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1 Introduction

It is proved in (Cambanis, Huang and Simons, 1981) that a random vector X has the

elliptically contoured density

fµ,Σ(x) = |Σ|−1/2g̃((x− µ)TΣ−1(x− µ)), x ∈ IRn

with form matrix Σ and a location vector µ and where the density generator

g̃ : [0,∞)→ [0,∞)

is non-increasing if and only if there exist a positive definite matrix C such that

CCT = Σ,
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and a nonnegative random variable R̃2 such that X and CZ + µ are identically distributed,

X
d
= CZ + µ,

where for given R̃2 = r2, Z is uniformly distributed on the Euclidean sphere of radius r.

A characterization of the multivariate normal distribution following from this result by spe-

cifying the distribution of R̃2 as a χ2-distribution with n d.f., R̃2 ∼ χ2
n, is given in (Tong,

1990), Theorem 4.1.1.

Here, we derive an alternative stochastic representation

X − µ d
= R · U

where R and U are independent, R2 follows a g-generalized χ2-distribution which is defined in

(Richter, 1991) for arbitrary density generating function g, and U follows a certain generalized

uniform distribution UE on the σ-algebra B(E) of Borel subsets of the ellipsoid E,

E = {x ∈ IRn : xTΣ−1x = 1},

i.e.,

P

(
1

R
(X − µ) ∈ A

)
= UE(A), A ∈ B(E).

To be more concrete, the distribution UE is a geometric probability measure on B(E),

UE(A) =
OE(A)

OE(E)
, A ∈ B(E)

where OE, in general, denotes a non-Euclidean surface measure having special properties

on ellipsoids. For how to distinguish between the notions density generator and density

generating function, we refer to Section 7.

Our basic assumption is that an orthogonal matrix O,O : IRn → IRn can be chosen such

that the diagonal matrix

OΣOT = diag(a2
1, ..., a

2
n)

is based upon positive numbers a1, ..., an. The form matrix of the random vector OX is then

a regular matrix, diag(a2
1, ..., a

2
n), and OE is an axes-aligned ellipsoid. Hence, for simplicity,
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we may assume in what follows that

Σ = diag(a2
1, ..., a

2
n) and E = {x ∈ IRn :

n∑
i=1

(
xi
ai

)2 = 1}.

The surface measure OE is an arc-length measure in the two-dimensional case. The mathe-

matical nature of this arc-length measure has been studied recently in (Richter, in print)

based upon a suitably chosen geometry which is a non-Euclidean geometry from the point

of view of metric geometry. This geometry is closely connected with the solution to the

iso-perimetric problem in the Minkowski plane in (Busemann, 1947). In the present paper,

we shall suitably define the surface measure OE for the multivariate case. Doing this, we

shall follow the general plan of studying local and global properties of surface measures as it

was realized in (Richter, 2009) for the case of ln,p-symmetric distributions. Let us start with

considering the axes-aligned elliptically contoured Gaussian distribution Φa. Its density is

ϕa(x) =
1

(2π)
n
2 a1...an

exp{−1

2

n∑
i=1

x2
i

a2
i

}, x = (x1, ..., xn)T ∈ IRn

and corresponds to the density generator g̃(v) = 1
(2π)n/2

e−v/2I(0,∞)(v). In the special case that

all variances are equal to 1, the density ϕa is that of the standard Gaussian distribution.

Geometric and stochastic representations follow for this case from (Richter, 2009) and several

earlier papers and monographs mentioned therein. The main aim of the present paper is to

extend such results to the heteroscedastic case. We shall derive results being analogous to

those in (Richter, 2007, 2009) which deal with ln,p-symmetric distributions. According to the

general method of analyzing the non-Euclidean geometry underlying a multivariate proba-

bility distribution which was developed in (Richter, 2007, 2009), we shall study measuring

ellipsoids in Section 2, extend the ball number function to a range of definition including

ellipsoids in Section 3 and define generalized ellipsoidal coordinates in Section 4. Section 5

deals with the connection between the global and the local approaches to the non-Euclidean

surface content upon which our geometric measure representations are based. These repre-

sentations itself will be considered for the Gaussian case in Section 6 and for the case of

general density generating functions in Section 7. The final Section 8 presents some examp-
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les for how to apply the general geometric measure representation and gives some outlook

onto further studies.

2 Measuring ellipsoids

The main result of this section is a generalized surface content formula for ellipsoids in

Lemma 2.

