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1 Introduction

The distributions of the product X1X2, the ratio X1/X2 and the linear combination α1X1 +α2X2

of the random variables X1 and X2 apply in both theoretical and practical fields of modern sciences.
To illustrate this fact, we refer to some of the examples from (Nadarajah, 2005a) and (Nadarajah
and Gupta, 2005).
Consider a share from a foreign stock exchange, which is quoted in a different currency. The profit
of an investment in such a paper depends on both the price of a share in the local market and
the exchange rate and can be modeled as the product of these two random variables. A rather
theoretical example for the product comes up by using a regression model Y = α+β X1 for making
a forecast. Here, the estimator of β is a random variable X2 depending on Y and X1.
The ratios of random variables are inter alia of interest in nuclear physics and in genetics. In the
former case, the interest lies in the ratio of the mass difference X1 between product and educt of a
chemical reaction and the energy X2, which is released in such a reaction. In genetics, Mendelian
inheritance ratios can be modeled as the ratios of random variables.
Linear combinations of random variables are of great importance in economic multiple factor models.
Consider for example the Arbitrage Pricing Theory, which models the price of a share as a linear
combination of different microeconomic and macroeconomic factors.
The general interest in products, ratios and linear combinations of random variables is also reflected
by the fact that various works deal with a detailed study of the distributions of these statistics, see
for example (Nadarajah, 2005b).

A random vector X = (X1, X2) with a density

ϕg,p(x) = C2,g,p g
(
|x|pp
)
, x ∈ R2,
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is said to have a continuous l2,p-symmetric distribution Φg,p, where C2,g,p is a normalizing constant,
g is a density generating function and |(x1, x2)|pp := |x1|p + |x2|p, (x1, x2) ∈ R2. The random vector
X has a simplicial contoured distribution if p = 1 and a spherically contoured distribution if p = 2.
Basic properties of continuous ln,p-symmetric distributions have been studied, e.g., in (Fang et al.,
1990) and in (Richter, 2009), where it was shown that a random vector X ∼ Φg,p satisfies for p > 0
the representation

X
d
= Rp Up . (1)

Thereby, Rp = |X|p is a generalized radius variable which is independent from a generalized uniform
basis vector Up. Considering that EUp = 02 and EUpUTp = 1/(4 − p) I2 for p ∈ {1, 2}, see (Richter,
2009), the moments of X can be calculated using (1). To this end,

EX = ERp EUp = 02

if ERp <∞, p ∈ {1, 2} and

EXXT = ER2
p EUp UTp =

1

4− p
ER2

p I2

if ER2
p <∞, p ∈ {1, 2} and where I2 denotes the 2×2 unit matrix. In Tables 1 and 2, the density nor-

malizing constants C2,g,p and the quantities ER2
p are given for selected subclasses of 2-dimensional

spherical and simplicial distributions, respectively. These subclasses are chosen according to some
often used density generating functions.

Type g(r2) C2,g,2 E(R2
2)

Kotz type r2M−2 e−β r
2γ

; M, β, γ ∈ R+
γ βM/γ

π Γ(M/γ)
Γ((M+1)/γ)

Γ(M/γ)β1/γ

Multinormal e−
1
2
r2 1

2π 2

Pearson type VII
(

1 + r2

m

)−M
; M > 1, m > 0 M−1

πm
m

M−2 , M > 2

Multivariate t
(

1 + r2

m

)−m/2−1
; m > 0 1

2π
2m
m−2 , m > 2

Multivariate Cauchy
(
1 + r2

)−3/2 1
2π −

Pearson type II 1[0,1](r
2) (1− r2)m; m > −1 m+1

π
1

m+2

Table 1: Often used subclasses of 2-dimensional spherical distributions

Here, the condition ERp < ∞ is fulfilled in all considered cases unless for the Pearson type
VII density generating function if M ≤ 3/p, p ∈ {1, 2}. In case of a density generating function
g(r) = exp (−r/p), x ∈ R, X follows the Laplace distribution and the Gaussian distribution if p = 1
and p = 2, respectively, see Figure 1.
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Figure 1: The density of the p-generalized Gaussian distribution. The level sets of ϕg,p are circles
w.r.t. the l1-norm and the Euclidean norm if p = 1 and p = 2, respectively.

Notice, that the p-generalized Student distribution was introduced in (Richter, 2007) for arbi-
trary p > 0. Analogously to the spherical case, a multivariate version of the 1-generalized Student
distribution can be obtained as a special case of the Pearson type VII distribution by setting
M = 2+m. Table 2 contains additionally to the multivariate 1-generalized Student distribution the
multivariate 1-generalized Cauchy distribution, which is motivated by Definition 8 and Corollary 9
and which is analogously to the spherical case the multivariate 1-generalized Student distribution
with m = 1.

Type g(r) C2,g,1 E(R2
1)

Kotz type rM−1 e−β r
γ
; M, β, γ ∈ R+

γ β(M+1)/γ

4 Γ((M+1)/γ)
Γ((M+3)/γ)

Γ
(
M+1
γ

)
β2/γ

Multivariate Laplace e−
1
2
r 1

16 24

Pearson type VII
(
1 + r

m

)−M
; M > 2, m > 0 (M−1)(M−2)

4m2
6m2

(M−3)(M−4) , M > 4

Multivariate 1-generalized t
(
1 + r

m

)−m−2
; m > 0 m+1

4m
6m2

(m−1)(m−2) , m > 2

Multivariate 1-generalized Cauchy (1 + r)−3 1
2 −

Pearson type II 1[0,1](r) (1− r)m; m > −1 (m+1)(m+2)
4

6
(m+3)(m+4)

