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Abstract. We introduce the p-generalized polar methods for the simulation of the p-generalized
Gaussian distribution. On the basis of geometric measure representations, the well known Box-
Muller method and the Marsaglia-Bray rejecting polar method for the simulation of the Gaussian
distribution are generalized to simulate the p-generalized Gaussian distribution, which fits much
more flexible to data than the Gaussian distribution and is already applied in various fields of
modern sciences. To prove the correctness of the p-generalized polar methods, we give stochastic
representations and to demonstrate their adequacy, we perform a comparison of six simulation
techniques w.r.t. the goodness of fit and the complexity. The competing methods include adapted
general methods and another special method. Further, we prove stochastic representations for all
adapted methods.
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1 Introduction

The p-generalized Gaussian distribution Np is also known as power exponential, exponential error
or p-generalized normal distribution and was introduced in (Subbotin, 1923) and later on studied
, e.g., in (Box and Tiao, 1973) and in (Johnson et al., 1994). It is of special interest in statistical
modelling because it fits much more flexible to data than the Gaussian distribution due to an
additional parameter p. The role of this parameter can be seen from the Np-density

fp(x) =
p1−1/p

2Γ
(

1
p

) exp

[
−|x|

p

p

]
, x ∈ R, p > 0,

which is illustrated in Figure 1 and represents in case p = 1 the Laplace density, in case p = 2 the
Gaussian density and approaches for p→∞ the density of the uniform distribution on [−1, 1].
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Fig. 1: Univariate density fp
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In the bivariate case the level sets Cp(r) := {x ∈ R2 : |x|p = r} of the product density
fp(x1) fp(x2) , see Figure 2, are circles with respect to the functional |(x1, x2)|p := (|x1|p+ |x2|p)1/p,
(x1, x2) ∈ R2, which is the l2,p-norm if p ≥ 1 and the l2,p-anti-norm if p ∈ (0, 1), see (Moszyńska
and Richter, 2011). For this reason, p will be called the form parameter, although it can also be
understood as a scale parameter causing heavy or light tails for small or large values, respectively.
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Fig. 2: Bivariate product density of Np. (Recognize different scalings!)

As a consequence of its attractive flexibility, the p-generalized Gaussian distribution has already
received wide spread applications in various areas. According to (Pogány and Nadarajah, 2010) and
(Nardon and Pianca, 2009), these areas include signal processing, quantitative finance, medicine,
automation and remote control, telecommunication, information systems, biomedical engineering,
physics, cybernetics, nanotechnology and many more.
The necessity of effective simulation techniques for the Np distribution is highlighted by an appli-
cation from signal processing, which is of great importance in the respiratory mechanics research
area. In (Saatci and Akan, 2010) a respiratory system under non-invasive ventilation is modelled by
using measured respiratory signals. Here, the generalized Gaussian distribution is used to model the
measurement noise in the respiratory system identification problem. To investigate the adequacy of
the model considered this way for different noise scenarios, the authors in (Saatci and Akan, 2010)
generate Laplace, Gauss and uniformly distributed random numbers. Using now the p-generalized
polar methods presented in this paper, one can simulate the Np-distribution for every p > 0 and is
therefore able to test the model for an arbitrary noise scenario.

Let us briefly recall the main mathematical background of the standard polar method and the
rejecting polar method for generating Gaussian random numbers. A standard Gaussian random
vector (X,Y ) satisfies a stochastic representation

(X,Y )
d
= R · U , (1)

which is known as the Box-Muller transformation in the literature. In case of the polar method in
(Box and Muller, 1958), R =

√
−2 lnV1 and U = (cos(2πV2), sin(2πV2)) are independent, where

V1, V2 are independent and uniformly distributed random variables on (0, 1).
The rejection method in (Marsaglia and Bray, 1964) uses a conditional probability for alternatively
simulating the so called uniform basis vector U , which is uniformly distributed on C2, where Cp :=
Cp(1). In this context, U belongs to a Borel-subset A of C2 with probability

P (U ∈ A) = P

(
Σ

(V1, V2)

|(V1, V2)|2
∈ A

∣∣∣∣ |(V1, V2)|2 ≤ 1

)
, (2)

where Σ = diag(S1, S2) is a random signature matrix which is independent from V1, V2 and S1, S2

are independent and uniformly distributed on {−1, 1}. According to this rejection method, random
numbers v1, v2 are generated until they satisfy |(v1, v2)|2 ≤ 1. So in principal the generation of one
pair of random numbers (u1, u2) involves an infinitely long sequence of random numbers which is
randomly stopped. Here and throughout this paper random variables will be denoted by capital
letters and random numbers by small letters.
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The focus of this paper is to p-generalize the well known polar method in (Box and Muller,
1958) and the rejecting polar method in (Marsaglia and Bray, 1964) for the simulation of Gaussian
random numbers. In addition, we set out to make various comparisons of our generalized methods
with methods known from the literature. Our generalizations are essentially based upon stochastic
representations which make use of the p-generalized trigonometric functions in (Richter, 2007), the
non-Euclidean geometric measure representation for ln,p-spherical symmetric distribution laws in
(Richter, 2009) and which make also use of certain standard distributional transformations in (Ru-
binstein, 1981) and in (Jöhnk, 1964).
The paper is structured as follows. In Section 2, the p-generalized polar methods are introduced.
The mathematical fundamentals for these new algorithms will be presented in Section 3. Thereby,
conclusions from a non-Euclidean geometric measure representation are given in Subsection 3.1 and
in Subsection 3.2, the p-generalized polar methods are proved on the basis of stochastic represen-
tations. In Section 4, we adapt general methods from the literature and also consider the special
method in (Nardon and Pianca, 2009) for alternatively sampling from the Np-distribution. In this
context, we demonstrate the adequacy and practicability of the new methods derived in Section 2
by comparing six simulation methods w.r.t. goodness of fit and complexity.

2 Two new algorithms

2.1 The p-generalized polar method

We present here the algorithm creating the p-generalized polar method for simulating pairs (X1, X2)
of independent p-generalized Gaussian distributed random variables. Consider therefore the l2,p-
generalized trigonometric functions cosp and sinp, defined in (Richter, 2007) as

cosp(x) :=
cos(x)

Np(x)
, sinp(x) :=

sin(x)

Np(x)
,

where

Np(x) := (| sin(x)|p + | cos(x)|p)1/p, x ∈ [0, 2π) .

As in all algorithms of this paper, the uniform choice of random numbers or random tuples is to be
understood as a choice of independent random numbers or random tuples, respectively.

Algorithm 1 (The p-generalized polar method).

1. Simulation of a generalized radius variable Rp

(a) Generate a Gamma distributed random number γ with parameter 2/p.

(b) Form rp = (p γ)1/p.

2. Simulation of a generalized uniform basis vector Up

(a) Generate φ from the density fΦ(φ) = 1(0,2π)(φ)
p Γ
(

2
p

)
4 Γ2

(
1
p

) 1
N2
p (φ)

.

(b) Build up = (cosp φ, sinp φ) .

3. Return (x1, x2) = rp · up.

Here, Γ(.) denotes the Gamma function. For further details concerning this algorithm, we refer
to Appendix B.
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2.2 The p-generalized rejecting polar method

In dependence of the available hard and software, it may be of interest to analyze the influence which
calculations of trigonometric functions have onto the time consumed by a simulation algorithm. This
was the main reason for modifying the polar method in (Marsaglia and Bray, 1964). On the one
hand, because of todays faster computers, the calculations of trigonometric functions may have
become less important in a complexity study than at the times when (Box and Muller, 1958)
and (Marsaglia and Bray, 1964) appeared. On the other hand, Algorithm 1 involves more general
trigonometric functions and in step 2 the simulation of an angle φ which is not uniformly distributed
unless for p = 2. So in the present situation, there is a new reason to study a rejection method
modifying Algorithm 1.
In an analogous way as the polar method was modified in (Marsaglia and Bray, 1964) to the rejecting
polar method, we introduce now the p-generalized rejecting polar method for generating pairs of
independent p-generalized Gaussian distributed random numbers.

Algorithm 2 (The p-generalized rejecting polar method).

1. Follow step 1 from Algorithm 1 to simulate the generalized radius variable Rp.

2. Simulation of the generalized uniform basis vector Up

(a) Choose (v1, v2) uniformly from (0, 1)×2 until vp1 + vp2 ≤ 1.

(b) Choose (s1, s2) uniformly from {−1, 1}×2 and form the signature matrix Σ = diag(s1, s2).

(c) Build up = (v1,v2)
|(v1,v2)|p Σ.

3. Return (x1, x2) = rp · up.

For further details concerning this algorithm, we refer to Appendix B.

3 Mathematical background

3.1 Conclusions from a geometric measure representation

The polar method for simulating a standard Gaussian distributed random vector (X,Y ) in (Box and
Muller, 1958) is essentially based on equation (1). A transformation of Cartesian coordinates into
polar coordinates delivers a product representation of (X,Y ) with a radius R and a uniform basis
U , where R and U are independent. Here, the vector U takes its values in C2 and the corresponding
random polar angle is uniformly distributed on [0, 2π). The reason why one also calls U uniformly
distributed is the geometric representation of its distribution

P (U ∈ A) =
U2(D)

U2(C2)
, D ∈ B(R2) ∩ C2 ,

where U2 denotes the Euclidean arclength measure. The p-generalized polar method is smilarly to
the polar method based on a product representation of the random vector to be simulated. In this
context, a tuple of independent p-generalized Gaussian distributed random variables X1, X2 satisfies

(X1, X2)
d
= Rp Up .