Let a = (a1, ..., an)T ∈ IRn
+ be an arbitrary vector having nonnegative components, |.|a :

IRn → [0,∞) the norm defined by

|x|a = (
n∑
1

(
xi
ai

)2)1/2, x ∈ IRn

and

Ba = {x ∈ IRn : |x|a ≤ 1}

the corresponding unit-ball. Its topological boundary, ∂Ba = Ea, is an axis-aligned ellipsoid

or elliptical sphere. For arbitrary R > 0 and M ⊂ IRn, put

RM = {(Rx1, ..., Rxn)T : (x1, ..., xn)T ∈M}.

The evaluation of the volume of Ba(R) = RBa may be easily reduced to the evaluation of

the volume of an Euclidean ball having a suitable radius. To this end, denote the Euclidean

ball of radius R by Kn(R) = RKn where Kn = B11, 11 = (1, ..., 1)T ∈ IRn, and its topological

boundary, the sphere of radius R, by Sn(R) = ∂Kn(R) = R∂Kn . If

a∗i =
n∏

j=1,j 6=i

aj, i = 1, ..., n and diag(a∗1, . . . , a
∗
n) =


a2...an

. . .

a1...an−1


then

diag(a∗1, . . . , a
∗
n)Ba(R) = Kn(a1...anR).
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Let λ denote the Lebesgue measure in IRn. Changing variables u = diag(a∗1, . . . , a
∗
n)x in the

integral

λ(Ba(R)) =

∫
{x∈Rn:|x|a≤R}

dx

gives

λ(Ba(R)) =

∫
Kn(Ra1...an)

du

(a1...an)n−1

since
d(u1, ..., un)

d(x1, ..., xn)
=

n∏
1

a∗i = (
n∏
1

ai)
n−1.

Hence,

λ(Ba(R)) =
λ(Kn(Ra1...an))

(a1...an)n−1
= a1...an

ωn
n
Rn

where

ωn =
2πn/2

Γ(n
2
)

= O(Sn)

is the surface content of the Euclidean unit-sphere Sn = Sn(1).

Measuring the Euclidean surface content of Ea(R) = REa necessarily involves elliptical

integrals of different types. In this paper, however, we shall turn over to another definition of

surface content which avoids elliptical integrals. To this end, we shall consider the ellipsoid

Ea(R) as a subset of the Minkowski space (IRn, |.| 1
a
), 1

a
= ( 1

a1
, ..., 1

an
)T . We will introduce in

this section the notion of the |.| 1
a
-surface content of Ea(R) in a similar way as the notion of

the ln,q-surface content was introduced in (Richter, 2009) for ln,p-spheres where p and q are

connected with each other by the equation 1
p

+ 1
q

= 1.

Let y be defined as the positive solution of
n−1∑
i=1

(xi/ai)
2 + (y/an)2 = R2.

At the point (x1, ..., xn−1, y)T , the normal vector to the upper half of the ellipsoid Ea(R) is

N(x1, ..., xn−1) = (−1)n(
n−1∑
i=1

∂y

∂xj
ej − en).

Since it always will become clear how to deal with the case y < 0, we will not further mention

this case.
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Definition 1 Let Bn denote the Borel σ-field in IRn and let A ⊂ Ea(R) ∩ Bn. The |.| 1
a
-

surface content of A is defined by

OE(A) =

∫
G(A)

|N(x1, ..., xn−1)| 1
a
dx1...dxn−1

where

G(A) = {(x1, ..., xn−1)T : (x1, ..., xn)T ∈ A}..

Lemma 2 The |.| 1
a
-surface content of Ea(R) is

OE(Ea(R)) = a1...anωnR
n−1.

Proof :

It follows from
∂y

∂xj
= − anxj

a2
j(R

2 −
n−1∑
i=1

(xi
ai

)2)1/2

, j = 1, ..., n− 1

that

|N(x1, ..., xn−1)|21
a

=
n−1∑
j=1

a2
nx

2
j

a2
j(R

2 −
n−1∑
i=1

(xi
ai

)2)

+ a2
n =

a2
nR

2

R2 −
n−1∑
i=1

(xi
ai

)2

.

Hence, because of symmetry,

OE(Ea(R)) = 2anR

∫
n−1∑
i=1

(
xi
ai

)2≤R2

dx1...dxn−1

(R2 −
n−1∑
i=1

(xi
ai

)2)1/2

.