Table 2: Some subclasses of 2-dimensional simplicial distributions

In this paper, we present exact representations for the cdf and the pdf of the product, the ratio
and the linear combination of the components of X ∼ Φg,p, p ∈ {1, 2}. These representations are
essentially based upon the geometric measure representation of Φg,p introduced in (Richter, 2009).
The mentioned functions of random variables have been studied by several authors, but only a few of
them assumed a similar sample distribution. In (Nadarajah and Gupta, 2005), the product and the
ratio for the elliptically Pearson type VII distribution are considered. This distribution is a special
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case of Φg,2 for a Pearson type VII density generating function g. Furthermore, the works (Harter,
1951), (Press, 1969) and (Nadarajah and Kotz, 2005) deal with the bivariate Student distribution,
which is again a special case of the elliptically Pearson type VII distribution. It should be mentioned
at this point that the case of a random vector X = (X1, X2) with independent t-variates X1 and
X2 as was dealt with, e.g., in (Chapman, 1950), (Ruben, 1960), (Ghosh, 1975) and (Walker and
Saw, 1978) is not a special case of a continuous l2,p-symmetric distribution.
The paper is structured as follows. In the preliminary Section 2, we refer to the necessary basics from
measure theory. Here, a geometric representation for Φg,p on the basis of a non-Euclidean geometry
will be introduced. In the Sections 3-5, we prove representations for the cdf and the pdf of the
product, the linear combination and the ratio of random variables from a simplicial and a spherical
sample distribution, respectively. In this connection, we prove in Section 5 for fixed p > 0 the
robustness of the statistic R(X1, X2) = X1/X2 w.r.t. the density generating function of the sample
distribution (X1, X2) ∼ Φg,p and generalize in this way the Standard Cauchy distribution and the
robustness result from (Arnold and Brockett, 1992). In the final Section 6, the cdf representations
from the Sections 3 and 4 will be used to compute numerical quantile approximations for the product
and the linear combination of random variables from a simplicial or a spherical sample distribution.

2 Geometric measure representation

In this section, we shall make use of the geometric measure representation formula for continuous
l2,p-symmetric distributions following from (Richter, 2009). The exact representations for the cdf
and the pdf of the product, the ratio and the linear combination of the components of X ∼ Φg,p

will be essentially based upon this representation of Φg,p. In the general case p > 0, the mentioned
formula in (Richter, 2009) makes use of a non-Euclidean geometry if p 6= 2. In this context, a sector
of the l2,p-unit circle S2,p := {x ∈ R2 : |x|p = 1} has to be measured w.r.t. the l2,p generalized
arc-length measure Up, which is according to (Richter, 2009) generated by the dual l2,q-norm, if
p ≥ 1. Here, the function |.|p is defined as |(x1, x2)|p = (|x1|p + |x2|p)1/p, (x1, x2) ∈ R2, which is a
norm iff p ≥ 1. In this case

Up(D) =

∫
G(D)

|N(x)|q dx

holds, where 1/p + 1/q = 1, N(x) is the normal vector to the l2,p-circle S2,p at the point x and
G(D) = {x1 ∈ R : |x1|p ≤ 1 ∧ (x1, x2) ∈ D}. If 0 < p < 1, Up is generated analogously but with
|.|q being then a semi-anti-norm defined in (Moszyńska and Richter, 2011). A certain characteristic
property of Up is demonstrated in Figure 2.

S2,p

B1 B2

x

y

M1

M2

(0,0)

Figure 2: Sets M1, M2 having the same area content correspond to arcs B1, B2 having the same
Up-lengths but different Euclidean lengths, in general.
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The following geometric measure representation formula of Φg,p uses for all p > 0 the function

r → Fp(A, r) :=
Up
(
r−1 [A ∩ S2,p(r)]

)
Up(S2,p)

, r > 0,

which is called the l2,p-circle intersection-percentage function (ipf) of the set A ∈ B(R2). It reflects
the percentages which the level sets S2,p(r) := {x ∈ R2 : |x|p = r} share for each r > 0 with the
set A w.r.t. the arc-length measure Up. For this reason Fp can be understood as a basic function in
context of a generalized method of indivisibles for the measure Φg,p.

Theorem 1. The l2,p-symmetric distribution with density-generating function g satisfies the repre-
sentation

Φg,p(A) =
1

I2,g,p

∞∫
0

Fp(A, r) r g(rp) dr, A ∈ B(R2), (2)

where I2,g,p :=
∞∫
0

r g(rp) dr .

Proof. See (Richter, 2009).

Theorem 1 can be used to evaluate the cdf of a statistic T (X), where X = (X1, X2) ∼ Φg,p and
T : R2 → R, because

P (T (X) < t) = P (X ∈ T−1(−∞, t))

= PX(A(t)) = Φg,p(A(t)) , (3)

where

A(t) = {(x1, x2) ∈ R2 : T (x1, x2) < t} .

Furthermore, the l2,p-circle ipf Fp can be reduced to a ratio of Euclidean arc-lengths, iff p ∈ {1, 2}.
In this case holds according to (Richter, 2009)

U1(A) =
1√
2
U(A), A ∈ B(S2,1) .

Thus,

F2(A, r) =
U2

(
r−1 [A ∩ S2,2(r)]

)
U2(S2,2)

=
U
(
r−1A ∩ S2,2

)
2π

, A ∈ B(R2),

and

F1(A, r) =
U1

(
r−1 [A ∩ S2,1(r)]

)
U1(S2,1)

=
U
(
r−1A ∩ S2,1

)
4
√

2
, A ∈ B(R2) .