This may be considered as an analogue to (1) but with a radius Rp and a uniform basis Up, which
are suitably generalized and still independent. Introducing l2,p-generalized polar coordinates as in
(Richter, 2007), we obtain

Rp = |(X1, X2)|p , Up = (cosp(Φ), sinp(Φ)) . (3)
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According to (Richter, 2009), the density of the transformed vector (Rp,Φ) satisfies the represen-
tation

f(Rp,Φ)(r, ϕ) = 1(0,∞)(r)1(0,2π)(ϕ)

 p1−1/p

2Γ
(

1
p

)
2

r

N2
p (ϕ)

exp

(
−r

p

p

)
,

and the marginal densities satisfy

fRp(r) = 1(0,∞)(r)
p1−2/p

Γ
(

2
p

) r exp

(
−r

p

p

)
,

fΦ(ϕ) = 1(0,2π)(ϕ)
p Γ

(
2
p

)
4 Γ2

(
1
p

) 1

N2
p (ϕ)

. (4)

If p = 2, fΦ is the constant density of the uniform distribution on [0, 2π) and Φ is the polar angle
of U = (cos Φ, sin Φ) from equation (1). In the general case p > 0, fΦ is an oscillating π/2-periodic
function on [0, 2π), see Figure 4.
While the polar method from (Box and Muller, 1958) is based on the uniform distribution on the
circle C2, it follows from the considerations in (Richter, 2007) and (Richter, 2009), that a certain
p-generalized uniform distribution on the p-circle plays an analogous role when considering the p-
generalized Gaussian distribution. To this end, it is shown in (Richter, 2009) that the uniform basis
Up = (cosp Φ, sinp Φ) satisfies the geometric representation

P (Up ∈ A) =
Up (A)

Up (Cp)
, A ∈ B(R2) ∩ Cp, (5)

where Up denotes the l2,p-generalized arclength measure. This measure differs from the Euclidean
arclength measure if p 6= 2 and is according to (Richter, 2009) generated by the dual l2,q-norm, if
p ≥ 1. In this case holds

Up(D) =

∫
G(D)

|N(x)|q dx ,

where 1/p + 1/q = 1, N(x) is the normal vector to the l2,p-circle Cp at the point x and G(D) =
{x1 ∈ R : |x1|p ≤ 1 ∧ (x1, x2) ∈ D}. If 0 < p < 1, Up is generated in the same way but then the
functional |.|q is a semi-anti-norm. For the definition of anti-norms and semi-anti-norms we refer to
(Moszyńska and Richter, 2011). A certain characteristic property of Up is demonstrated in Figure
3.

x

y

Cp

B1 B2

M1
M2

(0,0)

Fig. 3: Sets M1, M2 having the same area content correspond to arcs B1, B2 from Cp having the
same Up-lengths but different Euclidean lengths, unless for p = 2.
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Definition 1.

a) The distribution of a random vector Up satisfying equation (5) is called the l2,p-generalized
uniform distribution on the p-circle Cp.

b) The distribution of the random angle Φ from Up = (cosp Φ, sinp Φ) in equation (3) is called
the angular distribution corresponding to the l2,p-generalized uniform distribution.
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Fig. 4: Density fΦ of the angular distribution for selected values of p. Values on the axis of abscissae
are multiples of π.

The step 2 of Algorithm 1 includes the generation of a random number that follows the angular
distribution according to Definition 1. The simulation of Φ will be further reduced to the generation
of uniformly distributed random numbers vn ∈ (0, 1) in Algorithm 7, see Appendix B, which is
essentially based upon the following stochastic representation of Φ.

Theorem 1. Let S1 and S2 be uniformly distributed on {−1, 1} and on {0, 1}, respectively, and
let (Y1, Y2) be l2,p-generalized uniformly distributed on C+

p := Cp ∩ R2
+, i.e.

P ((Y1, Y2) ∈ A) =
Up(A)

Up(C
+
p )

, A ∈ C+
p ∩B(R2) .

If S1, S2 and (Y1, Y2) are independent random variables, then

Φ
d
= S1 arctan

(
Y1

Y2

)
+ πS2 +

π

2
.

Proof. According to Definition 1, Φ can be interpreted as the polar angle of an l2,p-generalized
uniformly distributed random vector Up taking values in Cp. Therefrom,

P
(
Φ ∈ A

∣∣ Φ ∈ (0, π/2)
)

= P

(
arctan

(
Y2

Y1

)
∈ A

)
,∀A ∈ B ([0, π/2)) .

It also follows from the π/2-periodicity of fΦ, that

P
(
Φ ∈ A

∣∣ Φ ∈ (0, π/2)
)

= P

(
− arctan

(
Y1

Y2

)
+
π

2
∈ A

)
, A ∈ B ((0, π/2))

P
(
Φ ∈ A

∣∣ Φ ∈ (π/2, π)
)

= P

(
arctan

(
Y1

Y2

)
+
π

2
∈ A

)
, A ∈ B ((π/2, π))

P
(
Φ ∈ A

∣∣ Φ ∈ (π, 3/2π)
)

= P

(
− arctan

(
Y1

Y2

)
+
π

2
+ π ∈ A

)
, A ∈ B ((π, 3/2π))

P
(
Φ ∈ A

∣∣ Φ ∈ (3/2π, 2π)
)

= P

(
arctan

(
Y1

Y2

)
+
π

2
+ π ∈ A

)
, A ∈ B ((3/2π, 2π))
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and hence

Φ
d
= S1 arctan

(
Y1

Y2

)
+ πS2 +

π

2
.

3.2 Two stochastic representations

We are now in the position to show the correctness of the p-generalized polar method and the
p-generalized rejecting polar method. To this end, we prove stochastic representations which corre-
spond to the Algorithms 1 and 2, respectively.

Theorem 2. Let X1, X2 be p-generalized Gaussian distributed random variables, Y be a Gamma
distributed random variable with parameter 2/p and assume the independence of X1, X2 and Y .
Then

(X1, X2)
d
= Rp · Up ,

where

Rp = (p Y )1/p

and

Up = (cosp(Φ), sinp(Φ))

are independent and Φ follows the angular distribution according to Definition 1.

Proof. In view of our consideration in Subsection 3.1 it remains to determine the distribution of
Rp:

fRp(r) = 1(0,∞)(r)
p1−2/p

Γ
(

2
p

) r exp

(
−r

p

p

)
,

so that

P

(
Rpp
p
< r

)
= 1(0,∞)(r)

p1−2/p

Γ
(

2
p

) (pr)1/p∫
0

s exp

(
−s

p

p

)
ds

= 1(0,∞)(r)
1

Γ
(

2
p

) r∫
0

y2/p−1 exp (−y) dy

= 1(0,∞)(r) P (Y < r) .

The p-generalized rejecting polar method is based upon the stochastic representation of Theorem
3 below. The second step of Algorithm 2 deals with a rejection method for the simulation of the
uniform basis Up, that means random numbers are generated until a certain condition is fulfilled,
see Figure 5. So in principal one deals with an infinetly long sequence (Vn)n∈N = (Vn,1, Vn,2) of
independent random vectors which is stopped at the random time

τA := inf {n ∈ N : Vn ∈ A} , (6)
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where A is a Borel set denoting the acceptance region and N = {0, 1, 2, . . .}. Notice, that τA is a
stopping time and that the stopping element

VτA = (VτA,1, VτA,2) :=

∞∑
n=0

1{τA=n}Vn (7)

is a measurable function, see Appendix A for more details.

y

x

Cp

Kp

vn

*

*

Fig. 5: Generating the l2,p-generalized uniform distribution on the l2,p-unit circle Cp by stopping,
projecting and randomly reflecting (vn)n∈N.

Additionally to the assumptions of Theorem 2, Σ := diag(S1, S2) is a random signature ma-
trix with S1, S2 uniformly distributed on {−1, 1} and (Vn)n∈N = (Vn,1, Vn,2)n∈N is a sequence of
uniformly on (0, 1)×2 distributed random vectors. Let also X1, X2, Y, S1, S2 and (Vn)n∈N be stocha-
stically independent.

Theorem 3. The random vector (X1, X2) satisfies a representation with independent Rp and Up

(X1, X2)
d
= Rp · Up ,

where

Rp = (p Y )1/p

and

Up = Σ VτA/|VτA |p .

Here, the acceptance region for defining the stopping time of the sequence (Vn)n∈N is the p-disc
A = Kp =

{
x ∈ R2 : |x|p ≤ 1

}
.

Proof. Let T : (0,∞)× (0, 2π)→ R2 be the l2,p-generalized polar coordinates transformation

T (r, ϕ) = r (cosp ϕ, sinp ϕ) ,

respectively T ∗ it’s restriction to Cp, and B+ ∈ B(R2
+)∩Cp. Assume K+

p (r) = {x ∈ R2
+ : |x|p ≤ r}.

