ) = 2
∫ ∞

0
F(A1(z), r)re−

r2
2 dr
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with

F(A1(z), r) =



1
2 if z > 0, α ≥ 0, r ≤ z
1
2 −

1
πf(z, r) if z > 0, α ≥ 0 z < r ≤ z

√
α2 + 1

1
2 −

1
2π [f(z, r) +Bα] if z > 0, α ≥ 0 r > z

√
α2 + 1

1
2 if z > 0, α < 0, r ≤ z

√
α2 + 1

1
2 −

1
2π [f(z, r) +Bα] if z > 0, α < 0, r > z

√
α2 + 1

0 if z ≤ 0, α ≥ 0 r ≤ −z
√
α2 + 1

1
2π [f(−z, r)−Bα] if z ≤ 0, α ≥ 0 r > −z

√
α2 + 1

0 if z ≤ 0, α < 0, r ≤ −z
1
πf(−z, r) if z ≤ 0, α < 0, −z < r ≤ −z

√
α2 + 1

1
2π [f(−z, r)−Bα] if z ≤ 0, α < 0, r > −z

√
α2 + 1,

where f(z, r) = arccos
(
z
r

)
and Bα = arctan(α).

Reproving Proposition 1 based upon Proposition 1b makes it necessary to take the derivatives
w.r.t. z of parameter integrals wherein both the integrand and the integral limits may depend
on z. The Leibniz integral rule applies in all cases where it is needed in this paper. Below we
use the pdf g̃ from equation (1).

Corollary 1b If (X,Y )T ∼ Φ, then

d

dz
P (X < z | αX > Y ) = g̃(z;α), −∞ < z <∞.

Now we consider the situation which we dealt with in Propositions 2 and 2a.

Proposition 2b If (X,Y )T ∼ Φρ, −1 < ρ < 1, then

P (Y < z | X > 0) = 2
∫ ∞

0
F(A2(z), r)re−

r2
2 dr

with

F(A2(z), r) =



1
2 if z > 0, ρ ≥ 0, r ≤ z
1
2 −

1
πf(z, r) if z > 0, ρ ≥ 0, z < r ≤ z√

1−ρ2

1
2 −

1
2π [f(z, r) + Cρ] if z > 0, ρ ≥ 0, r > z√

1−ρ2

1
2 if z > 0, ρ < 0, r ≤ z√

1−ρ2

1
2 −

1
2π [f(z, r)− Cρ] if z > 0, ρ < 0, r > z√

1−ρ2

0 if z ≤ 0, ρ ≥ 0, r ≤ − z√
1−ρ2

1
2π [f(−z, r)− Cρ] if z ≤ 0, ρ ≥ 0, r > − z√

1−ρ2

0 if z ≤ 0, ρ < 0, r ≤ −z
1
πf(−z, r) if z ≤ 0, ρ < 0, −z < r ≤ − z√

1−ρ2

1
2π [f(−z, r) + Cρ] if z ≤ 0, ρ < 0, r > − z√

1−ρ2
,

where Cρ = arccos
√

1− ρ2.

In the same way as Corollary 1b was derived from Proposition 1b, the following Corollary can
be proved.
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Corollary 2b If (X,Y )T ∼ Φρ, −1 < ρ < 1, then

d

dz
P (Y < z | X > 0) = g̃(z; ρ√

1− ρ2 ), −∞ < z <∞.

The upcoming two statements will continue our consideration from Propositions 3 and 3a.

Proposition 3b If (X,Y )T ∼ Φ, then

P (δ|X|+
√

1− δ2Y < z) = 2
∫ ∞

0
F(A3(z), r)re−

r2
2 dr,

where we can get F(A3(z), r) from F(A2(z), r) just by substituting the parameter ρ by the pa-
rameter δ.

Corollary 3b If (X,Y )T ∼ Φ, then

d

dz
P (δ|X|+

√
1− δ2Y < z) = g̃(z; δ√

1− δ2
), −1 < δ < 1, −∞ < z <∞.

We now turn over to the situation of Propositions 4 and 4a.