This means that although the geometric representation of Φg,1 is based upon a non-Euclidean
geometry, the ipf F1 can be evaluated using the Euclidean arc-length measure U. Taking into account
that Up does not equal a multiple of U if p /∈ {1, 2}, the continuous spherical and the continuous
simplicial distributions can be considered as the Euclidean case and the pseudo-Euclidean case,
respectively.
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3 Product

In this section, we derive representations for the cdf and the pdf of P (X) = X1 · X2, where
X = (X1, X2) ∼ Φg,p and p ∈ {1, 2}. The resulting integral representations involve an arbitra-
ry density generating function g : R+ → R+, which can be used to model distributions with light
and even with heavy tails.
Notice, that the distribution of the product P (X) in the cases that X follows the elliptically symme-
tric Pearson type VII distribution or X follows the bivariate t-distribution were already considered
in (Nadarajah and Gupta, 2005) and in (Harter, 1951), respectively. In this context, the bivariate
t-distribution is a special case of the elliptically symmetric Pearson type VII distribution, which is
itself a special case of Φg,2 for g being a Pearson type VII density generating function, i.e.

g(r) =
(

1 +
r

m

)−M
, m > 0, M >

2

p
. (4)

For this reason, we will compare the pdf representation of P (X) from Corollary 3 numerically to
the corresponding pdf representations from (Nadarajah and Gupta, 2005) and (Harter, 1951).
Theorem 2 is an immediate consequence of the equations (2) and (3). In this context, the central
projected intersections of the set

A(t) = {(x1, x2) ∈ R2 : x1 · x2 < t}

(see Figure 3) with the density level sets S2,p(r) will be measured w.r.t. U and will be divided by
U(S2,p), where p ∈ {1, 2}.

Figure 3: The set A(t) in the case of the product.

Theorem 2. (a) If X ∼ Φg,1, then

FP (t) := P (P (X) < t) =


1− 1

I2,g,1

∞∫
2
√
t

(√
r2

4 − t
)
g(r)dr , t ≥ 0

1
I2,g,1

∞∫
2
√
|t|

(√
r2

4 + t

)
g(r)dr , t < 0

.

(b) If X ∼ Φg,2, then

FP (t) := P (P (X) < t) =


1− 1

I2,g,2

∞∫
√

2t

(
1
2 −

2
πα
)
r g(r2)dr , t ≥ 0

1
I2,g,2

∞∫
√

2|t|

(
1
2 −

2
πα
)
r g(r2)dr , t < 0

,

where α = 1
4 arccos

(
1− 8t2

r4

)
.
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Proof. One has

1

r
A(t) =

{(x1

r
,
x2

r

)
: x1 · x2 < t

}
=

{
(x1, x2) : x1 · x2 <

t

r2

}
, t ∈ R,

and the ipf is

Fp(A(t), r) =
1

U2(S2,p)
U2

({
(x1, x2) ∈ R2 : x1 · x2 <

t

r2
, |x1|p + |x2|p = 1

})
, p ∈ {1, 2}.

Consequently,

F1(A(t), r) =


1−

(√
1
4 −

t
r2

)
I[2
√
t,∞)(r) , t ≥ 0(√

1
4 + t

r2

)
I(

2
√
|t|,∞

)(r) , t < 0

(see Figure 4) and

Figure 4: The set 1
rA(t) ∩ S2,1 in the case of the product.

F2(A(t), r) =

1− π−4α
2π I[

√
2t,∞)(r) , t ≥ 0

2(π/2−2α)
2π I[√

2|t|,∞
)(r) , t < 0

,

where α = β = arccos
(
z
r

)
are angles from (0, 2π) (refer to Figure 5).

Figure 5: The set 1
rA(t) ∩ S2,2 in the case of the product.
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Making use of Leibniz’ integral rule, one obtains the following corollary presenting the pdf of
P (X) as an immediate consequence of Theorem 2.

Corollary 3. (a) If X ∼ Φg,1, then the pdf of P (X) is

fP (t) =
1

I2,g,1

∞∫
2
√
|t|

g(r)√
r2 − 4|t|

dr, t ∈ R.

(b) If X ∼ Φg,2, then the pdf of P (X) is

fP (t) =
2

π I2,g,2

∞∫
√

2|t|

rg(r2)√
r4 − 4t2

dr, t ∈ R. (5)

Proof. If p = 2 and t > 0, it holds

d

dt

1−
∞∫
√

2t

(
1

2
− 2

π
α

)
rg(r2) dr

 =

∞∫
√

2t

2

π
rg(r2)

(
d

dt
α(t)

)
dr

=
2

π

∞∫
√

2t

rg(r2)√
r4 − 4t2

dr.

In the case t < 0 we obtain

d

dt

∞∫
√
−2t

(
1

2
− 2

π
α

)
rg(r2) dr =

2

π

∞∫
√
−2t

rg(r2)√
r4 − 4t2

dr.

If p = 1 and t 6= 0 it follows analogously

d

dt

∞∫
2
√
|t|

√
r2

4
− |t| g(r) dr =


−

∞∫
2
√
|t|

1√
r2−4|t|

g(r) dr , t > 0

∞∫
2
√
|t|

1√
r2−4|t|

g(r) dr , t < 0
.

According to (Harter, 1951), the pdf of |P (X)| satisfies the infinite series representation

f|P (X)|(x) =
1

π Γ(m/2)

∞∑
j=0

(−1)jmm/2+j |x|−(1+j+m/2) Γ2

(
2 + 2j +m

4

)
/Γ(1 + j), x >

m

2
, (6)

if X follows a bivariate t-distribution with m degrees of freedom and EX = (0, 0)T . In Table 3, the
pdf of P (X) was evaluated numerically by using the representation from (6), where m ∈ {1, 2, 3}.
Here, the sum in (6) was approximated by its first n+1 summands s0, . . . , sn, i.e. by Sn :=

∑n
i=0 si.