The Jacobian of the transformation T is according to (Richter, 2007)

J(r, ϕ) =
r

N2
p (ϕ)

, (r, ϕ) ∈ (0,∞)× (0, 2π).
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Defining the central projection cone CPC(B+) := {(x, y) ∈ R2 : (x, y)/(|x|p + |y|p)1/p ∈ B+}, we
obtain

P
(
V0/|V0|p ∈ B+

∣∣ |V0|p ≤ 1
)

=

 ∫
CPC(B+)∩K+

p (1)

µ(d(x, y))

 ·
 ∫
K+
p (1)

µ(dz)


−1

,

where µ denotes the Lebesgue measure on B(R2). Changing Cartesian with p-generalized polar
coordinates from (Richter, 2007), it follows

P
(
V0/|V0|p ∈ B+

∣∣ |V0|p ≤ 1
)

=

 1∫
r=0

 ∫
(T ∗)−1(B+)

r

N2
p (ϕ)

dϕ

 dr

 ·


1∫
r=0


∫

(T ∗)−1
(
Cp∩R2

+

)
r

N2
p (ϕ)

dϕ

 dr


−1

=

 ∫
(T ∗)−1(B+)

fΦ(ϕ)dϕ

 ·
 ∫

(0,π/2)

fΦ(ϕ)dϕ


−1

= 4 P
(
Φ ∈ (T ∗)−1(B+)

)
= 4 P

(
Up ∈ B+

)
and hence

P
(
ΣV0/|V0|p ∈ B

∣∣ |V0|p ≤ 1
)

= P (Up ∈ B) , ∀B ∈ B (Cp) .

The proof is complete if we show that

P
(
V0/|V0|p ∈ B

∣∣ |V0|p ≤ 1
)

= P (VτA/|VτA |p ∈ B) , ∀B ∈ B (Cp) .

This will be done for a general acceptance region A in Lemma 1, see Appendix A.

4 Comparison with the literature

4.1 Alternative simulation techniques

In this subsection, we refer to alternative algorithms for sampling from the p-generalized Gaussian
distribution. On the one hand, there are general simulation methods which can be adapted to the
special case of the Np-distribution. On the other hand, the simulation of the p-generalized Gaussian
distribution has already been the subject of former studies. In this context, Nardon and Pianca
introduced in (Nardon and Pianca, 2009) a special method which reduces the simulation of the
Np-distribution to the generation of Gamma distributed random numbers. Moreover, Malham and
Wiese introduced in (Malham and Wiese, 2010) a simulation method for n-tuples of independent,
generalized Gaussian distributed random variables under the name generalized Marsaglia polar me-
thod. In fact, this method is strongly limited to the special case that the form parameter is equal
to the tuple-dimension n ∈ N and will therefore play no further role in our investigations.
Besides the method of Nardon and Pianca, we will compare the p-generalized polar methods with
adaptions of the Monty Python method, the Ziggurat method and a numerical version of the inversi-
on method. The Monty Python method in (Marsaglia, 1998) and the Ziggurat method in (Marsaglia
and Tsang, 2000) can in principal be used to sample from every symmetric density which is strictly
montonic decreasing for x > 0. However, there is a considerable effort for setting up this algorithms,
especially if p < 1. Among other things, this is due to the fact that both simulation techniques make
use of the tail algorithm to sample from the tail of the distribution of interest, see (Marsaglia and
Tsang, 1984).
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The inversion method is probably the most common simulation method in this comparison. It is
based upon an inversion of the distribution function FX and can in principal be applied to every
continuous univariate distribution. Practically, the adaption can be very difficult if an exact repre-
sentation of the inverse distribution function is not available. In such situations, one often uses a
numerical version of the inversion method due to a transformation of the inversion equation

F−1
X (u) = x

to the equivalent equation

FX(x)− u = 0 . (8)

In case of the Np-distribution, we choose a random number u uniformly from (0, 1) and solve
equation (8) numerically with the help of the R-procedure uniroot, see (Brent, 1973).

The method of Nardon and Pianca, introduced in (Nardon and Pianca, 2009), is given in Algo-
rithm 3.

Algorithm 3 (The method of Nardon and Pianca).

1. (a) Generate a Gamma distributed random number γ with parameter 1/p.

(b) Form r = (p γ)1/p.

2. Choose σ uniformly from {−1, 1}.

3. Return x = σ r.

Notice, that the random numbers γ in Algorithm 1 and 2 follow Gamma distributions with
different parameters and that the outcomes of both algorithms possess different interpretations.
This becomes obvious even from the fact that the method of Nardon and Pianca works in one
dimension and generates single random numbers while the polar methods work in two dimensions
and generate pairs of random numbers.

The adaptions of the Monty Python method and the Ziggurat method make both use of the
adapted tail algorithm for sampling from a random variable Y , where Y follows the conditional
distribution of the absolute value of X ∼ Np under the condition |X| > ξ. Let therefore β > 1 and
ψ > 0 be suitably chosen constants, such that

fp(ξ + t) ≤ fp(ξ) (1 + ψt)−β , ∀t ≥ 0,

if 0 < p < 1, see Appendix D for more details.

Algorithm 4 (The tail algorithm adapted to the p-generalized Gaussian distribution).

1. If p ≥ 1, then choose (v1, v2) uniformly from (0, 1)×2 until v2 < v1 exp
[
ξp

p −
1
p

(
ξ − ln v1

ξp−1

)p]
.

Then return
(
ξ − ln v1

ξp−1

)
.

2. If 0 < p < 1, then choose (v1, v2) uniformly from (0, 1)×2 until

v2 e
− ξ

p

p v
β/(β−1)
1 ≤ exp

[
−1
p

(
ξ + 1

ψ

(
v

1/(1−β)
1

))]
. Then return

(
ξ + 1

ψ

(
v

1/(1−β)
1

))
.

The Monty Python and the Ziggurat method are based on a theorem that we prove for the sake
of completeness in Appendix C. It says that the first component of a random vector X = (X1, X2),
which is uniformly distributed on the set A(f) := {(x, y) ∈ R2 : 0 < y < f(x)}, has density f .
In case of the Monty Python method, the uniform distribution on the region A(f) is generated by
choosing a random tuple uniformly from a rectangle R(b) := (0, b)×(0, 1/b) and mapping it to A(f)
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with a suitable transformation T = (T1, T2), see Figure 6. Here, f is a strictly monotonic decreasing
density of a positive random variable. In case of a symmetric distributed random variable X, a
generated realisation of |X| will be multiplied with a random sign, uniformly chosen from {−1, 1}.
To this end, the inverse of the map T rotates the cap H̃ of A(f) w.r.t. the centre (a, 1/b), scales it
with factor s := a/(b− a) and stretches it with factor 1/s, so that the resulting set fits in the upper
right corner of R(b).

x

y

f

ba

1/b

~
H

H

F G

D

E

(x,y)

T(x,y)

s(b-x)

1/b+1/(bs)-y/s

Fig. 6: Monty Python method for suitably chosen b.

The following algorithm reflects the adaption of the Monty Python method to the p-generalized
Gaussian density fp using a stretching factor s := a/(b− a), see Figure 6, where f = 2 fp . Due to
the fact that X ∼ Np has a symmetric distribution, a random sign σ has to be chosen uniformly
from {−1, 1} to transform a realisation of |X| to a realisation of X.

Algorithm 5 (Adapted Monty Python method).

1. Choose a random tuple (x̃, ỹ) uniformly from R(b) and a random sign σ uniformly from
{−1, 1}.

2. If (x̃, ỹ) is in F , i.e. x̃ < a, then return σ x̃.

3. If (x̃, ỹ) is in G, i.e. ỹ < 2 fp(x̃), then return σ x̃.

4. If (x̃, ỹ) is in H, i.e. ỹ > 1
b + s

b − 2 s fp(s(b− x̃)), then return σ · s · (b− x̃).

5. Otherwise generate the first component of the uniformly on E distributed tuple (x̂, ŷ) with
Algorithm 4 and return σ x̂.

Let us finally consider the Ziggurat method, which originates from another basic theorem on a
uniformly distributed random vector X = (X1, X2). As can be seen in (Marsaglia and Tsang, 2000)
and in Appendix C, the conditional distribution of X under the condition that X ∈ A ⊂ IM(X)
is the uniform distribution on A, if µ(A) > 0. In this context, the algorithm in (Marsaglia and
Tsang, 2000) overlaps the region A(f) with m rectangles R1, . . . , Rm and a tail area E, see Figure
7, where R1, . . . , Rm−1, Rm ∪ E have the same area content v. After selecting one of the areas
R1, . . . , Rm−1, Rm∪E uniformly with probability 1/m, one chooses (x, y) uniformly from there and
returns x if (x, y) ∈ A(f). Otherwise, a new area will be selected at random.
Here, f is a strictly monotonic decreasing density of a positive random variable X, and as in
Algorithm 5, the simulation of a positive random variable can be generalized to the simulation of a
symmetric distributed random variable by choosing a random sign σ uniformly from {−1, 1}.

11



x

y

f

(x ,f(1 x ))1

(x ,f(x ))2 2

xm-1

R1

R2

Rm-1

Rm
..

..
.

E

Rm
*

Fig. 7: Ziggurat method: m rectangles and E overlap A(f).

The m-th area of the Ziggurat plays a special role in the algorithm from (Marsaglia and Tsang,
2000). Here, the random tuple (x, y) is chosen uniformly from the rectangle R∗m (having the area
content v) and will be rejected, if it is outside the subset Rm. Then the first component of a random
tuple (x̃, ỹ), uniformly distributed on E, will be generated with Algorithm 4.
Provided that A(f∗p ) is overlapped with a Ziggurat in the described way, where f∗p = 2(fp)∣∣R+

,

Algorithm 6 reflects the adapted method from (Marsaglia and Tsang, 2000) for the simulation of
the Np-distribution.