Let the (n− 1)-dimensional standard ellipsoidal coordinate transformation

Ta : Mn−1 → IRn−1,Mn−1 = [0,∞)×M∗
n−1,M

∗
n−1 = [0, π)×(n−3) × [0, 2π)

be defined by x1 = a1r cosφ1, x2 = a2r sinφ1 cosφ2, ..., xn−2 = an−2r sinφ1... sinφn−3 cosφn−2,

xn−1 = an−1r sinφ1... sinφn−3 sinφn−2. If a = 11 ∈ IRn−1 then this transformation coincides

with the (n− 1)-dimensional spherical coordinate transformation SPH(n−1) the Jacobian of
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which is well known. If we write J(T ) for the Jacobian of the coordinate transformation T

then

J(Ta)(r, φ) = | d(x1, ..., xn−1)

d(r, φ1, ..., φn−2)
| = a1 · ... · an−1J(SPH(n−1))(r, φ) .

Let J∗(SPH(n−1))(φ) = J(SPH(n−1))(1, φ) be the Jacobian of the restriction of SPH(n−1)

to the sphere defined by r = 1. Changing Cartesian with standard ellipsoidal coordinates

gives

OE(Ea(R)) = 2anR

R∫
0

rn−2

√
R2 − r2

dr

×
π∫

0

...

π∫
0

2π∫
0

a1...an−1J
∗(SPH(n−2))(φ1, ..., φn−2)dφn−2...dφ1.

Because of
R∫

0

rn−2dr√
R2 − r2

= Rn−2

1∫
0

tn−2dt√
1− t2

=
1

2
Rn−2B(

1

2
,
n− 1

2
)

and

B(
1

2
,
n− 1

2
)ωn−1 =

Γ(1
2
)Γ(n−1

2
)

Γ(n
2
)

2π(n−1)/2

Γ(n−1
2

)
= ωn

it follows

OE(Ea(R)) = a1...anωnR
n−1

�

3 The ellipsoid-number function and the generalized in-

divisiblen method

It is known from (Richter, 2009) that the geometric analysis of ln,p-symmetric densities

is closely connected with the definition of ln,p-ball numbers. Similar circumstances in the

analysis of elliptically contoured distributions allow us to extend here the range of definition
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of the ball-number function in such a way that ellipsoids will be included.

It is well known that
λ(Kn(R))

Rn
=
O(Sn(R))

nRn−1
=
ωn
n
, R > 0.

This was the motivation to introduce the ball-number function

n→ πn(2) =
ωn
n

and further to extend it to a function (n, p) → πn(p) which assigns a ball number πn(p) to

every ln,p-ball, n = 2, 3, ..., p > 0.

It is obvious that

O(Sn(R)) =
d

dR
λ(Kn(R)), R > 0

and hence,

λ(Kn(R)) =

R∫
0

O(Sn(r))dr.

This formula reflects the indivisiblen method of Cavalieri and Torricelli in the sense that

the indivisiblen are the spheres Sn(r) and measuring them is due to the Euclidean surface

content. A similar formula was derived in (Richter, 2009) where the indivisiblen are ln,p-

spheres and measuring them is due to a suitably defined ln,q-surface measure. In this section,

we prove an extension of this method such that from now on also ellipsoids may play the role

of the indivisiblen. From the statistical point of view, this enables us to deal with multivariate

sampling densities reflecting the heteroscedastic case.

It follows from what is shown in the preceding section that

λ(Ba(R))

Rn
=
OE(Ea(R))

nRn−1
= a1...anπn(2), R > 0.

The following definition is thus well motivated.

Definition 3 The ellipsoid-number function (a, n)→ πEn (a) is defined by

πEn (a) = a1...an
ωn
n
, a ∈ Rn

+, n ∈ {2, 3, ...}..
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It is obvious that

OE(Ea(R)) =
d

dR
λ(Ba(R)), R > 0

and hence,

λ(Ba(R)) =

R∫
0

OE(Ea(r))dr.

On the one hand, it is already this formula which may be considered as a generalization of

the indivisiblen method of Cavalieri and Torricelli. On the other hand, this formula will be

considerably generalized itself in Theorem 5. We shall make use of the following notions,

there.

Definition 4 (a) The geometric probability distribution

UE
a (D) =

OE(D)

OE(Ea)
, D ∈ BE

a = Bn ∩ Ea

is called the |.| 1
a
-generalized uniform distribution on BE

a .