In this connection, the choice n = 110 turned out to be adequate since as shown by (Harter, 1951),
sj → 0 as j →∞ and in the cases being considered it holds |s110| < 10−12, i.e. the first 12 decimals
of Sn+1 and Sn are equal. This comes up with the approximation accuracy ε = 10−12 of the matlab
integration routine quadgk used for the integral approximation in (5), see (Schweizer, 2009). An
alternative evaluation of fP according to (5) delivered function values fP (x) which are in all cases
equal to those from Table 3 w.r.t. the first 12 decimals, where x ∈ {2, 2.5, 3, 5, 10} and m ∈ {1, 2, 3}.
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fP (x) according to (6)

x m=1 m=2 m=3

2 0.037305297971 0.041953265484 0.042634381445
2.5 0.027922690158 0.029954412695 0.029394799534
3 0.021910871109 0.022472285023 0.021301533047
5 0.010863820256 0.009555457949 0.007986272535
10 0.004042085415 0.002740025112 0.001818192382
20 0.001467330744 0.000737031782 0.000369318257

Table 3: Numerical approximations of fP (x) according to equation (6).

Following (Nadarajah and Gupta, 2005), the pdf of P (X) satisfies the representation

fP (X)(z) =
N − 1

π
mM−1B(M,M)z−M 2F1

(
M

2
,
M

2
,M +

1

2
, 1− m2

4z2

)
, |z| > m/2, (7)

if X is elliptically symmetric Pearson type VII distributed and has uncorrelated components X1 and
X2. Here, B(x, y) and 2F1(a, b, c, d) denote the Beta function and the Gauss hypergeometric functi-
on, respectively. In Table 4, the pdf of P (X) was evaluated numerically by using the representation
from (7), where 2F1(a, b, c, d) was approximated on the basis of the infinite series expansion

2F1(a, b, c, z) =
∞∑
k=0

Γ(c)

Γ(a)Γ(b)

Γ(a+ k)Γ(b+ k)

Γ(c+ k)

zk

Γ(k + 1)
, |z| < 1. (8)

It turned out, that

Sn :=
n∑
k=0

Γ
(
M + 1

2

)
Γ
(
M
2

)
Γ
(
M
2

) Γ
(
M
2 + k

)
Γ
(
M
2 + k

)
Γ
(
M + 1

2 + k
)

(
1− m2

4z2

)k
Γ(k + 1)

is a suitable approximation of 2F1

(
M
2 ,

M
2 ,M + 1

2 , 1−
m2

4z2

)
, if n = 105, because larger values of n

as n = 106 or n = 107 do not change the first 12 decimals of Sn. An alternative evaluation of fp
according to (5) delivered again function values fP (x) which are equal to those from Table 4 w.r.t.
the first 12 decimals, where x ∈ {2, 3, 5, 10}, M ∈ {2, 3, 5} and m ∈ {1, 2, 3}.

fP (x) according to (7)

x M m=1 m=2 m=3

2 2 0.027997005191 0.041953265484 0.049246102471
3 2 0.013874506807 0.022472285023 0.027968843656
5 2 0.005480050225 0.009555457949 0.012630861213
10 2 0.001474063564 0.002740025112 0.003832066486
2 3 0.008844911928 0.022196764425 0.033641690440
3 3 0.003125386104 0.008889343865 0.014797842950
5 3 0.000784390397 0.002513021730 0.004608985646
10 3 0.000110391527 0.000392195198 0.000787865794
2 5 0.000533125098 0.003731628903 0.009383913172
3 5 0.000095972645 0.000838374512 0.002487752602
5 5 0.000009742272 0.000105097115 0.000370174984
10 5 0.000000375841 0.000004871136 0.000020162708

Table 4: Numerical approximations of fP (x) according to equation (7).

9



Both the numerical results from Table 3 and from Table 4 indicate on the one hand, that the
representations of fP from the equations (6) and (7) are almost equivalent to the representation
from equation (5) in the mentioned special cases of Pearson type VII density generating functions.
On the other hand, Corollary 3 enables one to evaluate the pdf of the product statistic for a much
greater class of sample distributions than the ones considered in (Harter, 1951) and in (Nadarajah
and Gupta, 2005).

4 Linear Combination

In this section, we obtain representations for the cdf and the pdf of L(X) = α1X1 + α2X2, where
X = (X1, X2) ∼ Φg,p, p ∈ {1, 2} and α1α2 6= 0. Let us temporarily assume that the density
generating function g coincides with the density generator, i.e. ϕg,p(x) = g(|x|pp), x ∈ R2. Notice,
that in the case that p = 2

(α1, α2)XT d
= |(α1, α2)|2X1 (9)

and that X1 is spherically symmetric distributed with the characteristic generator of the random
vector (X1, X2), see (Fang et al., 1990). For this reason, the linear combination L(X) is again
spherically symmetric distributed, but with a density generator g2 which is in general different from
g. Following (Fang et al., 1990), the density generator g1 of X1 satisfies

g1(r) =

∞∫
0

y−
1
2 g (y + r) dy .

Hence, X1 has a density ϕX1(x) = g1(x2) and |(α1, α2)|2X1 has a density

ϕL(X)(x) = |(α1, α2)|−1
2 g1(x2/|(α1, α2)|22) .