Algorithm 6 (Adapted Ziggurat algorithm). Let x1, . . . , xm−1 be the x-coordinates definingR1, . . . , Rm

and assume v = 2xm−1fp(xm−1) + 2
∞∫

xm−1

fp(x) dx, x0 = 0 and xm = v/(2 fp(xm−1)).

1. Choose z uniformly from {1, . . . ,m} and σ uniformly from {−1, 1}.

2. Choose u1 uniformly from (0, 1).

3. If xzu1 < xz−1, then return σ xzu1. Otherwise go on with 4 if z = m and with 5 if z < m.

4. Generate x̃ ≥ xm−1 with the tail algorithm, see Algorithm 4, and return σ x̃.

5. Choose u2 uniformly from (0, 1) and return σ xzu1, if 2 fp(xz) + v
xz
u2 < 2 fp(xzu1). Otherwise

repeat 2.

4.2 Goodness of fit comparison

In this subsection, we compare the goodness of fit of six different techniques for simulating the
p-generalized Gaussian distribution: the two p-generalized polar methods, the method of Nardon
and Pianca, the Monty Python method, the Ziggurat method and the numerical inversion method.
All simulation techniques are implemented in an R-program, which uses the Mersenne-Twister
algorithm for the generation of the uniform distribution on (0, 1). To verify the correctness of this
program respectively of each simulation method, the Kolmogoroff Smirnoff test and a Monte Carlo
Simulation will be used. In the last case, we compare exact probabilities of X belonging to a certain
set with the corresponding approximations of a Monte Carlo simulation.

Test 1. In context of a Kolmogoroff-Smirnoff-test, we generated m = 1000 samples of size n with
each method, i.e. we generated (xi,j)i=1:1000,j=1:n, where n ∈ {10, 50, 5 · 102, 103, 5 · 103, 104, 5 ·
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104, 105} and p ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 5, 8}. Then the Kolmogoroff-Smirnoff test statistic
D̂(xi,1, . . . , xi,n) of each sample was compared with the corresponding quantile D1−α,n according
to the significance level α ∈ {0.01, 0.05}. The relative rejection frequency h(p,m, n, α) is for fixed
n ∈ N and p ∈ R the mean of the sample x̃1, . . . , x̃1000, where

x̃i :=

{
1 , if D̂(xi,1, . . . , xi,n) > D1−α,n

0 , else
.

It approximates α if the simulation technique works correctly and can therefore be considered as a
measure for the correctness of an algorithm w.r.t. the sample size n and the form parameter p. In this
context, the variance h(p,m, n, α) · (1 − h(p,m, n, α)) of the sample x̃1, . . . , x̃1000 similarly reflects
the goodness of fit of an algorithm and could alternatively be used for the following comparison.

n 10 50 102 5 · 102 103 5 · 103 104 5 · 104 105

p-gen. polar method (pgp) 0.048 0.057 0.048 0.058 0.070 0.053 0.038 0.059 0.050
p-gen. rejecting polar method (pgrp) 0.049 0.050 0.042 0.043 0.048 0.056 0.052 0.044 0.067

Monty Python (mp) 0.041 0.055 0.051 0.045 0.041 0.056 0.041 0.062 0.042
Ziggurat (zig) 0.032 0.047 0.048 0.038 0.052 0.073 0.054 0.057 0.061

Nardon/ Pianca (np) 0.048 0.037 0.047 0.051 0.055 0.046 0.047 0.039 0.063
numerical inversion (ninv) 0.040 0.042 0.049 0.042 0.040 0.051 0.056 0.058 0.042

Table 1: Values of h(5, 1000, n, 0.05) for selected values of n w.r.t. Test 1.

Result: As can be seen exemplarily in Table 1, systematic differences in the performance of the
simulation methods are not obvious for any combination of α and p. On the one hand, Table 1 shows
for fixed n ∈ N rankings of the six algorithms that differ for different sample sizes. On the other
hand, a repetition of Test 1, that means another simulation of (xi,j)i=1:1000,j=1:n, showed relative
frequencies h(p,m, n, α) leading to a different ranking of the six simulation algorithms for the same
fixed sample size n ∈ N, see Table 2. In consequence, all simulation methods performed similarly
in Test 1. Moreover, the little deviations of the relative rejection frequencies from α indicate the
correctness of these methods.

n 10 50 102 5 · 102 103 5 · 103 104 5 · 104 105

p-gen. polar method (pgp) 0.042 0.053 0.046 0.045 0.047 0.057 0.042 0.060 0.054
p-gen. rejecting polar method (pgrp) 0.057 0.053 0.042 0.055 0.060 0.041 0.046 0.053 0.050

Monty Python (mp) 0.054 0.063 0.057 0.042 0.051 0.042 0.051 0.051 0.051
Ziggurat (zig) 0.054 0.043 0.056 0.045 0.049 0.058 0.040 0.042 0.066

Nardon/ Pianca (np) 0.042 0.042 0.051 0.061 0.037 0.047 0.045 0.050 0.048
numerical inversion (ninv) 0.042 0.051 0.033 0.055 0.035 0.058 0.060 0.057 0.044

Table 2: Values of h(5, 1000, n, 0.05) in a repetition of Test 1.

Test 2 (Monte Carlo Simulation). Analogously to Test 1, we generatedm = 100 samples (xi,j)i=1:100,j=1:n

of size n with each simulation technique. We did this for p ∈ {0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 5, 8} and
n ∈ {50, 250, 5 · 102, 103, 2 · 103, 5 · 103, 104, 5 · 104, 105}. The relative frequency

h(p,m, n) = #
{

(xi,j)j=1,n : i ∈ {1, . . . ,m} , |hn,i(A)− P ((X1, X2) ∈ A)| < ε
}
/m

of adequate Monte Carlo approximations hn,i(A) for the exact probability P ((X1, X2) ∈ A) and
approximation accuracies ε ∈ {10−2, 10−3, 10−4} was observed, where X1, X2 are independent and
p-generalized Gaussian distributed. In this context, two types of sets A were used. The first type was
a set Kp(1) close to the distribution centre, where Kp(r) = {x ∈ R2 : |x|p ≤ r}. The second type
was a set R2\Kp(r) from the distribution tail, where the exact probability of (X1, X2) belonging to
R2\K2,p(r) is sufficiently small. To this end, we have chosen arbitrarily a radius r > 0 (for every
fixed p) which satisfies the condition 10−3 < P

(
(X1, X2) ∈ R2\K2,p(r)

)
< 10−2, because smaller

exact probabilities cause approximations with large variances for the selected sample sizes.
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Let us consider the results in Table 3. The relative frequencies for sets of the first type are similar
for every simulation technique in the case p = 5 and do not point out any significant and systematic
goodness of fit differences between the six generation methods.

ε 10−2 10−3 10−4

n 50 102 2.5 · 102 5 · 102 103 2 · 103 5 · 103 104 5 · 104 105

pgp 0.12 0.21 0.29 0.49 0.51 0.70 0.12 0.21 0.45 0.10
pgrp 0.12 0.21 0.30 0.39 0.49 0.71 0.15 0.23 0.45 0.12
mp 0.08 0.23 0.37 0.36 0.53 0.65 0.16 0.22 0.40 0.05
zig 0.14 0.20 0.32 0.37 0.58 0.71 0.10 0.19 0.44 0.06
np 0.13 0.22 0.30 0.48 0.51 0.63 0.11 0.25 0.38 0.08

ninv 0.14 0.16 0.24 0.41 0.52 0.70 0.13 0.13 0.38 0.09

Table 3: Values of h(5, 100, n) for selected values of n and approximation accuracies ε ∈
{10−2, 10−3, 10−4} in case of a test set close to the distribution centre.

Similar effects can be seen in a test using sets of the second type (see Table 4) and also by
varying the form parameter p within the above specified range. In consequence, the Monte Carlo
Simulation showed that the six simulation techniques all work in nearly the same way correctly but
it cannot be used to point out any goodness of fit differences.

ε 10−3 10−4

n 5 · 102 103 2 · 103 5 · 103 104 5 · 104 105

pgp 0.40 0.50 0.74 0.98 1.00 0.44 0.58
pgrp 0.26 0.66 0.77 0.88 1.00 0.42 0.62
mp 0.34 0.55 0.84 0.93 0.99 0.47 0.55
zig 0.38 0.60 0.72 0.92 0.98 0.39 0.65
np 0.32 0.58 0.83 0.95 0.99 0.44 0.62

ninv 0.38 0.45 0.75 0.88 0.96 0.49 0.50

Table 4: Values of h(5, 100, n) for selected values of n and approximation accuracies ε ∈ {10−3, 10−4}
in case of a test set from the distribution tail.

4.3 Complexity comparison

In this subsection, the six methods for the simulation of the p-generalized Gaussian distribution will
be compared w.r.t. to the complexity. In addition to the total computing time of each algorithm,
the effort for the adaption of the general methods will be considered.

Remark 1. As can be seen in Appendix D, E and F, the use of the general methods for the
simulation of the p-generalized Gaussian distribution is connected with some effort for the adaption
of these methods.
In case of the Monty Python method, a suitable rectangle width b has to be found by solving an
optimization problem, see Appendix E. The Ziggurat algorithm needs the rectangle coordinates
x1, . . . , xm, which have to be evaluated with a try and error method, see Appendix F.
Furthermore, the Monty Python method and the Ziggurat method both use the tail algorithm,
which requires in the case p ∈ (0, 1) the solution of another optimization problem, see Appendix D
for more details. Even in case of the numerical inversion method there is an effort for the adaption.
A range for the exact solution of equation (8) is needed for the computation of a numerical solution
x̃.
The special methods are in consequence of this setting up efforts more efficient than the general
methods in case of a small sample size, even if the total computing time of an already adapted
general method is very small.