Proposition 4b If (X,Y )T ∼ Φρ, −1 < ρ < 1, then

P (max(X,Y ) < z) = 2
∫ ∞

0
F(A4(z), r)re−

r2
2 dr

with

F(A4(z), r) =



1
2 if z > 0, 0 < r ≤ z
1
2 −

1
πf(z, r) if z > 0, z < r ≤

√
2z√

1+ρ
1
2 −

1
2π [f(z, r) +Dρ] if z > 0, r >

√
2z√

1+ρ
0 if z ≤ 0, 0 < r ≤ −

√
2z√

1+ρ
1

2π [f(−z, r)−Dρ] if z ≤ 0, r > −
√

2z√
1+ρ ,

where Dρ = arccos
√

1+ρ
2 .

Corollary 4b If (X,Y )T ∼ Φρ, −1 < ρ < 1, then

d

dz
P (max(X,Y ) < z) = g̃(z;

√
1− ρ
1 + ρ

), −∞ < z <∞.

4.2 The spherical case
In the second part of this section, we present significant generalizations of Propositions 1b-4b.
These generalizations extend all the results known so far for the normal distributions Φ and Φρ to
the much more general case of arbitrary spherical distributions Φ(·; g) and Φρ(·; g), respectively.
Here, the dgf g satisfies the assumption 0 < I(g) < ∞. For a discussion of several classes of
dgf’s, we refer to [8]. It follows immediately from formula (3) and Propositions 1a and 1b that
Proposition 1b may be generalized as follows. Note that the ipf is taken over from Proposition
1b to Proposition 1c.
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Proposition 1c If (X,Y )T ∼ Φ(·; g), then

P (X < z | αX > Y ) = 2
I(g)

∫ ∞
0
F(A1(z), r)rg(r2) dr, z ∈ R.

Analogously, the following generalizations of Propositions 2b-4b hold with the ipf in each c-
Proposition being always the same as in the corresponding b-Proposition.

Proposition 2c If (X,Y )T ∼ Φρ(·; g), −1 < ρ < 1, then

P (Y < z | X > 0) = 2
I(g)

∫ ∞
0
F(A2(z), r)rg(r2) dr, z ∈ R.

Proposition 3c If (X,Y )T ∼ Φ(·; g), then

P (δ|X|+
√

1− δ2 < z) = 2
I(g)

∫ ∞
0
F(A3(z), r)rg(r2) dr, z ∈ R.

Proposition 4c If (X,Y )T ∼ Φρ(·; g), −1 < ρ < 1, then

P (max(X,Y ) < z) = 2
I(g)

∫ ∞
0
F(A4(z), r)rg(r2) dr, z ∈ R.

Again looking through the proofs of Corollaries 1-4, we find out by very slight modifications
that the following corollaries of Propositions 1c-4c are true.

Corollary 1c If (X,Y )T ∼ Φ(·; g), then

d

dz
P (X < z | αX > Y ) = 1

πI(g) ·
∫ αz

−∞
g(t2 + z2) dt, z ∈ R.

Corollary 2c If (X,Y )T ∼ Φρ(·; g), −1 < ρ < 1, then

d

dz
P (Y < z | X > 0) = 1

πI(g) ·
∫ ρ√

1−ρ2 z

−∞
g(t2 + z2) dt, z ∈ R.

Corollary 3c If (X,Y )T ∼ Φ(·; g), then

d

dz
P (δ|X|+

√
1− δ2 < z) = 1

πI(g) ·
∫ δ√

1−δ2 z

−∞
g(t2 + z2) dt, z ∈ R.

Corollary 4c If (X,Y )T ∼ Φρ(·; g), −1 < ρ < 1, then

d

dz
P (max(X,Y ) < z) = 1

πI(g) ·
∫ √ 1−ρ

1+ρ z

−∞
g(t2 + z2) dt, z ∈ R.