Therefrom, the density generator g2 of L(X) satisfies g2(r) = |(α1, α2)|−1
2 g1(r/|(α1, α2)|22) and

g2(r) =
1

|(α1, α2)|2

∞∫
0

y−
1
2 g

(
y +

r

|(α1, α2)|22

)
dy . (10)

For the subclasses of 2-dimensional spherical distributions considered in this paper, see Table 1,
the integral in (10) can be solved exactly only in exceptional cases like the well known Gaussian
case, where the density generating function is g(r) = exp(−c r). Furthermore, using formula (10) for
deriving the cdf of L(X) would lead to a rather complicate two dimensional integral. In Theorem
4, however, we give a one dimensional integral representation formula for this case. In the case that
X = (X1, X2) ∼ Φg,1, the situation is even more complicated. Here, the random variables X1 and
X2 are again l1-norm symmetric distributed but in contrast to the spherical case, to the best of our
knowledge, there is no l1-analogue of formula (9) known.
However, the cdf and the pdf of L(X) can be obtained geometrically with equation (2) if X ∼ Φg,p

and p ∈ {1, 2}. Analogously to Section 3, the resulting integral representations depend on a density
generating function g : R+ → R+ modeling both heavy and light tail distributions. The mentioned
representations can be simplified in many cases by specifying g, e.g. by choosing g(r) as a density
generating function from the Pearson-VII type. According to the equations (2) and (3), the following
Theorem 4 is essentially based upon the intersection percentage function of the set

A(t) = {(x1, x2) ∈ R2 : α1x1 + α2x2 < t}, t ∈ R,

which is for every t ∈ R a half-space of R2 ( see Figure 6).
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Figure 6: The set A(t) in the case of the linear combination (α1, α2 > 0).

Theorem 4. (a) If X ∼ Φg,1, then

FL(t) := P (L(X) < t) =


1
2 + 1

2 I2,g,1

[
t1∫
0

rg(r)dr +
t2∫
t1

β1(r)g(r)dr +
∞∫
t2

t
|α1|+|α2|g(r)dr

]
, t ≥ 0

1
2 I2,g,1

[
t2∫
t1

β2(r)g(r)dr +
∞∫
t2

(
r + t

|α1|+|α2|

)
g(r)dr

]
, t < 0

,

where

β1(r) =

{
tmax(|α1|,|α2|)−rmin(α1,α2)2

|α2
1−α2

2|
, α1 6= α2

0 , α1 = α2

, β2(r) =

{
tmax(|α1|,|α2|)+rmax(α1,α2)2

|α2
1−α2

2|
, α1 6= α2

0 , α1 = α2

and

t1 :=
|t|

max(|α1|, |α2|)
, t2 :=

|t|
min(|α1|, |α2|)

.

(b) If X ∼ Φg,2, then

FL(t) := P (L(X) < t) =


1− 1

I2,g,2

(
1
π

∞∫
t∗
arccos

(
t∗

r

)
r g(r2)dr

)
, t ≥ 0

1
I2,g,2

(
1
π

∞∫
t∗
arccos

(
t∗

r

)
r g(r2)dr

)
, t < 0

,

where

t∗ :=
|t|√

α2
1 + α2

2

.

Proof. Without loss of generality let α1 ≥ α2 > 0. If p = 1, the ipf is

F1(A(t), r) =



1 , t ≥ 0 ∧ r < t
|α1|

1
2 +

t|α1|−rα2
2

2r(α2
1−α2

2)
, t ≥ 0 ∧ t

|α1| ≤ r <
t
|α2|

1
2 + t

2r(|α1|+|α2|) , t ≥ 0 ∧ t
|α2| ≤ r

0 , t < 0 ∧ r ≤
∣∣∣ tα1

∣∣∣
t|α1|+rα2

1

2r(α2
1−α2

2)
, t < 0 ∧

∣∣∣ tα1

∣∣∣ < r ≤
∣∣∣ tα2

∣∣∣
1
2 + t

2r(|α1|+|α2|) , t < 0 ∧
∣∣∣ tα2

∣∣∣ < r

,
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see Figure 7.

Figure 7: The set 1
rA(t) ∩ S2,1 in the case of the linear combination.

In the case p = 2, the ipf is

F2(A(t), r) =



0 , t < 0 ∧ 0 < r < t∗

1
π · arccos

(
|t|

r
√
α2
1+α2

2

)
, t < 0 ∧ r ≥ t∗

1 , t ≥ 0 ∧ 0 < r < t∗

1− 1
π · arccos

(
|t|

r
√
α2
1+α2

2

)
, t ≥ 0 ∧ r ≥ t∗

,

see Figure 8.

Figure 8: The set 1
rA(t) ∩ S2,2 in the case of the linear combination.

The differentiation of the cdf integral representations from Theorem 4 using the Leibniz’ integral
rule yields to the following corollary. Here, we prove a representation for the pdf of L(X) = α1X1 +
α2X2 in case of a simplicial and a spherical sample distribution, respectively.

Corollary 5. (a)If X ∼ Φg,1, then the pdf of L(X) is

fL(t) =


1

2(α2
1−α2

2)I2,g,1

∞∫
|t|

[
g
(
r
α1

)
− g

(
r
α2

)]
dr , α1 6= α2

1
4α2I2,g,1

[
∞∫
|t|
g
(
r
α

)
dr + |t|g

(
|t|
α

)]
, α1 = α2

, t ∈ R.
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(b)If X ∼ Φg,2, then the pdf of L(X) is

fL(t) =
1

π I2,g,2

∞∫
t∗

rg(r2)√
(α2

1 + α2
2)r2 − t2

dr, t ∈ R.

Proof. Consider the case p = 2. Here, one has

d

dt

∞∫
t∗

arccos

(
t∗

r

)
rg(r2) dr =


−
∞∫
t∗

rg(r2)√
(α2

1+α2
2)r2−t2

dr , t > 0

∞∫
t∗

rg(r2)√
(α2

1+α2
2)r2−t2

dr , t < 0
.