Test 3. The total computing time for the generation of n = 106 p-generalized Gaussian distributed
random numbers, i.e. 5 · 105 pairs of numbers in case of the p-generalized polar methods, was
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determined for each simulation technique with the help of the R-function system.time, which returns
for a valid R-instruction among other things the CPU time (in seconds) exclusively charged for the
execution of the mentioned instruction, see (Becker et al., 1988) for more details. The adaption
efforts for the general methods were not considered.

p 0.25 0.45 0.75 1 1.5 2 3 5 8

pgp 309.25 58.93 37.23 19.16 31.14 15.89 28.06 27.81 27.33
pgrp 313.38 59.34 37.00 19.16 30.80 15.89 27.77 27.51 27.00
mp 78.06 62.70 52.34 46.13 43.09 41.59 38.50 36.85 35.16
zig 36.44 35.19 34.39 33.67 33.28 33.03 32.74 32.47 32.34
np 16.17 42.84 43.15 15.52 40.55 39.98 40.33 39.56 39.07

ninv 614.89 531.77 456.36 404.46 382.36 359.09 326.17 314.64 291.91

Table 5: Total computing times (in seconds) for sample size n = 106 and selected values of the form
parameter p.

As can be seen in Table 5, the numerical inversion method is for each value of p significantly
slower than all other methods. Furthermore, the Ziggurat algorithm and the method of Nardon and
Pianca seem to be more efficient than the p-generalized polar methods, if p is sufficiently small. For
bigger values of p, the p-generalized polar methods are the most efficient simulation techniques.

4.4 Discussion

The focus in this section was to investigate the adequacy and practicability of the two new me-
thods for the simulation of the Np-distribution introduced in Section 2. For this purpose, the p-
generalized polar methods were compared in different tests with four other simulation methods
for the p-generalized Gaussian distribution. On the one hand, the tests included goodness of fit
comparisons studying the quality or adequacy of generated random numbers. On the other hand,
the practicability of simulation methods is closely connected with their complexity, which was also
subject of the mentioned tests.
Test 1 showed that all simulation techniques work correctly, because there were little deviations
of the relative rejection frequencies from the rejection probability α in case of a correct simulation
method. The quality of the random numbers generated by the six algorithms was also confirmed
by Test 2, because exact probabilities of sets from the distribution centre and from the distribution
tail could be approximated very accurate, if the sample size was large enough.
While both tests cannot be used to rank the generation methods due to a pretty similar performan-
ce, in contrast, Test 3 showed considerable differences in the practicability of the six methods. In
this context, the numerical inversion method seems to be very unefficient even if the time for the set
up of this method is neglected. It also becomes apparent that the p-generalized polar methods are
not preferable in the case that p is sufficiently small. If this is not the case, the p-generalized polar
methods, the method from Nardon and Pianca, the adapted Monty Python method and the adapted
Ziggurat method perform on a similar level, where the two new methods from Section 2 were in
all tests the most efficient ones if p ≥ 1.5. Remembering that the adapted Monty Python method
and the adapted Ziggurat method should not be used for small sample sizes, compare Remark 1,
there are many situations in which the p-generalized polar methods are the preferred generation
algorithms for sampling from the p-generalized Gaussian distribution. In this connection, the choice
of a simulation technique w.r.t. the sample size and the form parameter could be made according
to Table 6.
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form parameter

sample size 0 < p < 0.75 0.75 ≤ p < 1.5 p ≥ 1.5

small Nardon/Pianca p-gen. polar methods p-gen. polar methods
large Ziggurat Ziggurat p-gen. polar methods

Table 6: Most efficient simulation technique w.r.t. the sample size n and the form parameter p.

A Rejection methods and stopping elements

Here, we give a probabilistic description of the announced connection between conditional probabi-
lities as in (2) and the distribution of stopping elements.
As indicated in Subsection 3.2, rejection methods make use of stopping elements and conditional
probabilities and include a successsive generation of random numbers until a certain condition is ful-
filled. In case of the rejecting polar method, on (0, 1)×2 uniformly distributed (v1, v2) are generated
until they are in the unit disc K2, see (2), i.e. a sequence (Vn)n∈N = (Vn,1, Vn,2)n∈N of independent,
on (0, 1)×2 uniformly distributed random vectors gets stopped at the random time

τA := inf {n ∈ N : Vn ∈ A} , (9)

where A = K2 represents the event of acceptance. The random index of the first element from the
sequence (Vn)n∈N which belongs to the acceptance region, τA, is a stopping time with respect to
the canonical filtration (σ(V0, . . . , Vn))n∈N for every Borel-set A, because{

τA = n
}

= {V0 /∈ A, V1 /∈ A, . . . , Vn−1 /∈ A, Vn ∈ A} ∈ σ(V0, . . . , Vn) .

Here, σ(V0, . . . , Vn) denotes the smallest σ-Borel field generated by the random variables V0, . . . , Vn.
The accepted random vector has a random index and can be considered as the stopping element

VτA = (VτA,1, VτA,2) :=

∞∑
n=0

1{τA=n}Vn . (10)

Remark 2. The stopping time τA is a.s. finite iff P (V0 ∈ A) > 0, because

P
(
τA =∞

)
= P (V0 /∈ A, V1 /∈ A, . . .) = P

(
∩

n∈N
{(V0 /∈ A) ∩ . . . ∩ (Vn /∈ A)}

)
= lim

n→∞
P ({(V0 /∈ A) ∩ . . . ∩ (Vn /∈ A)}) = lim

n→∞
(1− P (V0 ∈ A))n+1 .

Example 1. Choosing the region of acceptance A = Kp, as it was done in step 2 of Algorithm
2, one gets an a.s. finite stopping time τA. To see this, let us consider the joint density of the
power-function distributed random variables V l

0,1 and V m
0,2

h(x, y) =
1

ml
x1/l−1y1/m−1, (x, y) ∈ (0, 1)2, l,m > 0 .

Following (Jöhnk, 1964), it holds

P
(
V l

0,1 + V m
0,2 ≤ 1

)
=

1∫
0

1−x∫
0

1

ml
x1/l−1y1/m−1 dy dx =

1

ml

1∫
0

x1/l−1

[
y1/m

1/m

]1−x

0

dx

=
1

l

1∫
0

x1/l−1(1− x)1/m dx =
Γ
(

1
l + 1

)
Γ
(

1
m + 1

)
Γ
(

1
l + 1

m + 1
) ,
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so that

P
(
V p

0,1 + V p
0,2 ≤ 1

)
=

Γ
(

1
p + 1

)2

Γ
(

2
p + 1

) .

Thus, step 2 of Algorithm 2 stopps almost surely at a finite time.

The introduction of a stopping time τA and a stopping element VτA enables one to reduce various
algorithms to stochastic representations of the underlying random vectors. Such representations can
be used to prove the correctness of several generation methods. We show in the next lemma that the
distribution of the stopping element VτA coincides with the conditional distribution of the random
vector Vi under the acceptance condition that Vi ∈ A, ∀i ∈ N.

Lemma 1. If A,B ∈ B(R2) and P (V0 ∈ A) > 0, then

P (VτA ∈ B) = P (V0 ∈ B| V0 ∈ A) .

Proof. Assuming B ∈ B(R2), it holds

P (VτA ∈ B) = P

( ∞∑
n=0

1{τA=n}Vn ∈ B

)
=
∞∑
n=0

P
(
τA = n, Vn ∈ B

)
= P (V0 ∈ A ∩B) + P (V0 ∈ A ∩B)

∞∑
n=1

P (V0 /∈ A)n

= P (V0 ∈ B| V0 ∈ A) .

Example 2. The p-generalized rejecting polar method is according to Theorem 3 based upon a
stochastic representation for the random vector Up

Up
d
= Σ

VτA

|VτA |p
, (11)

where the acceptance region in the definition of the stopping element is A = Kp, the stopping time
τA is a.s. finite, see Example 1, and the random signature matrix Σ = diag(S1, S2) is based upon
the random variables S1, S2 being independent and uniformly distributed on {−1, 1}. Here, equation
(11) is a consequence of Lemma 1 and

P
(
ΣV0/|V0|p ∈ B

∣∣ |V0|p ≤ 1
)

= P (Up ∈ B) , ∀B ∈ B (Cp) ,

which was shown in the proof of Theorem 3.

Example 3. Let (Y1, Y2) be l2,p-generalized uniformly distributed on Cp ∩R2
+. Then, according to

the proof of Theorem 3,

P
(
V0/|V0|p ∈ B+

∣∣ |V0|p ≤ 1
)

= P ((Y1, Y2) ∈ B+) , ∀B+ ∈ Cp ∩ R2
+,

if (Vn)n∈N is a sequence of uniformly on (0, 1)×2 distributed random vectors which is independent
from (Y1, Y2). Hence

P

(
V0,1

V0,2
∈ B

∣∣∣∣ |V0|p ≤ 1

)
= P

(
Y1

Y2
∈ B

)
, ∀B ∈ B(R+),
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and consequently

VτA,1
VτA,2

d
=
Y1

Y2
,

if A = Kp. For this reason, the stochastic representation from Theorem 1 for the random angle Φ
is equivalent to

Φ
d
= S1 arctan

(
VτA,1
VτA,2

)
+ πS2 +

π

2
, (12)

that means the simulation of Φ can be reduced to the simulation of uniformly distributed random
variables, see step 2 of Algorithm 7.