It was shown in [6] (see also formulas (3.3) and (3.5) in [7]) that
1

π · I(g)

∫ ν

−∞
g(t2 + z2)dt = 2f(z)F (νz), z ∈ R,

where f is the pdf of a suitably chosen one-dimensional elliptically contoured distribution and F
the cdf of a suitably chosen (possibly different) one-dimensional elliptically contoured distribu-
tion as well. The skewness parameter ν is chosen in Corollaries 1c-4c as α, ρ/

√
1− ρ2, δ/

√
1− δ2

and
√

(1− ρ)/(1 + ρ), respectively. Hence, each of the stochastic representations of the skewed
normal distribution, stated in Propositions 1-4, has been extended in Corollaries 1c-4c to a
stochastic representation of a much more general skewed elliptically contoured distribution.
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5 Geometric representation of the skewed normal distribution
In this Section, we discuss a generalization of the considered representations in the previous
sections. Let (X,Y )T ∼ Φ. We have studied so far four cases, which can be written in the
following way:

1. 2P (X < z, αX > Y ) = P (Z < z),

2. 2P (
√

1+ρ
2 X −

√
1−ρ

2 Y < z,
√

1 + ρX +
√

1− ρY > 0) = P (Z < z),

3. 2P (δX +
√

1− δ2Y < z,X > 0) = P (Z < z),

4. 2P (
√

1+ρ
2 X +

√
1−ρ

2 Y < z, Y > 0) = P (Z < z),

where Z ∼ SN(ν) with the appropriate skewness parameter ν in each case.
These four representations of the skewed normal distribution are special cases of the general
stochastic representation

2P (aX + bY < 0, cX + dY < e) = P (Z < z),

which holds true for a skewed normally distributed random variable Z with Z ∼ SN(ν) if the
quintuple (a, b, c, d, e) and z satisfy the conditions

z = e√
c2 + d2

(5)

and

ν =
{
ac+bd
ad−bc , if ad− bc < 0
−ac+bd
ad−bc , if ad− bc > 0.

(6)

Under the same assumptions, it holds

P (cX + dY < e|aX + bY < 0) = P (Z < z).

Thus, the following theorem has already been motivated by these four examples.

Theorem 1 If (X,Y )T ∼ Φ, then

L

(
cX + dY√
c2 + d2

|aX + bY < 0
)

= SN(ν)

for all quadruples (a, b, c, d) satisfying (6).

Remark 1 Theorem 1 follows from Theorem 2.

Table 1 summarizes our study of the four cases considered in the previous sections and presents
the quadruples (a, b, c, d) and the skewness parameter ν corresponding to the Propositions 1-4.
The statement of Theorem 1 may be reformulated as follows.

Remark 2 If (X,Y )T ∼ Φ, then

2P
(
cX + dY√
c2 + d2

< z, aX + bY < 0
)

= P (Z < z)

with Z ∼ SN(ν) if the quintuple (a, b, c, d, e) and z satisfy conditions (5) and (6).
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a b c d ν

Proposition 1 −α 1 1 0 α

Proposition 2 −
√

1 + ρ −
√

1− ρ
√

1+ρ√
2 −

√
1−ρ√

2
ρ√

1−ρ2

Proposition 3 −1 0 δ
√

1− δ2 δ√
1−δ2

Proposition 4 0 −1
√

1+ρ√
2

√
1−ρ√

2

√
1+ρ
1−ρ

Table 1: Parameters a, b, c, d and ν, corresponding to Propositions 1-4.

Another way to formulate this result makes use of more geometric quantities. Let

H1(a, b) = {(x, y)T ∈ R2 : ax+ by < 0}

and

H2(c, d, e) = {(x, y)T ∈ R2 : cx+ dy < e}

denote two half spaces of R2 and let the cone

C(a, b, c, d, e) = H1(a, b) ∩H2(c, d, e)

be their intersection. Let us recall that a set C is called a cone with vertex in v ∈ R2 iff for all
x ∈ C − v and λ ≥ 0 follows that v + λx ∈ C.
Note that (− be

ad−bc ,
ae

ad−bc)
T is the vertex of the cone C(a, b, c, d, e), the origin belongs to the

boundary ∂H1(a, b) and that ∂H2(c, d, e) has distance |e|√
c2+d2 from (0, 0)T . If (a, b)T and (c, d)T

are linear independent vectors from R2, then the lines ∂H1(a, b) and ∂H2(c, d, e) are not parallel.
This assumption is equivalent to the condition

ad− bc 6= 0, (7)

which has already been assumed to be satisfied within the condition (6). Therefore, the following
Theorem 2 may be considered just as a reformulation of Theorem 1.