If p = 1 and |α1| 6= |α2|, the derivative of the functions

t→
t2∫
t1

tmax(|α1|, |α2|) + rmax(α1, α2)2

|α2
1 − α2

2|
g(r)dr +

∞∫
t2

(
r +

t

|α1|+ |α2|

)
g(r)dr, t < 0,

and

t→
t1∫

0

rg(r)dr +

t2∫
t1

tmax(|α1|, |α2|)− rmin(α1, α2)2

|α2
1 − α2

2|
g(r)dr +

∞∫
t2

t

|α1|+ |α2|
g(r)dr, t ≥ 0,

is

t→ 1

α2
1 − α2

2

∞∫
|t|

[
g

(
r

|α1|

)
− g

(
r

|α2|

)]
dr .

In the case p = 1 and |α1| = |α2| = α, the derivative of the functions

t→
∞∫
|t|
α

(
r +

t

2α

)
g(r)dr, t < 0,

and

t→

t
α∫

0

rg(r)dr +
t

2α

∞∫
t
α

g(r)dr, t ≥ 0,

is

t→ 1

2α2

∞∫
|t|
α

g(r)dr +
|t|

2α2
g

(
|t|
α

)
.

In many practical and theoretical situations it is important to know the cdf of a linear com-
bination aT(d)X(d), where X(d) is a d-dimensional random vector and a(d) ∈ Rd. For example, the
Central Limit Theorem deals with the case aT(d) = 1/

√
d · (1, . . . , 1). A multivariate generalization

of (2) and (3) leads to the problem of measuring the d-dimensional half-spheres A(t) = {x(d) ∈
Rd :

∑d
i=1 di xi < t}, t ∈ Rd, and especially to determine the ipf of A(t). For certain considerations

into this direction, in the case of spherical distributions, we refer to (Richter and Steinebach, 1994)
where several properties of the ipf of a half space are exploited.
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5 Ratio

In this section, we provide representations for the cdf and the pdf of R(X) = X1/X2, where
X = (X1, X2) ∼ Φg,1. In the case X ∼ Φg,2, it was already shown in (Arnold and Brockett, 1992)
that R(X) follows a Standard Cauchy distribution, i.e.

FR(t) := P (R(X) < t) =
1

2
+

1

π
arctan (t) , t ∈ R, (11)

and

fR(t) :=
d

dt
FR(t) =

1

π

1

1 + t2
, t ∈ R. (12)

Thus, the statistic R(X) does not depend on g in this case and is robust w.r.t. a spherical sample
distribution. In (Press, 1969) and (Nadarajah and Gupta, 2005), representations for the pdf of
R(X) were proved in the case that X has a bivariate t-distribution. If the components of X are
uncorrelated and EX = (0, 0)T , this is a special case of the l2,2-symmetric distribution Φg,2, where
g is from Pearson VII type and satisfies

g(r) =
(

1 +
r

m

)−(m+1)/2
, r > 0, m > 1 .

In this case, the pdf representations from (Press, 1969) and (Nadarajah and Gupta, 2005) are
equal to that from equation (12). As we will show, for fixed p > 0, the statistic R(X) is robust
in the greater class of l2,p-symmetric sample distributions and especially w.r.t. a simplicial sample
distribution. To this end, the ipf of

A(t) =

{
(x1, x2) ∈ R2 :

x1

x2
< t, x2 6= 0

}
, t ∈ R,

(see Figure 9) will be determined in Theorem 6 to prove analogue representations to that from (11)
and (12) for the cdf and the pdf of R(X) in the case X ∼ Φg,1.

Figure 9: The set A(t) in the case of the ratio of X1 and X2.

Theorem 6. If X ∼ Φg,1, then

FR(t) =
1

2
+

t

2(1 + |t|)
, t ∈ R.

Proof. The ipf of A(t) satisfies the representation

F1(A(t), r) =
1

2
+

t

2 (1 + |t|)
, t ∈ R,
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see Figure 10. The assertion follows from the fact, that Φg,1(A) = F1(A, r), because the ipf F1(A, r)
does not depend on r > 0.

Figure 10: The set 1
rA(t) ∩ S2,1 in the case of the ratio.

Figure 11: The set 1
rA(t) ∩ S2,2 in the case of the ratio.

Corollary 7. If X ∼ Φg,1, then the pdf of R(X) is

fR(t) =
1

2(1 + |t|)2
, t ∈ R.

As can be seen in Theorem 6 and Corollary 7, the ratio R(X) is not only robust w.r.t. a spherical
sample distribution but also w.r.t. a simplicial sample distribution. Furthermore it was shown in
(Richter, 2009), that X = (X1, X2) ∼ Φg,p satisfies for every p > 0 the representation (1). Thus,
R(X) = X1/X2 is independent from |X|p and consequently the ipf Fp(A(t), r) does not depend on
r > 0. Therefore, for fixed p > 0, the ratio R(X) is robust w.r.t. a continuous l2,p-symmetric sample
distribution Φg,p and can be understood as a p-generalization of a Cauchy distributed random
variable.

Definition 8. Let X = (X1, X2) ∼ Φg,p, p > 0. The random variable Y is called p-generalized
Cauchy distributed iff

Y
d
=
X1

X2
.
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Corollary 9. If p ∈ {1, 2}, then the pdf φp(t) of the p-generalized Cauchy distribution satisfies

φp(t) =
p

2Γ
(

1
p

)2 (1 + |x|p)−2/p , t ∈ R.