(b) For an arbitrary Borel subset A of IRn, the Ea-intersection-percentage function (i.p.f.)

r → FEa (A, r) is defined as

FEa (A, r) = UE
a ([r−1A] ∩ Ea), r > 0.

Theorem 5 Let A ∈ Bn satisfy λ(A) <∞, then

λ(A) = nπEn (a)

∞∫
0

FEa (A, r) rn−1 dr =

∞∫
0

OE(A ∩ Ea(r))dr .

Proof :

The central projection cone corresponding to the set D ∈ BE
a is defined as

CPCa(D) = {x ∈ IRn :
x

|x|a
∈ D},

and the ellipsoidal sector of radius ρ > 0 generated by D is

sectora(D, ρ) = CPCa(D) ∩Ba(ρ).
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We consider now Borel sets of the type

Aa(D, ρ1, ρ2) = sectora(D, ρ1) \ sectora(D, ρ2), D ∈ BE
a

for arbitrary ρ1 < ρ2 from [0,∞). The collection of all such sets is a semi-algebra on IRn, say

Sa. The smallest algebra including Sa, i.e. the collection of finite unions of elements from

Sa, will be denoted by Aa. Let us further consider the finitely additive function λ∗ on Aa

which is already defined by its values for elements from Sa as

λ∗(A) = nπEn (a)

ρ2∫
ρ1

FEa (A, r)rn−1dr,A = Aa(D, ρ1, ρ2), 0 ≤ ρ1 < ρ2 <∞, D ∈ BE
a .

Note that λ∗(An) tends to zero whenever (An)n∈N is a decreasing sequence of sets from Aa

satisfying
⋂
n

An = ∅ for the empty set ∅. This means that λ∗ is continuous at ∅ and therefore

a countable additive function on Aa. Now, it remains to show that λ∗ coincides with λ on

Aa. Then, by measure extension theorem, λ∗ coincides with λ on the whole σ-algebra Bn.

For doing the latter it suffices to show that λ∗(A) is the same as λ(A) for sets of the type

A = Aa(D, %1, %2), 0 ≤ %1 < %2 <∞, D ∈ BE
a ..

Due to the product structure of the set Aa(D, %1, %2) = [%1, %2] · D, the function r →

FEa (Aa(D, %1, %2), r) is constant with the constant being UE
a (D). Hence,

λ∗(Aa(D, %1, %2)) = πEn (a)UE
a (D)(ρn2 − ρn1 ).

Let us consider now λ. For every R > 0, we define the uniform probability measure µR on

the |.| 1
a
-ball of radius R, Ba(R), by

µR(A) =
λ(A ∩Ba(R))

λ(Ba(R))
, R > 0, A ∈ Bn

and assume that the random vector Y (R) follows the distribution µR. Further, we define the

random elements

ξ(R) = |Y (R)|a and U(R) =
1

ξ(R)
Y (R).
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The c.d.f. of ξ(R) is

P (ξ(R) < t) = P (Y (R) ∈ Ba(t)) =
λ(Ba(t))

λ(Ba(R))
, 0 < t ≤ R,

and the probability distribution of U(R) allows the representation

P (U(R) ∈ D) = P (Y (R) ∈ sectora(D,R)) =
λ(sectora(D,R))

λ(Ba(R))
, D ∈ BE

a .

Since
λ(sectora(D,R))

λ(Ba(R))
=
λ(sectora(D, t))

λ(Ba(t))
,

it follows

P (ξ(R) < t)P (U(R) ∈ D) =
λ(sectora(D, t))

λ(Ba(R))
= P (Y (R) ∈ sector(D, t))

= P (ξ(R) < t, U(R) ∈ D) .

Hence ξ(R) and U(R) are independent.

Lemma 6 The distribution PU(R) induced by U(R) on BE
a coincides with the generalized

uniform surface measure UE
a .

For the proof of this lemma, we refer to the end of Section 5.

We are now in a position to finish the proof of Theorem 5.

Due to the product structure of the set sectorp(D, %) = [0, %] ·D, it follows

λ(sectora(D, %)) = λ(Ba(R))µR(sectora(D, %)) = λ(Ba(R))P ξ(R)([0, %])PU(R)(D)

= πEn (a)ρnUE
a (D), % > 0, D ∈ BE

a .

Hence

λ(Aa(D, %1, %2)) = πEn (a)UE
a (D)(ρn2 − ρn1 ), 0 ≤ %1 < %2 <∞, D ∈ Ba.