Example 4. Let Y be Beta distributed with positive parameters l and m, i.e. Y ∼ B(l,m). Then,
according to (Jöhnk, 1964),

P (Y ∈ B) = P

(
V

1/l
0,1

V
1/l

0,1 + V
1/m

0,1

∈ B
∣∣∣∣V 1/l

0,1 + V
1/m

0,1

)
, ∀B ∈ B(R) ∩ (0, 1] .

With Lemma 1, we obtain the stochastic representation

Y
d
=

V
1/l

τA,1

V
1/l

τA,1
+ V

1/m

τA,2

, (13)

where the acceptance region A is defined as A =
{

(x, y) ∈ (0, 1)×2 : x1/l + y1/m ≤ 1
}
.

B The completed algorithms of the p-generalized polar methods

The p-generalized polar method according to Algorithm 1 includes in step 1 the generation of
a Gamma distributed random number and in step 2 the simulation of the angular distribution
according to Definition 1. We now present completed versions of Algorithm 1 and Algorithm 2,
which are exclusively based on the generation of uniformly distributed random numbers. To this
end, let k be the largest natural number less than or equal to 2/p, i.e. k := [2/p], and p̃ = 2/p− k.

Algorithm 7 (Completed p-generalized polar method).

1. Simulation of Rp

(i) Choose z1, . . . , zk uniformly from (0, 1). Set γ = ln z1 + . . .+ ln zk and go on with (iv) ,
if p̃ = 0.

(ii) Choose (u1, u2) uniformly from (0, 1)×2 until u1/p̃
1 + u

1/(1−p̃)
2 ≤ 1.

(iii) Choose zk+1 uniformly from (0, 1) and set γ = γ + ln zk+1
u
1/p̃
1

u
1/p̃
1 +u

1/(1−p̃)
2

.

(iv) Form rp = (−p γ)1/p.

2. Simulation of Up

(i) Choose (v1, v2) uniformly from (0, 1)×2 until |(v1, v2)|p ≤ 1.

(ii) Choose σ1 uniformly from {−1, 1}.
(iii) Choose σ2 uniformly from {0, 1}.

(iv) Build φ = σ1 arctan
(
v1
v2

)
+ πσ2 + π

2 and up = (cosp φ, sinp φ).

3. Return (x1, x2) = rp · up.
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Algorithm 8 (Completed p-generalized rejecting polar method).

1. Follow step 1 from Algorithm 7 to simulate Rp.

2. Simulation of Up

(a) Choose (v1, v2) uniformly from (0, 1)×2 until vp1 + vp2 ≤ 1.
(b) Choose (s1, s2) uniformly from {−1, 1}×2 and form the signature matrix Σ = diag(s1, s2).

(c) Build up = (v1,v2)
|(v1,v2)|p Σ.

3. Return (x1, x2) = rp · up.

Remark 3. Let X1, X2 be an independent pair of p-generalized Gaussian distributed random
variables and let Z1, . . . , Z[2/p]+1 be independent random variables following the uniform distribution
on (0, 1). The random variable Rpp/p = |(X1, X2)|pp/p is according to Theorem 2 Gamma distributed
with parameter 2/p. If 2/p is a natural number, then

Rpp
p

d
= −

2/p∑
i=1

lnZi ,

i.e. Rpp/p can be represented as the sum of 2/p independent exponential distributed random varia-
bles, see (Jöhnk, 1964). If p̃ = 2/p− [2/p] > 0, then

− R
p
p

p

d
=

[2/p]∑
i=1

lnZi + lnZ[2/p]+1 Y ,

where Y is beta distributed with parameters p̃ and 1− p̃. Consequently,

− R
p
p

p

d
=

[2/p]∑
i=1

lnZi + lnZ[2/p]+1

V
1/p̃

τA,1

V
1/p̃

τA,1
+ V

1/(1−p̃)
τA,2

,

if p̃ > 0, (Vn)n∈N is a sequence of independent random vectors which follow the uniform distribution
on (0, 1)×2 and A =

{
(x, y) ∈ (0, 1)×2 : x1/p̃ + y1/(1−p̃) ≤ 1

}
, compare with Example 4.

Remark 4. In step 2 of Algorithm 7, the angular distribution corresponding to the l2,p-generalized
uniform distribution on Cp is simulated with a rejection method corresponding to the stochastic
representation (12) from Example 3.

C Auxiliary lemmas

Lemma 2. If f̃(x) = exp
(
−xp

p

)
and g(x) = exp

(
−ξp−1x

)
, then

f̃(ξ + x) ≤ f̃(ξ)g(x) , ∀x ≥ 0, p ≥ 1.

Proof. We notice that exp
(
− (ξ+x)p

p

)
≤ exp

(
− ξp

p − ξ
p−1x

)
iff (ξ + x)p ≥ ξp + pξp−1x . A Taylor

expansion of the continuously differentiable function h(x) = xp , x ∈ R+, yields

h(ξ + x) = ξp + pξp−1x+R1(ξ + x) ,

where

R1(ξ + x) = p (p− 1)

ξ+x∫
ξ

(ξ + x− t) tp−2 dt ≥ 0 .
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Lemma 3. Let V be a continuous random variable with density f : R→ R+ and let X = (X1, X2)
be uniformly distributed on A(f) := {(x, y) ∈ R2 : 0 < y < f(x)}. Then

X1
d
= V .

Proof. X has the density gX(x, y) = 1A(f)(x, y) and the marginal density of X1 is

gX1(x1) =

∫
R

1A(f)(x1, x2) dx2 =

f(x1)∫
0

dx2

= f(x1) .

Lemma 4. LetX be uniformly distributed on A ∈ B(R2) with µ(A) = 1/c > 0. Let also T : A→ B,
B ∈ B(R2), be a bijective map satisfying µ(Ã) = µ(T (Ã)), ∀Ã ∈ B(A). Then T (X) follows a
uniform distribution on B and has the density

fT (X)(x) = c 1B(x) .

Proof. Let B̃ ∈ B(R2) ∩B, then

P
(
T (X) ∈ B̃

)
= P

(
X ∈ T−1(B̃)

)
=

∫
T−1(B̃)

c 1A(x, y)µ(d(x, y))

= c

∫
T−1(B̃)

(
1A ◦ T−1 ◦ T

)
(x, y)µ(d(x, y)) = c

∫
B̃

(
1A ◦ T−1

)
(x, y) d(T µ)

=

∫
B̃

c 1B(x, y)µ(d(x, y))

Lemma 5. Let Y be uniformly distributed on A ⊆ B ∈ B(R2) and let X be uniformly distributed
on B, where µ(A) > 0. Then

P (X ∈ C| X ∈ A) = P (Y ∈ C) , ∀C ∈ B(R2) .

Proof.

P (X ∈ C| X ∈ A) =

∫
A∩C

1
µ(B)1B(x) dx

(µ(A)/µ(B))
=

∫
A∩C

1

µ(A)
1B(x) dx

=

∫
C

1

µ(A)
1A(x) dx = P (Y ∈ C) .

Lemma 6. Let A1,. . . , Am be pairwise disjoint with Ai ∈ B(R2) and µ(Ai) = v > 0, ∀i ∈
{1, . . . ,m}. Let further Xi be uniformly distributed on Ai, i ∈ {1, . . . ,m}, and assume that Z is
uniformly distributed on {1, . . . ,m} and independent fromX1, . . . , Xm. Then

∑m
i=1 1{Z=i}Xi follows

a uniform distribution on A1 ∪ . . . ∪Am.
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Proof.

P

(
m∑
i=1

1{Z=i}Xi ∈ A

)
= P

(
m⋃
i=1

{Z = i, Xi ∈ A}

)
=

m∑
i=1

P (Z = i, Xi ∈ A)

=
m∑
i=1

P (Z = i)P (Xi ∈ A) =
1

m

m∑
i=1

µ(A ∩Ai)
µ(Ai)

=
1

m v

m∑
i=1

µ (A ∩Ai) =
µ (A ∩ (A1 ∪ . . . ∪Am))

µ (A1 ∪ . . . ∪Am)

D The stochastic representation behind the adapted tail algorithm

In this supplementary section, we reflect the basic mathematical relations behind the tail algorithm,
see (Marsaglia and Bray, 1964), and its adaption to the p-generalized Gaussian distribution. Con-
sider a positive random variable X with a strictly monotonic decreasing density f and a random
vector Z = (Z1, Z2), which is uniformly distributed on the tail area A(f, ξ) := {(x, y) ∈ R2

+ : x >
ξ, 0 < y < f(x)} for ξ > 0. It follows from Lemma 3, that

P (Z1 < t) = P
(
X < t

∣∣X ≥ ξ) , ∀t ≥ ξ ,
i.e. Z1 follows the conditional distribution of X under the condition that X ≥ ξ. To simulate Z1, the
tail agorithm generates a random tuple (z1, z2) that is uniformly distributed on a superset Ã(f, ξ)
of A(f, ξ), see Figure 8. According to Lemma 5, z1 is a realisation of Z1 if (z1, z2) ∈ A(f, ξ). In
this context, the set Ã(f, ξ) is constructed with the help of a function g of the type g(t) = e−βt or
g(t) = (1 + ψt)−β , such that

f(ξ + t) ≤ f(ξ)g(t) , ∀t ≥ 0 . (14)

In case of a p-generalized Gaussian distributed random variable X and the density f∗p of it’s absolute
value, the function g(x) = exp

(
−ξp−1x

)
satisfies the condition in (14) for every p ≥ 1. Otherwise

constants β > 1 and ψ > 0 have to be found for every p from the range (0, 1), such that g(t) =

(1 + ψt)−β fulfilles the condition in (14) and
∞∫
0

g(t) dt is as small as possible. The last requirement

is due to the fact that the rejection probability of (z1, z2) attains its minimal value if
∞∫
0

g(t) dt is as

small as possible.

x

y

f(î)g(x-î)

f(x)

(î,0)

f(î)

A(f,î)
~

A(f)

f(x)

Fig. 8: Simulation of a uniform distribution on Ã(f, ξ).
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The uniform distribution on the set Ã(f, ξ) is finally simulated with the help of a suitable one-
to-one map T : (0, 1)2 → Ã(f, ξ). In this context, a uniformly from (0, 1)×2 chosen random tuple
(v1, v2) gets mapped with T onto Ã(f, ξ), so that the tuple T (v1, v2) is a realization of the random
vector Z.