6 Quantiles

In this section, we present tables of quantiles for the statistics P (X) = X1 ·X2 and L(X) = X1 +X2,
where X ∼ Φg,p, p ∈ {1, 2}, and g is a Kotz type density generating function or a Pearson type VII
density generating function. Notice, that quantiles ξq = F−1

R (q) of the statistic R(X) do not depend
on the density generating function g, where q is a given quantile order and

F−1
R (x) =


tan

(
π
(
x− 1

2

))
, if p = 2 ∧ x ∈ (0, 1)

1− 1
2x , if p = 1 ∧ x ∈ (0, 1

2 ]
1−2x
2x−2 , if p = 1 ∧ x ∈ (1

2 , 1)

. (13)

Because of the explicit representation of the inverse distribution function in (13), there is no need
to table the quantiles of R(X). In case of the product and the linear combination, the distribution
function F of P (X) or L(X) depends on g and can not be inverted easily in an explicit way. A
q-quantile ξq = F−1(q) of F will therefore be approximated by numerically solving

F̃ (ξq)− q = 0 (14)

with the matlab routine fzero, see (Schweizer, 2009), where F̃ is an approximation of the cdf F
satisfying |F̃ (x)− F (x)| < ε, ∀x ∈ R. Here, the distribution functions of P (X) and L(X) given by
the integral representations in the Theorems 2 and 4 will be approximated by functions derived with
the help of the matlab routine quadgk (see (Schweizer, 2009)), which is known to evaluate integrals
with an accuracy ε smaller than 10−12.

Remark 10. Let F be a continuous and strictly monotonic increasing distribution function and
ξq = F−1(q) be the quantile of order q ∈ (0, 1) of F . Assume further that [x] denotes the largest
integer less than or equal to x, ξ̃q is an approximation of ξq , ξ̃−q,k =

[10k ξ̃q ]
10k

is the rounded value of
ξ̃q after cutting off all decimals after the k-th one and ξ̃+

q,k = ξ̃−q,k + 1
10k

. The approximation ξ̃q of ξq
is thus correct to the first k decimals if

F
(
ξ̃−q,k

)
≤ q (15)

and

F
(
ξ̃+
q,k

)
> q . (16)

If ξ̃q satisfies (15) and (16), then ξ̃−q,k is the largest real number with k decimals less than or equal
to the exact quantile ξq. In the case that F is unknown but an approximation F̃ is available with
|F (x)− F̃ (x)| < ε, ∀x ∈ R, ξ̃q is correct to the first k decimals if

F̃
(
ξ̃−q,k

)
≤ q − ε (17)

and

F̃
(
ξ̃+
q,k

)
> q + ε , (18)

see Figure 12.
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Figure 12: The q-order quantile ξq and it’s approximations ξ̃−q,k and ξ̃+
q,k

In Tables 5 to 8, we give quantile approximations which are according to (17) and (18) at least
correct to the first 6 decimals. Here, FP,p and FL,p denote the cdf’s of the statistics P (X) and L(X)
if the underlying sample distribution is Φg,p, p ∈ {1, 2}, and the density generating function g is
chosen according to the Pearson VII type, see (4), and according to the Kotz type, i.e.

g(r) = rM−1 exp (−βrγ) , r > 0, M > 0, β > 0, γ > 0 .

M m F−1
P,1(0.95) F−1

P,1(0.99) F−1
P,1(0.999) F−1

P,2(0.95) F−1
P,2(0.99) F−1

P,2(0.999)

3.0 1 52.031663 1492.470774 153712.913519 0.705356 2.080341 7.482711
3.0 2 208.126654 5969.883099 614851.654076 1.410712 4.160682 14.965422
3.0 3 468.284973 13432.236973 1383416.221673 2.116069 6.241023 22.448133
3.0 5 1300.791592 37311.769371 3842822.837980 3.526782 10.401706 37.413556
3.0 10 5203.166371 149247.077487 15371291.351921 7.053564 20.803412 74.827112
5.0 1 0.727305 3.526132 22.200496 0.261284 0.598148 1.402708
5.0 2 2.909223 14.104529 0.088.801984 0.522568 1.196297 2.805417
5.0 3 6.545751 31.735191 199.804465 0.783852 1.794445 4.208126
5.0 5 18.182644 88.153309 555.012403 1.306420 2.990742 7.013544
5.0 10 72.730576 352.613238 2220.049614 2.612840 5.981485 14.027088
10 1 0.056723 0.175123 0.551348 0.099563 0.202424 0.391474
10 2 0.226893 0.700495 2.205394 0.199126 0.404848 0.782949
10 3 0.510510 1.576114 4.962137 0.298689 0.607273 1.174424
10 5 1.418083 4.378094 13.783716 0.497816 1.012121 1.957373
10 10 5.672334 17.512378 55.134865 0.995633 2.024243 3.914747

Table 5: Quantiles of the product statistic P (X) in case of a Pearson VII type d.g.f. and p ∈ {1, 2}.
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M β γ F−1
P,1(0.95) F−1

P,1(0.99) F−1
P,1(0.999) F−1

P,2(0.95) F−1
P,2(0.99) F−1

P,2(0.999)

0.5 0.25 1 26.214802 70.402609 169.836527 1.775893 3.979741 7.619683
0.5 0.25 2 1.304990 2.580777 4.561397 0.595947 1.072908 1.644503
0.5 0.50 1 6.553700 17.600652 42.459131 0.887946 1.989870 3.809841
0.5 0.50 2 0.652495 1.290388 2.280698 0.421398 0.758660 1.162839
0.5 1.00 1 1.638425 4.400163 10.614782 0.443973 0.994935 1.904920
0.5 1.00 2 0.326247 0.645194 1.140349 0.297973 0.536454 0.822251
1.0 0.25 1 41.327493 100.486698 224.671250 3.190207 5.967622 10.150927
1.0 0.25 2 1.653381 3.055415 5.156822 0.849096 1.328502 1.882640
1.0 0.50 1 10.331873 25.121674 56.167812 1.595103 2.983811 5.075463
1.0 0.50 2 0.826690 1.527707 2.578411 0.600401 0.939393 1.331227
1.0 1.00 1 2.582968 6.280418 14.041953 0.797551 1.491905 2.537731
1.0 1.00 2 0.413345 0.763853 1.289205 0.424548 0.664251 0.941320
2.0 0.25 1 79.351874 170.291892 344.532139 5.660650 9.214272 14.151185
2.0 0.25 2 2.302585 3.912023 6.214608 1.163087 1.644976 2.185124
2.0 0.50 1 19.837968 42.572973 86.133034 2.830325 4.607136 7.075592
2.0 0.50 2 1.151292 1.956011 3.107304 0.822426 1.163173 1.545116
2.0 1.00 1 4.959492 10.643243 21.533258 1.415162 2.303568 3.537796
2.0 1.00 2 0.575646 0.978005 1.553652 0.581543 0.822488 1.092562
5.0 0.25 1 251.565368 451.728690 785.483809 12.345260 17.458520 23.918547
5.0 0.25 2 4.086171 6.161637 8.921513 1.738476 2.228502 2.756061
5.0 0.50 1 62.891342 112.932172 196.370952 6.172630 8.729260 11.959273
5.0 0.50 2 2.043085 3.080818 4.460756 1.229288 1.575789 1.948830
5.0 1.00 1 15.722835 28.233043 49.092738 3.086315 4.364630 5.979636
5.0 1.00 2 1.021542 1.540409 2.230378 0.869238 1.114251 1.378030