The other equation in the statement of the theorem follows now from

OE(A ∩ Ea(r)) = rn−1OE([r−1A] ∩ Ea)
OE(Ea)

nπEn (a) = rn−1UE
a ([r−1A] ∩ Ea)nπEn (a)
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The integral representation of the Lebesgue measure in Theorem 5 may be considered as

reflecting a non-Euclidean generalization of the indivisiblen method of Cavalieri and Torricelli

in the sense that the indivisiblen of a set A are the intersections of A with the ellipsoids

Ea(r), 0 < r < ∞, A ∩ Ea(r), and measuring the latter is due to the non-Euclidean surface

measure OE. Hence, the generalized indivisiblen method proved in (Richter, 2009) for ln,p-

spheres is extended here to ellipsoids. Theorem 5 may also be considered as presenting a

certain so called disintegration formula for the Lebesgue measure.

It follows from the co-area formula of measure theory (see, e.g., in (Evans and Gariepy,

1992)) that the equation in Theorem 5 does not hold, in general, if the surface measure OE

is changed with the usual Euclidean surface content O. To be more specific, let

fE(x) = inf{λ > 0 : x ∈ λE∗}, x ∈ IRn,

denote the norm generated by the convex body E∗ having the boundary E. Then the function

f = fE|IRn → IR1, n ≥ 1 is Lipschitzian,

|f(x)− f(y)| ≤ C|x− y|, x, y ∈ A,A ∈ Bn,

and the co-area formula asserts that∫
A

J(f)(x)dx =

∫ ∞
0

O(A ∩ f−1({r}))dr .

To illustrate this, let us consider for simplicity the two-dimensional case with E = E(a,b)T , b <

1 < a. Then the latter formula reads as

ν(A) :=

∫
A

(

x21
a4

+
x22
b4

x21
a2

+
x22
b2

)1/2dx =

∞∫
0

O(A ∩ (rE))dr.

Notice that

ν(M) = λ(M) iff a = 1 = b,

hence, there is no extension of the classical indivisiblen method to the case b < 1 < a on the

basis of Euclidean metric geometry.
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We finish this section with an asymptotic comparison of |.| 1
a
-norms, a ∈ Rn

+. It is well known

that all norms defined in Rn are equivalent. From an asymptotic point of view, however, it

is possible to distinguish between different |.| 1
a
-norms in the following way.

Corollary 7 The asymptotic relation

λ({x ∈ IRn : r < |x|a < r + ε}) ∼ nπEn (a)rn−1ε, ε→ 0

follows immediately from Theorem 5.

Proof :

The i.p.f. of the set A = {x ∈ IRn : r < |x|a < r + ε} is

FEa (A, ρ) = I(r,r+ε)(ρ), ρ > 0.

Theorem 5 applies,

λ(A) = nπEn (a)

∞∫
0

ρn−1I(r,r+ε)(ρ)dρ.

Hence, λ(A) = πEn (a)[(r + ε)n − rn] �

Definition 8 The asymptotic relation in Corollary 7 is called the ellipsoidal thin-layers

property of the Lebesgue measure.

4 Generalized ellipsoidal coordinates

We recall that ln,p-generalized trigonometric functions and coordinates have been proved

in (Richter, 2007, 2009) to be powerful tools for studying ln,p-symmetric distributions. The

coordinates which we define in this section are used, e.g., in the next section for showing the

equivalence of two approaches to the surface measure OE.

The E(a,b)-generalized trigonometric functions sin(a,b) and cos(a,b) were recently introduced in

(Richter, submitted). On using them, let the generalized ellipsoidal coordinate transformation

TEa : Mn → IRn,Mn = [0,∞)×M∗
n,M

∗
n = [0, π)×(n−2) × [0, 2π)
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be defined by

x1 = a1r cos(a1,a2)(φ1), x2 = a2r sin(a1,a2)(φ1) cos(a2,a3)(φ2), ...,

xn−1 = an−1r sin(a1,a2)(φ1)... sin(an−2,an−1)(φn−2) cos(an−1,an)(φn−1),

xn = anr sin(a1,a2)(φ1)... sin(an−2,an−1)(φn−2) sin(an−1,an)(φn−1).