Theorem 2 If (5), (6) and (7) are satisfied, then

2 d
dz

Φ(C(a, b, c, d, e)) = g̃(z, ν), z ∈ R.

Proof We take into account that Φ is a spherical distribution. Hence, if O is an orthogonal
2× 2-matrix and A ∈ B2, then

Φ(OA) = Φ(A). (8)

We note that the cone C(a, b, c, d, e) can be rewritten as follows:

C(a, b, c, d, e) = C∗(θ, φ, z) :=
{

(x, y)T ∈ R2 : cos(θ)x+ sin(θ)y < 0, cos(φ)x+ sin(φ)y < z
}
,

where

cos(θ) = a√
a2 + b2

, sin(θ) = b√
a2 + b2

, cos(φ) = c√
c2 + d2

, sin(φ) = d√
c2 + d2

(9)
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and z is given by (5). The angles θ and φ are unique. From the equations (9), it follows by
trigonometric addition theorems that sin(θ−φ) > 0 is equivalent to ad− bc < 0 and apart from
that

−cos(θ − φ)
sin(θ − φ) = ac+ bd

ad− bc
. (10)

Case A: Let ad − bc < 0, then sin(θ − φ) > 0. Defining O1 :=
(

cos(φ) sin(φ)
− sin(φ) cos(φ)

)
, we check

with the help of trigonometric addition theorems that

O1C
∗(θ, φ, z) =

{
(x, y)T ∈ R2 : x < z , y < −cos(θ − φ)

sin(θ − φ)x
}
. (11)

We recall that if Z ∼ SN(ν), then it holds∫ z

−∞
2φ(1)(x)Φ(1)(νx) dx = P (Z < z). (12)

Further, we have

2Φ(
{

(x, y)T ∈ R2 : x < z, y < νx
}

︸ ︷︷ ︸
=:C̃(ν,z)

) =
∫ z

−∞
2φ(1)(x)Φ(1)(νx) dx. (13)

It follows that

2Φ(C(a, b, c, d, e)) = 2Φ(C∗(θ, φ, z)) (8)= 2Φ(O1C
∗(θ, φ, z)) (10)=

(6)
2Φ(C̃(ν, z)) (13)=

(12)
P (Z < z).

Case B: Let ad − bc > 0, then sin(θ − φ) < 0. We define O2 :=
(

1 0
0 −1

)
and consider

O2O1C
∗(θ, φ, z) instead of O1C

∗(θ, φ, z) in case A. Note that the condition sin(θ − φ) < 0
changes the representation (11) of the set O1C

∗(θ, φ, z) for case B. Analogously to case A , we
make use of (6), (8), (10), (12) and (13) to complete the proof in case B. �

It is worth noting that there is a close connection between the parameter ν given by (6) and
the angle ψ between the vectors (−a,−b)T and (c, d)T , which can be considered as the opening
angle of the cone C(a, b, c, d, e). For clarification, we note that (−a,−b)T is a normal vector
of ∂H1(a, b) which is directed into the half space H1(a, b), and (c, d)T is a normal vector of
∂H2(c, d, e) which is directed away from H2(c, d, e). Then

ν = cot(ψ). (14)

Remark 3 In other words, if Z ∼ SN(cotψ), then its cdf allows the representation

P (Z < z) = 2Φ(C(a, b, c, d, e))

for all (a, b, c, d, e) satisfying (5), (6) and (14).

Against the backdrop of Theorem 2 and formula (14), we again want to focus on the sets
Ai(z), i ∈ {1, 2, 3, 4}, which were defined in Section 2. Looking at all the sets Ai(z), i ∈
{1, 2, 3, 4}, at the same time, we can figure out some similarity between them. Each of these
sets can be considered as a cone C(a, b, c, d, e), where the appropriate parameters a, b, c, d are

13



i a b c d

1 −ν 1 1 0
2 −

√
1 + ν√

1+ν2 −
√

1− ν√
1+ν2

1√
2

√
1 + ν√

1+ν2 − 1√
2

√
1− ν√

1+ν2

3 −1 0 ν√
1+ν2

1√
1+ν2

4 0 −1 1√
1+ν2

ν√
1+ν2

Table 2: Chosen parameters a, b, c, d, so that ν is one and the same for each set Ai(z), i ∈
{1, 2, 3, 4}