Remark 5. In case of the p-generalized Gaussian distribution, the map T = (T1, T2) may be chosen
as

T (v1, v2) =


(
ξ − ln v1

ξp−1 , v2f
∗
p (ξ)g

(
− ln v1
ξp−1

))
, if p ≥ 1

(
ξ + 1

ψ

(
v

1/(1−β)
1 − 1

)
, v2f

∗
p (ξ)g

(
1
ψ

(
v

1/(1−β)
1 − 1

)))
, if 0 < p < 1

.

Algorithm 4 corresponds to the stochastic representations given in the next two theorems. Here,
it is shown that T1 (VτB ) has the needed conditional distribution, if T is chosen as in Remark 5 and
B is chosen as in Theorems 4 and 5, respectively. Notice, that the Lebesgue measure is in this case
not invariant up to T . Consequently, Lemma 4 cannot be used to show the correctness of Algorithm
4.

Theorem 4. Assume X ∼ Np, p ≥ 1, ξ > 0 and let the region of acceptance in the definition of
the stopping time be B :=

{
(x, y) ∈ R2 : y < x−1 exp

[
ξp

p −
1
p

(
ξ − lnx

ξp−1

)p]}
. Then

P

(
ξ −

lnVτB ,1
ξp−1

< z

)
= P

(
|X| < z

∣∣ |X| > ξ
)
, ∀z > ξ ,

where τB is an a.s. finite stopping time.

Proof. It follows from Lemma 2 that B ⊆ (0, 1)2, because

exp

[
−1

p

(
ξ − lnx

ξp−1

)p]
= f̃

(
ξ − lnx

ξp−1

)
≤ f̃(ξ)g

(
− lnx

ξp−1

)
= exp

[
−ξ

p

p

]
x, ∀x ∈ (0, 1) .

For this reason,

P
(
V0,1 < t

∣∣ V0 ∈ B
)

= c̃

∫
x∈(0,t)

x−1 exp[ξp/p−1/p(ξ−lnx/ξp−1)p]∫
y=0

dy dx

= c̃

∫
x∈(0,t)

x−1 exp

[
ξp

p
− 1

p

(
ξ − lnx

ξp−1

)p]
dx

and
d

dt
P
(
V0,1 < t

∣∣ V0 ∈ B
)

= 1(0,1)(t) c̃ t
−1 exp

[
ξp

p
− 1

p

(
ξ − ln t

ξp−1

)p]
.

Thus we obtain
d

dz

[
P

(
ξ − lnV0,1

ξp−1
< z

∣∣ V0 ∈ B
)]

=
d

dz

[
P
(
V0,1 > exp(ξp − ξp−1z)

∣∣ V0 ∈ B
)]

=
d

dz

 1∫
exp(ξp−ξp−1z)

c̃ t−1 exp

[
ξp

p
− 1

p

(
ξ − ln t

ξp−1

)p]
dt


= −c̃ exp(ξp−1z − ξp) exp

[
ξp

p
− 1

p
(ξ − (ξ − z))p

]
exp

[
ξp − ξp−1z

]
(−ξp−1)

= c̃ ξ1−p exp

[
ξp

p

]
exp

[
−z

p

p

]
= c exp

[
−z

p

p

]
, z > ξ .
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The final conclusion follows from Lemma 1 and the fact, that

P (V0 ∈ B) = c̃

∫
x∈(0,1)

x−1 exp

[
ξp

p
− 1

p

(
ξ − lnx

ξp−1

)p]
︸ ︷︷ ︸

>0

dx > 0 .

The following Theorem 5 proves the correctness of Algorithm 4 in the case p ∈ (0, 1). We assume
therefore that the defining constants β > 1 and ψ > 0 of the function g(t) = (1 + ψt)−β are chosen
according to condition (14).

Theorem 5. Assume X ∼ Np, p ∈ (0, 1), ξ > 0 and let

B :=

{
(x, y) ∈ R2 : ye

− ξ
p

p x
β
β−1 < exp

[
−1

p

(
ξ +

1

ψ

(
u

1
(1−β)
1 − 1

))]}
denote the acceptance region in the definition of the stopping time τB of (Vn)n∈N. Then

P

(
ξ +

1

ψ

(
V

1
(1−β)
τB ,1

− 1

)
< z

)
= P

(
|X| < z

∣∣ |X| > ξ
)
, ∀z > ξ ,

where τB is a.s. finite.

Proof. We assumed that (14) is fulfilled, so B ⊂ (0, 1)2. It holds

P
(
V0,1 < t

∣∣ V0 ∈ B
)

=

∫
x∈(0,t)

xβ/(1−β) exp
[
ξp

p
− 1
p

(
ξ+ 1

ψ (x1/(1−β)−1)
)p]∫

0

dy dx

=

t∫
0

xβ/(1−β) exp

[
ξp

p
− 1

p

(
ξ +

1

ψ

(
x1/(1−β) − 1

))p]
dx

and

d

dt
P
(
V0,1 < t

∣∣ V0 ∈ B
)

= 1(0,1)(t)e
ξp

p t
β

1−β exp

[
−1

p

(
ξ +

1

ψ

(
t1/(1−β) − 1

))p]
.

Hence

d

dz

[
P

(
ξ +

1

ψ

(
V

1/(1−β)
0,1 − 1

)
< z

∣∣ V0 ∈ B
)]

=
d

dz

[
P
(
V0,1 > (ψ(z − ξ) + 1)1−β ∣∣ V0 ∈ B

)]

=
d

dz

 1∫
(ψ(z−ξ)+1)1−β

e
ξp

p t
β

1−β e
− 1
p

(
ξ+ 1

ψ (t1/(1−β)−1)
)p
dt


= (β − 1) e

ξp

p ψ e
− z

p

p

= c e
− z

p

p .
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E The stochastic representation behind the adapted Monty Python
method

We already described the main idea behind the Monty Python method and the role of a suitable
map T : R(b)→ A(f) in subsection 4.1, see especially Figure 6 for a definition of the sets D, E, F ,
G, H and H̃. With respect to Lemma 4, T has to be a bijective map and its images T (A) should
have the same Lebesgue-measure µ(T (A)) as the origin sets A ∈ B(R(b)).

Definition 2. Let f be the strictly monotonic decreasing density of a positive random variable X
and let µ denote the Lebesgue measure on B(R2). The map T : R(b)→ A(f) is defined by

T (x, y) = (T1(x, y), T2(x, y)) =


(x, y) , if (x, y) ∈ F

·
∪G(

s(b− x), 1
b + 1

bs −
y
s

)
, if (x, y) ∈ H

S(x, y) , otherwise

,

where a := f−1(1/b), s := a/(b − a) and S : D → E is bijective and satisfies the condition
µ(Ã) = µ(S(Ã)), ∀Ã ∈ B(D).

The map T corresponds to the projection of uniformly on R(b) distributed random vectors in Al-
gorithm 5 and fulfilles the conditions of Lemma 4. Consequently, the random vector T (b V0,1, V0,2/b)
is uniformly distributed on A(f).

Theorem 6. Let (Z1, Z2) be uniformly distributed on E and independent from V0 = (V0,1, V0,2).
Then

X
d
= 1R(b)\D(b · V0,1, 1/b · V0,2) T1(b · V0,1, 1/b · V0,2) + 1D(b · V0,1, 1/b · V0,2) Z1.

Proof. The random vector Y = (b · V0,1, 1/b · V0,2) follows a uniform distribution on R(b). It follows
from Lemma 4, that T (Y ) is uniformly distributed on A(f). According to Lemma 3, we obtain
T1(Y )

d
= X and

P (Y ∈ A|Y ∈ D) =

∫
A∩D

µ(d(x, y))

µ(D)

=
1

µ(D)

∫
A

1D(x, y)µ(d(x, y))

= P (Z̃ ∈ A) , A ∈ B(R2),

where Z̃ is uniformly distributed on D. Hence

1D(Y )T (Y )
d
= 1D(Y )T (Z̃) ,

where T (Z̃) follows according to Lemma 4 a uniform distribution on E.

Let us remark that a problem comes up when choosing the width b. As can be seen in Definition
2, bijectivity is one of the requirements for T . If b is too large, the images of the disjoint sets H̃
and G under T−1 aren’t disjoint, see Figure 9, where points from G are mapped to themselves.
Therefore, we have to assume that b is chosen according to the condition

T−1
2 (x, f(x)) > f

(
T−1

1 (x, f(x))
)
,∀x ∈ (0, a) , (15)

where a = f−1(1/b).
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xb

(a,1/b)

f

H

G

Fig. 9: Monthy Python: no bijectivity of T if b is too large.