Theorem 9 The map TEa is almost one-to-one, its inverse (TEa )−1 is given by

r = (
n∑
1

(
xi
ai

)2)1/2, φj = arccos(aj ,aj+1)
xj/aj

(
n∑
i=j

(xi/ai)2)1/2

, φn−1 = arctan
xn
xn−1

where arccos(aj ,aj+1) denotes the inverse function to cos(aj ,aj+1).

Proof :

The proof of this theorem is quite similar to that of Theorem 1 in (Richter, 2007) and will

therefore be omitted, here. �

Theorem 10 The Jacobian of the coordinate transformation TEa satisfies the representation

J(TEa )(r, φ1, ..., φn−1) = rn−1J∗(TEa )(φ1, ..., φn−1)

where

J∗(TEa )(φ1, ..., φn−1) = an

n−1∏
i=1

(sin(ai,ai+1)(φi))
n−1−i

ai+1N2
(ai,ai+1)(φi)

.

For the proof if this theorem, see the Appendix.

Corollary 11 It follows from Theorem 10 that if n = 2 then

J(TEa )(r, φ) =
r

N2
(a1,a2)(φ)

and if n = 3 then

J(TEa )(r, φ1, φ2) =
r2 sinφ1

a2
2N

2
(a2,a3)(φ2)N3

(a1,a2)(φ1)
.
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The first assertion in Corollary 11 is known from (Richter, 2011) and the second one follows

alternatively by straightforward calculations from

J(TEa )(r, φ1, φ2) = |D(x1, x2, x3)

D(r, φ1, φ2)
| = |

∣∣∣∣∣∣∣∣∣
x1
r
−x1l(φ1)− r sinφ1

N(φ1)
0

x2
r
−x2l(φ1) + x1 cosφ2

a2N(φ2)
−x2l(φ2)− x3

x3
r

x1 sinφ2
a2N(φ2)

− x3l(φ1) −x3l(φ2) + x3

∣∣∣∣∣∣∣∣∣ |
where l(φi) = N ′(ai,ai+1)(φi)/N(ai,ai+1)(φi).

5 The local approach to the |.|1
a
-surface measure

The surface measure OE was introduced in §2 following a differential geometrical, integral

or global approach. In the present section, we deal with an alternative local approach using

derivatives. In this sense, we continue to follow the general method of analyzing the non-

Euclidean geometry underlying a multivariate probability distribution which was developed

in (Richter, 2007, 2009). To start with, we consider for the set A ∈ BE
a the volume of the

ellipsoidal sector of radius ρ > 0, f(ρ) = λ(sectora(A, ρ)).

Definition 12 The measure OE : BE
a → r+ defined by

OE(A) = f ′(1)

is called the Ea-generalized surface measure.

The following theorem says that the Ea-generalized surface measure coincides with the |.| 1
a
-

surface measure. For a comparison of both these surface measures, it is sufficient to consider

them for sets A ∈ BE
a .

Theorem 13 OE(A) = OE(A),∀A ∈ BE
a .

Proof :

We start from the equation

OE(A) = an

∫
G(A)

d(x1, ..., xn−1)

(1−
n−1∑
i=1

(xi/ai)2)1/2
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and change Cartesian with generalized ellipsoidal coordinates in (n− 1) dimensions,

(x1, ..., xn−1)
TEa (n−1)−→ (r, φ1, ..., φn−2) .

Because of

cos2
(ai,ai+1)(φi) + sin2

(ai,ai+1)(φi) = 1,

there holds
n−1∑
i=1

(xi/ai)
2 = r2. Hence,

OE(A) = an

∫
(TEa (n−1))−1(G(A))

rn−2

√
1− r2

J∗(TEa (n− 1))(φ1, ..., φn−2)d(r, φ1, ..., φn−2)

where according to Theorem 10

J∗(TEa (n− 1))(φ1, ..., φn−2) = an−1

n−2∏
i=1

(sin(ai,ai+1)(φi))
n−1−i

ai+1N2
(ai,ai+1)(φi)

.

If A = A(r1, r2,M
∗)

= {(y1, ..., yn−1, (1−
n−1∑
i=1

(xi/ai)
2)1/2)T : (y1, ..., yn−1)T = TEa (n− 1)([r1, r2)×M∗)},

with

M∗ = {(φ1, ..., φn−2) : φil ≤ φi ≤ φiu, i = 1, ..., n− 2} ⊂ [0, π)×(n−3) × [0, 2π) = M∗
n−1

r1 r2

ö2

A(r r [ö ö ))1, 2, 1, 2

ö1

Figure 1: n = 3, the set A(r1, r2, [ϕ1, ϕ2)) ∈ BE
a
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then

OE(A) = anan−1

r2∫
r1

rn−2

√
1− r2

dr

∫
M∗

J∗(TEa (n− 1))(φ1, ..., φn−2)d(φ1, ..., φn−2) .