Table 6: Quantiles of the product statistic P (X) in case of a Kotz type d.g.f. and p ∈ {1, 2}.

M m F−1
L,1(0.95) F−1

L,1(0.99) F−1
L,1(0.999) F−1

L,2(0.95) F−1
L,2(0.99) F−1

L,2(0.999)

3.0 1 13.658910 73.665171 748.666518 1.507443 2.649491 5.072205
3.0 2 27.317821 147.330343 1497.333036 2.131846 3.746947 7.173182
3.0 3 40.976731 220.995515 2245.999555 2.610968 4.589054 8.785318
3.0 5 68.294552 368.325859 3743.332591 3.370745 5.924444 11.341796
3.0 10 136.589105 736.651718 7486.665183 4.766954 8.378429 16.039723
5.0 1 1.687893 3.781444 9.564249 0.929774 1.448229 2.250395
5.0 2 3.375787 7.562888 19.128499 1.314899 2.048106 3.182539
5.0 3 5.063681 11.344332 28.692748 1.610415 2.508407 3.897799
5.0 5 8.439468 18.907220 47.821247 2.079037 3.238340 5.032037
5.0 10 16.878937 37.814440 95.642495 2.940203 4.579704 7.116375
10 1 0.479562 0.858599 1.536113 0.578021 0.850793 1.203494
10 2 0.959124 1.717198 3.072226 0.817445 1.203203 1.701998
10 3 1.438686 2.575797 4.608340 1.001162 1.473617 2.084514
10 5 2.397811 4.292995 7.680567 1.292494 1.902431 2.691096
10 10 4.795622 8.585991 15.361134 1.827863 2.690444 3.805785

Table 7: Quantiles of the linear combination L(X) in case of a Pearson VII type d.g.f. and p ∈ {1, 2}.
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M β γ F−1
L,1(0.95) F−1

L,1(0.99) F−1
L,1(0.999) F−1

L,2(0.95) F−1
L,2(0.99) F−1

L,2(0.999)

0.5 0.25 1 10.355786 17.338409 27.126329 2.401606 3.757573 5.324911
0.5 0.25 2 2.351913 3.348161 4.449996 1.416572 1.983611 2.505210
0.5 0.50 1 5.177893 8.669204 13.563164 1.698192 2.657005 3.765280
0.5 0.50 2 1.663053 2.367507 3.146622 1.191190 1.668011 2.106622
0.5 1.00 1 2.588946 4.334602 6.781582 1.200803 1.878786 2.662455
0.5 1.00 2 1.175956 1.674080 2.224998 1.001667 1.402625 1.771451
1.0 0.25 1 13.087248 20.767280 31.217119 3.289707 4.652695 6.180464
1.0 0.25 2 2.658695 3.645545 4.729166 1.726109 2.226517 2.690230
1.0 0.50 1 6.543624 10.383640 15.608559 2.326174 3.289952 4.370248
1.0 0.50 2 1.879981 2.577790 3.344025 1.451479 1.872270 2.262204
1.0 1.00 1 3.271812 5.191820 7.804279 1.644853 2.326347 3.090232
1.0 1.00 2 1.329347 1.822772 2.364583 1.220543 1.574385 1.902280
2.0 0.25 1 18.276562 27.112778 38.673711 4.457680 5.836231 7.335275
2.0 0.25 2 3.152056 4.126839 5.186822 2.050184 2.494617 2.907671
2.0 0.50 1 9.138281 13.556389 19.336855 3.152056 4.126839 5.186822
2.0 0.50 2 2.228840 2.918115 3.667637 1.723992 2.097714 2.445050
2.0 1.00 1 4.569140 6.778194 9.668427 2.228840 2.918115 3.667637
2.0 1.00 2 1.576028 2.063419 2.593411 1.449699 1.763961 2.056034
5.0 0.25 1 32.864736 44.290398 58.373461 6.699945 8.117634 9.595839
5.0 0.25 2 4.218838 5.176431 6.201173 2.542040 2.924737 3.278035
5.0 0.50 1 16.432368 22.145199 29.186730 4.737577 5.740034 6.785283
5.0 0.50 2 2.983169 3.660289 4.384891 2.137592 2.459401 2.756488
5.0 1.00 1 8.216184 11.072599 14.593365 3.349972 4.058817 4.797919
5.0 1.00 2 2.109419 2.588215 3.100586 1.797494 2.068101 2.317921

Table 8: Quantiles of the linear combination L(X) in case of a Kotz type d.g.f. and p ∈ {1, 2}.

Acknowledgement: The authors would like to express their gratitude to the reviewers for their
valuable hints.
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