Remark 6. The choice of the width b according to condition (15) requires for every p the solution of
an optimization problem. From the condition 1/b < f(0), we obtain a lower bound b ≥ p1/p−1Γ

(
1
p

)
.

The upper bound follows from the condition in (15), which is in case of the p-generalized Gaussian
distribution equivalent to

1− p1−1/p

Γ
(

1
p

) a exp

[
−1

p
xp
]
>
p1−1/p

Γ
(

1
p

) (b− a) exp

[
−1

p

(
b− x

s

)p]
, ∀x ∈ (0, a) . (16)

The optimization problem rises from the interest in the maximum value of the admissible range of
b, to use the expensive tail algorithm as rarely as possible.

F The stochastic representation behind the adapted Ziggurat me-
thod

The main idea behind the Ziggurat method was already given in Subsection 4.1. For the sake of
completeness, we prove here the stochastic representation corresponding to Algorithm 6 and reflect
a method from (Marsaglia and Tsang, 2000) for the set up of the Ziggurat. Let us firstly assume
that the Ziggurat for the strictly monotonic density f of a positive random variable X is already
defined by the coordinates x1, x2, . . . , xm−1, see Figure 7.
Additionally to the sequence (Vn)n∈N of uniformly on (0, 1)×2 distributed random vectors defined in
subsection A, we consider here a sequence (Yn)n∈N of uniformly on {1, . . . ,m} distributed random
variables. A realisation yn of Yn represents the uniformly chosen area in Algorithm 6. The sequence
(Yn)n∈N gets stopped if the uniformly chosen area is Rm∪E, see Figure 7, or if the uniformly chosen
tuple from Ryn is in A(f) in the case that yn ∈ {1, . . . ,m− 1}. For this reason, the stopping time τ
of (Yn)n∈N stopps also the sequence (Vn)n∈N, because a uniformly chosen tuple from the rectangle
Ri is represented by Si(vn), where

Si(x, y) :=


(
xix,

v
xi
y
)

, if i ∈ {1, . . . ,m− 1}(
v

f(xm−1)x, f(xm−1)y
)

, if i = m
.

The following theorem presents a stochastic representation of X that corresponds to Algorithm 6
in the case that X d

= |Y | and Y ∼ Np.

Theorem 7. Assume (Yn)n∈N is a sequence of independent random variables, uniformly distributed
on {1, . . . ,m}, which is independent from (Vn)n∈N. Let also Z = (Z1, Z2) be uniformly distributed
on E and τ be a stopping time satisfying

τ = inf

{
n ∈ N : Yn = m ∨

m−1∑
i=1

1{Yn=i}Si(Vn) ∈ A(f)

}
,
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where

Si(x, y) :=


(
xix,

v
xi
y
)

, if i ∈ {1, . . . ,m− 1}(
v

f(xm−1)x, f(xm−1)y
)

, if i = m
.

Then

X
d
=

m−1∑
i=1

1{Yτ=i}xiVτ,1 + 1{Yτ=m}

[
1Rm(Sm(Vτ ))

v

f(xm−1)
Vτ,1 + 1R∗

m\Rm(Sm(Vτ ))Z1

]
.

Proof. Assuming A ∈ B(R2), it holds

P

(
m−1∑
i=1

1{Yτ=i}Si(Vτ ) ∈ A

)
= P

(
m−1⋃
i=1

{Yτ = i, Si(Vτ ) ∈ A}

)
=

m−1∑
i=1

P (Yτ = i, Si(Vτ ) ∈ A)

=

m−1∑
i=1

P

 ∞⋃
j=0

{τ = j, Yτ = i, Si(Vτ ) ∈ A}


=

m−1∑
i=1

∞∑
j=0

P (Yj = i, Si(Vj) ∈ A ∩A(f))P (τ > j − 1)

=
m−1∑
i=1

P (Y0 = i, Si(V0) ∈ A ∩A(f))
∞∑
j=0

P (τ > j − 1) = (∗) ,

where

∞∑
j=0

P (τ > j − 1) =

∞∑
j=0

P

(
Y0 6= m,

m−1∑
i=1

1{Y0=i}Si(V0) /∈ A(f)

)j

=

(
1− P

(
Y0 6= m,

m−1∑
i=1

1{Y0=i}Si(V0) /∈ A(f)

))−1

=

(
P

(
{Y0 = m} ∪

{
m−1∑
i=1

1{Y0=i}Si(V0) ∈ A(f)

}))−1

.

Hence

(∗) =
P
(∑m−1

i=1 1{Y0=i}Si(V0) ∈ A ∩A(f)
)

P
(
{Y0 = m} ∪

{∑m−1
i=1 1{Y0=i}Si(V0) ∈ A(f)

}) . (17)

If V ∗ is uniformly distributed on (0, 1)2, then Sm(V ∗) follows a uniform distribution on R∗m. Consider
the bijective, Lebesgue-measure invariant map W : R∗m → Rm ∪ E satisfying

(W1(x, y),W2(x, y)) =

{
(x, y) , if (x, y) ∈ Rm
H(x, y) , else

,

where H : R∗m\R(m)→ E is bijective and invariant with respect to the Lebesgue-measure. In this
case W (Sm(V ∗)) is uniformly distributed on Rm ∪ E and it holds with respect to Lemma 3

1R∗
m\Rm (Sm(V ∗))H1 (Sm(V ∗))

d
= 1R∗

m\Rm (Sm(V ∗))Z1 .
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Hence

1{Yτ=m}

[
1Rm (Sm(Vτ ))

v

f(xm−1)
Vτ,1 + 1R∗

m\Rm (Sm(Vτ ))Z1

]
d
=1{Yτ=m}

[
1Rm (Sm(Vτ ))

v

f(xm−1)
Vτ,1 + 1R∗

m\Rm (Sm(Vτ ))H1 (Sm(Vτ ))

]
︸ ︷︷ ︸

=W1(Sm(Vτ ))

and

P
(
1{Yτ=m}W (Sm(Vτ )) ∈ A

)
= P (Yτ = m, W (Sm(Vτ )) ∈ A)

= P

 ∞⋃
j=0

{τ = j, Yτ = m, W (Sm(Vτ )) ∈ A}


= P (Y0 = m, W (Sm(V0)) ∈ A)

∞∑
j=0

P (τ > j − 1)

=
P (Y0 = m, W (Sm(V0)) ∈ A ∩A(f))

P
(
{Y0 = m} ∪

{∑m−1
i=1 1{Y0=i}Si(V0) ∈ A(f)

}) .

With (17), we finally obtain

P

(
m−1∑
i=1

1{Yτ=i}Si(Vτ ) + 1{Yτ=m}W (Sm(Vτ )) ∈ A

)

=
P
(∑m−1

i=1 1{Y0=i}Si(V0) + 1{Y0=m}W (Sm(V0)) ∈ A ∩A(f)
)

P


m−1∑
i=1

1{Y0=i}Si(V0) + 1{Y0=m}W (Sm(V0))︸ ︷︷ ︸
=:X̃

∈ A(f)


. (18)

Due to Lemma 6, X̃ follows a uniform distribution on R1 ∪ . . . ∪Rm ∪ E and (18) is equivalent to

P
(
X̃ ∈ A ∩A(f)

)
P
(
X̃ ∈ A(f)

) .

We know from Lemma 5 that this is the uniform distribution on A(f) applied to A. The first
component of

m−1∑
i=1

1{Yτ=i}Si(Vτ ) + 1{Yτ=m}W (Sm(Vτ ))

is in consequence and with respect to Lemma 3 distributed as X.

Let us now refer to the concept introduced in (Marsaglia and Tsang, 2000) for the set up of the
Ziggurat, i.e. for the calculation of the coordinates x1, . . . , xm−1.

Remark 7. As R1, . . . , Rm−1, R
∗
m have all the same area content v, it holds

v = xm−1f(xm−1) +

∞∫
xm−1

f(t) dt
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and

v = xi [f(xi−1)− f(xi)] ,∀i ∈ {1, . . . ,m− 1}.

Therefore the coordinates x1, . . . , xm−1 have to be calculated by choosing xm−1 suitably and using

xm−(k+1) = f−1

(
v

xm−k
+ f(xm−k)

)
, k = 1, . . . ,m.

The following algorithm reflects the idea for the set up of the Ziggurat presented in (Marsaglia
and Tsang, 2000). Due to the fact that a correct or adequate value of xm−1 is previously unknown,
a try and error method is used which finally accepts the coordinates xm−1, . . . , x1 if x0 equals
approximately 0.

Algorithm 9 (Nested intervals method for the set up of the Ziggurat).

1. Set rU = 10 and rL = 0. Put rU = 10 rU until rUf(rU ) +
∞∫
rU

f(x) dx < 1/m.

2. Form xm−1 = (rU + rL)/2, v = xm−1f(xm−1) +
∞∫

xm−1

f(t) dt.

3. Calculate x0, . . . , xm−2 with xm−(k+1) = f−1
(

v
xm−k

+ f(xm−k)
)
.

4. If |x0| < ε, then return x1, . . . , xm−1.

5. If x0 ≤ −ε, then put rL = xm−1 and go on with 2.

6. If x0 ≥ ε, then put rU = xm−1 and go on with 2.
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