In what follows, we shall make use of the coordinate transformation T̃a : (R, r, φ)→ z[R, r, φ]

defined by

z1 = a1Rr cos(a1,a2)(φ1), z2 = a2Rr sin(a1,a2)(φ1) cos(a2,a3)(φ2), ...,

zn−2 = an−2Rr sin(a1,a2)(φ1) · ... · sin(an−3,an−2)(φn−3) cos(an−2,an−1)(φn−2)

zn−1 = an−1Rr sin(a1,a2)(φ1) · ... · sin(an−3,an−2)(φn−3) sin(an−2,an−1)(φn−2),

zn = anR
√

1− r2.

It follows from

(
z1

a1

)2 + ...+ (
zn−1

an−1

)2 = R2r2 and (
zn
an

)2 = R2(1− r2)

that ( z1
a1

)2 + ...+ ( zn
an

)2 = R2.

The coordinate transformation T̃a allows the following representations:

A(r1, r2,M
∗) = T̃a(1, [r1, r2),M∗)

= {z[R, r, φ] : R = 1, r ∈ [r1, r2), φ ∈M∗} (see Figure 1)

and

sector(A(r1, r2,M
∗), ρ) = T̃a([0, ρ), [r1, r2),M∗)

= {z[R, r, φ] : 0 ≤ R < ρ, r ∈ [r1, r2), φ ∈M∗}.

The quantity

λ(sector(A(r1, r2,M
∗), ρ)) =

∫
sector(A(r1,r2,M∗),ρ)

dz

may therefore be written as

λ(sector(A(r1, r2,M
∗), ρ)) =

ρ∫
R=0

r2∫
r=r1

∫
φ∈M∗

J(T̃a)(R, r, φ)dRdrdφ.
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Here,

J(T̃a)(R, r, φ) =
D(z1, ..., zn)

D(R, r, φ1, ..., φ(n−2))

= |znr

∣∣∣∣∣∣∣∣∣
z1R z1φ1 z1φn−2

...
... . . .

zn−1R zn−1φ1 zn−1φn−2

∣∣∣∣∣∣∣∣∣− znR
∣∣∣∣∣∣∣∣∣
z1r z1φ1 z1φn−2

...
... . . .

zn−1r zn−1φ1 zn−1φn−2

∣∣∣∣∣∣∣∣∣ |
where the variable in the second index of any function zi indicates that the derivative of this

function is taken w.r.t. the corresponding variable. Notice that the two determinants may be

considered as the Jacobians of generalized ellipsoidal coordinate transformations in (n− 1)-

dimensions where respectively the variables r and R are replaced with rR. The derivation

w.r.t. R forces an additional factor r in the first term and the derivation w.r.t. r forces an

additional factor R in the second term. Hence,

J(T̃a)(R, r, φ) = |znran−1(rR)n−2J∗(TEa (n− 1))(φ)r − znRan−1(rR)n−2J∗(TEa (n− 1))(φ)R|

= |(− anRr√
1− r2

(rR)n−2r − an
√

1− r2(rR)n−2R)J∗(TEa (n− 1))(φ)an−1|

= an−1anJ
∗(TEa (n− 1))(φ)Rn−1 rn−2

√
1− r2

.

It follows that

λ(sector(A(r1, r2,M
∗), ρ)) = an−1an

ρ∫
0

Rn−1dR

r2∫
r1

rn−2

√
1− r2

dr

∫
M∗

J∗(TEa (n− 1))(φ)dφ.

We observe now

d

dρ
λ(sector(A(r1, r2,M

∗), ρ))|ρ=1 = an−1an

r2∫
r1

rn−2

√
1− r2

dr

∫
M∗

J∗(TEa (n− 1))(φ)dφ

so that

OE(A(r1, r2,M
∗)) = OE(A(r1, r2,M

∗)).

The measures OE and OE coincide on the semi-algebra which is generated by the sets of

the type A(r1, r2,M
∗). It follows from the measure extension theorem that the measures OE

and OE coincide also on the whole Borel-σ-field BE
a on Ea �
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We are now in a position to prove Lemma 6 from Section 3.