Figure 7: The sets Ai(z), i ∈ {1, 2, 3, 4}, with appropriate parameters.

given by Table 1 and the parameter e is set equal to z. However, we can choose the parameters
alternatively in such a way that the corresponding parameter ν, given by (6), is one and the
same for each set Ai(z), i ∈ {1, 2, 3, 4}, see Table 2.
Due to formula (14), the opening angle ψ of each of the cones Ai(z), i ∈ {1, 2, 3, 4}, is one and the
same if the parameters are chosen according to Table 2. For an illustration, we refer to Figure 7,
where the parameter ν equals 2 and the value of z is 1 for each set. As suggested in Figure 7, it is
possible to map each set Ai(z), i ∈ {1, 2, 3, 4}, onto each other via an orthogonal transformation,
that is a rotation, a mirroring or a composition of them. Hence, there is even an isometry
between the sets. To show some examples for this, the transformations of Ai(z), i ∈ {2, 3, 4},
onto the set A1(z) will be given in the Example in the Appendix. The importance of the latter
statement arises from formula (8), which was the starting point of the proof of Theorem 2. In
fact, the last paragraph may be considered as a discussion of Theorem 2 for the special cones
Ai(z), i ∈ {1, 2, 3, 4}, but also gives an overview about the relations between the Propositions
1-4 from a geometric point of view.
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6 Concluding remarks and directions of future research
As announced in the Introduction, this paper presents a more general geometric-measure theo-
retic representation of the skewed normal law than how it would just follow from Propositions
1-4, see Theorem 2. An equivalent stochastic representation of the skewed normal law is given in
Theorem 1. These results may be considered as just some first representations of this geometric-
stochastic type. Among other similar possible results, which may be proved in the future, are
representations based upon one of the assumptions that (X,Y )T is distributed according to the
Φρ-distribution, an arbitrary elliptically contoured distribution or an l2,p-symmetric distribution.
In the higher dimensional case, one may ask whether intersections of half spaces are the natural
generalization of the cone C(a, b, c, d, e).
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Appendix: Proofs
Remark 4 The following proofs of Propositions 1b, 2b and 4b together with the corresponding
Corollaries are shortened versions. To understand the method in proving these Propositions and
Corollaries in more detail, see the proofs of Proposition and Corollary 3b first.

Proof of Proposition 1b We have to calculate the ipf F of the set A1(z). By using the
theorem of Pythagoras, we distinguish for z > 0, α ≥ 0 between three cases. For r ≤ z, the
ipf is obviously 1

2 . For z < r ≤ z
√
α2 + 1, we get F by considering the angle ψ between the

x−axis and the line segment between the origin and the intersection of the line x = z with the
circle S(r). We state that cos(ψ) = z

r . If r > z
√
α2 + 1, we use vertically opposed angles and

trigonometric functions to get F . In case of z ≤ 0, α ≥ 0 and in case of α < 0, one can get the
ipf by similar calculations. �

Proof of Corollary 1b Using Proposition 1b for z > 0, α ≥ 0, one will get

d

dz
P (X < z | αX > Y ) = d

dz

− 1
π

∞∫
z

arccos
(
z

r

)
re−r

2/2 dr


+ d

dz

− 1
π

z
√
α2+1∫
z

arccos
(
z

r

)
re−r

2/2 dr

+ d

dz

− 1
π

∞∫
z
√
α2+1

arctan (α) re−r2/2 dr

 .
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Using the Leibniz integral rule, it follows that

d

dz
P (X < z | αX > Y ) = 1

π

∞∫
z

1√
r2 − z2

re−r
2/2 dr + 1

π

z
√
α2+1∫
z

1√
r2 − z2

re−r
2/2 dr.

Expending this expression with
√

2πe−z2/2
√

2πe−z2/2 and using the substitution t =
√
r2 − z2 afterwards,

we get
d

dz
P (X < z | αX > Y ) = 2φ(1)(z) · Φ(1) (αz) = g̃(z;α).

In an analogously way, the result is proved for z ≤ 0, α ≥ 0 and for α < 0 by using the same
rules and substitutions given above. �

Proof of Proposition 2b We have to calculate the ipf F of the set A2(z). For z ≥ 0 and ρ < 0,
we distinguish between two cases. If r ≤ z√

1−ρ2
, the ipf reduced obviously to 1

2 . If r >
z√

1−ρ2
, it

follows with the help of trigonometric functions that ψ = arccos
(
z
r

)
−arccos(

√
1− ρ2) describes

the part of the circle which is additional outside the set A2(z). The ipf for z ≥ 0, ρ ≥ 0 and for
z < 0 can be obtained by similar calculations. �

Proof of Corollary 2b Using Proposition 2b for z ≥ 0 and z < 0 with ρ ≥ 0 and ρ < 0,
respectively, one will get the claim of the Corollary using the Leibniz integral rule and the
substitution t =

√
r2 − z2 again. �

Proof of Proposition 3b
We perform the proof for the case δ ≥ 0. In case of δ < 0, we can get the result by similar
calculations.

1. Case (z > 0, δ ≥ 0, 0 < r ≤ z) For this case it is obvious, that 50 percent of the sphere
is in A3(z), so F(A3(z), r) = 1

2 .

2. Case (z > 0, δ ≥ 0, z < r ≤ z√
1−δ2 ) It is

cosβ = z

r

and because of the symmetry of the circle, it follows

F(A3(z), r) = 1
2 −

2 arccos ( zr )r
2πr = 1

2 −
arccos ( zr )

π

3. Case (z > 0, δ ≥ 0, z√
1−δ2 < r) The following geometrical aspects are to consider:

β′′ = arccos ( z
z√

1−δ2

) = arccos (
√

1− δ2), β′ = arccos (z
r

), β = π − β′ − β′′.

Now it follows

F(A3(z), r) = 1
2 −

arccos (
√

1− δ2)r
2πr −

arccos ( zr )r
2πr

= 1
2 −

arccos (
√

1− δ2)
2π −

arccos ( zr )
2π .

For an illustration of cases 1-3, see Figure 8.
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Figure 8: Illustration of cases 1-3, Proposition 3b

4. Case (z ≤ 0, δ ≥ 0, 0 < r ≤ − z√
1−δ2 ) For this case, there is nothing in A3(z), so

F(A3(z), r) = 0.

5. Case(z ≤ 0, δ ≥ 0, − z√
1−δ2 < r) With the geometrical aspects

β′ = arccos −z
−z
√

1− δ2 = arccos
√

1− δ2, β′′ = arccos −z
r
, β = β′′ − β′,

it follows

F(A3(z), r) =
arccos −zr − arccos

√
1− δ2

2π .

For an illustration of cases 4-5, see Figure 9. �

Figure 9: Illustration of cases 4-5, Proposition 3b

Proof of Corollary 3b Using Proposition 3b for z > 0, δ ≥ 0, one will get
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d

dz
P (δ|X|+

√
1− δ2Y < z) = 2 d

dz

∞∫
0

F(A3(z), r)re−
r2
2 dr

= d

dz

[ ∞∫
0

re−
r2
2 dr

︸ ︷︷ ︸
=1

− 2
π

z√
1−δ2∫
z

arccos (z
r

)re−
r2
2 dr

− 1
π

∞∫
z√

1−δ2

(
arccos (

√
1− δ2) + arccos (z

r
)
)
re−

r2
2 dr

]
(∗).

Using Leibniz’ rule under the integral sign, it follows that

(∗) = − 2
π

[ z√
1−δ2∫
z

(
d

dz
arccos (z

r
)
)
re−

r2
2 dr

+ arccos (
√

1− δ2) z

1− δ2 e
− z2

2(1−δ2) − arccos (1)︸ ︷︷ ︸
=0

ze−
z2
2

]

− 1
π

[ ∞∫
z√

1−δ2

(
d

dz
arccos (z

r
)
)
re−

r2
2 dr − 2 arccos (

√
1− δ2) z

1− δ2 e
− z2

2(1−δ2)

]

= 1√
2π
e−

z2
2 .

[√2√
π

z√
1−δ2∫
z

1√
r2 − z2

re−
r2−z2

2 dr +
√

2√
π

∞∫
z

1√
r2 − z2

re−
r2−z2

2 dr

]
(∗∗).

With the substitution

t =
√
r2 − z2,

dt

dr
= r√

r2 − z2

prove that

(∗∗) = 1√
2π
e−

z2
2 . 2

[ 1√
2π

δ√
1−δ2 z∫
0

e−
t2
2 dt + 1√

2π

∞∫
0

e−
t2
2 dt

︸ ︷︷ ︸
= 1√

2π

0∫
−∞

e−
t2
2 dt

]

= 1√
2π
e−

z2
2 . 2

[ 1√
2π

δ√
1−δ2 z∫
−∞

e−
t2
2 dt

]
= 2φ(1)(z)Φ(1)

(
δ√

1− δ2
z

)
, for 0 < z <∞.

In an analogous way, the result is proved for −∞ < z ≤ 0, δ ≥ 0 and in case of δ < 0 by using
the same rules and substitutions given above. �
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Proof of Proposition 4b
To calculate F(A4(z), r), we have to distinguish between the cases (z > 0, 0 ≤ r ≤ z), (z >
0, z < r ≤

√
2z√

1+ρ), (z > 0, r >
√

2z√
1+ρ), (z ≤ 0, 0 < r ≤ −

√
2z√

1+ρ) and (z ≤ 0, r > −
√

2z√
1+ρ). In the

first case, the ipf is obviously 1
2 . In all other cases, we have to consider suitable trigonometric

relations being similar to those in the proof of Proposition 3b for deriving the ipf, stated in the
proposition. �

Proof of Corollary 4b Using Proposition 4b for z > 0, one will get

d

dz
P (max(X0, X1) ≤ z) = d

dz


∫ ∞

0
re−

r2
2 dr︸ ︷︷ ︸

=1

− 2
π

∫ √
2z√

1+ρ

z
arccos

(
z

r

)
re−

r2
2 dr


− 1
π

d

dz

∫ ∞
√

2z√
1+ρ

(
arccos

(
z

r

)
+ arccos

√
1 + ρ

2

)
re−

r2
2 dr.

Using Leibniz’ integral rule, it follows that

d

dz
P (max(X0, X1) ≤ z) = 2

π

∫ √
2z√

1+ρ

z

re−
r2
2

√
r2 − z2

dr + 1
π

∫ ∞
√

2z√
1+ρ

re−
r2
2

√
r2 − z2

dr.

With the substitution t =
√
r2 − z2, it follows that

d

dz
P (max(X0, X1) ≤ z) = 2φ(1)(z)Φ(1)

(√
1− ρ
1 + ρ

z

)
, 0 < z <∞.

In an analogous way, the result is proved for −∞ < z ≤ 0 by using the same rules and substi-
tutions given above. �

Remark 5 Looking through the proof of Corollary 3b once more, it can be seen that only small
changes are necessary to prove Corollary 3c. Namely, one has just to substitute in several
integrals the function r → e−

r2
2 by the function r → g(r2). The same holds true for Corollaries

1c, 2c and 4c.

Example: We show the transformation of Ai(z), i ∈ {2, 3, 4}, onto the set A1(z). We re-
call the definition of the sets Ai(z), i ∈ {1, 2, 3, 4}, in Section 2. We now write A1(z;α) :=
A1(z), A2(z; ρ) := A2(z), A3(z; δ) := A3(z), A4(z; ρ) = A4(z), where α, ρ, δ are the correspond-
ing parameters to the respective sets with reference to the definition of the sets in Section 2.

If M2 := 1√
2

( √
1 + ρ −

√
1− ρ

−
√

1− ρ −
√

1 + ρ

)
, then A1(z;α) = M2 ·A2(z; ρ), where α = ρ√

1−ρ2
.

If M3 :=
(

δ
√

1− δ2

−
√

1− δ2 δ

)
, then A1(z;α) = M3 ·A3(z; δ), where α = δ√

1−δ2 .

If M4 := 1√
2

(√
1 + ρ

√
1− ρ√

1− ρ −
√

1 + ρ

)
, then A1(z;α) = M4 ·A4(z; ρ), where α =

√
1−ρ
1+ρ .

The matrices Mi, i ∈ {2, 3, 4}, are orthogonal matrices.
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