Proof :

Proof of Lemma 6 We start from the representation of PU(R) in the proof of Theorem 5. If

we write integrals for the Lebesgue measure of the sets sectora(D,R) and Ba(R), and change

Cartesian with generalized ellipsoidal coordinates, then we get according to Theorem 10

PU(R)(D) =

∫
(TE∗
a )−1(D)

J∗(TEa )(φ)dφ∫
M∗
n

J∗(TEa )(φ)dφ
, D ∈ BE

a .

Here, TE∗a denotes the restriction of the map TEa to the case r = 1, TE∗a (φ) = TEa (1, φ).

According to Definition 4, Theorem 13 and Definition 12,

UE
a (D) =

d
dr
λ(sectora(D, ρ))|ρ=1

d
dr
λ(Ba(ρ))|ρ=1

.

If we write now integrals for the Lebesgue measure of the sets sectora(D,R) and Ba(R) and

change variables as above, then it follows from Theorem 10 that UE
a (D) satisfies the same

representation as PU(R)(D). �

Corollary 14 According to Theorem 13 and Definition 12, it follows from Theorem 10 that

the |.| 1
a
-surface content OE on BE

a allows the representation

OE(D) =

∫
(TE∗
a )−1(D)

J∗(TEa )(φ)dφ.

6 Representations for axes-aligned elliptically contoured

Gaussian distributions

In this section, we prove that there is a natural stochastic product representation for axes-

aligned elliptically contoured Gaussian random vectors in terms of a suitably defined radius

variable and a suitably defined uniform basis vector on the ellipsoid Ea. Moreover, both these
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quantities determine essentially the corresponding geometric measure representation. In the

next section, we will consider an analogous stochastic representation, but then as a defining

property, and that for a much larger class of probability distributions.

Let a random vector X = (X1, ..., Xn)T be distributed according to the density ϕa and put

Ra = |X|a and Ua = X/Ra.

The random variable Ra may be considered as the a-radius of X. The random vector Ua takes

values in the ellipsoid Ea and is called the uniform basis of X. The probability distribution

generated by Ua on the Borel σ-field BE
a over Ea is singular w.r.t. the Lebesgue measure λ.

We consider now the joint distribution of Ra and Ua,

P (Ra < t, Ua ∈ D) =

∫
sectora(D,t)

ϕa(x)dx, t > 0, D ∈ BE
a .

Changing Cartesian with generalized ellipsoidal coordinates yields that, according to Corol-

lary 14,

P (Ra < t, Ua ∈ D) =

t∫
0

rn−1 e−
r2

2 dr
∫

(TE∗
a )

−1
(D)

J∗
(
TEa
)

(φ) dφ

(2π)
n
2 a1 · . . . · an

=

t∫
0

rn−1e−r
2/2dr

∞∫
0

rn−1e−r2/2dr

· OE(D)

OE(Ea)

because
∞∫
0

rn−1e−r
2/2dr = 2n/2−1Γ(n/2) and 2n/2−1Γ(n/2)

(2π)n/2a1·...·an
= 1

ωna1·...·an . Hence, the probability

distribution of R2
a is the well known χ2-distribution with n d.f., R2

a ∼ χ2(n), and the vector

Ua follows the Ea-generalized or |.| 1
a
-uniform distribution UE

a on BE
a . Moreover, the ran-

dom elements Ra and Ua are stochastically independent. Thus, the stochastic representation

X
d
= RaUa holds with independent factors Ra and Ua. A generalization of this stochastic

representation will be the starting point of the next section.

Theorem 15 If X ∼ ϕa then the geometric measure representation

P (X ∈ A) = Cn

∞∫
0

FEa (A, r)rn−1e−r
2/2dr,A ∈ Bn

holds where the normalizing constant is Cn = 21−n/2/Γ(n/2).
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Proof :

The proof of this theorem is closely connected with that of Theorem 5 and similar to that of

Theorem 4 in (Richter, 2009). Changing Cartesian with generalized ellipsoidal coordinates

in the integral P (X ∈ A) =
∫
A

ϕa(x)dx yields

P (X ∈ A) =
1

(2π)n/2a1 · ... · an

∫
(TEa )−1(A)

rn−1e−r
2/2J∗(TEa )(φ)d(r, φ).

Let us restrict our consideration for a while to sets A of the type Aa(D, ρ1, ρ2). Because of

the independence of Ra and Ua, and due to the product structure of the set Aa(D, ρ1, ρ2) =

[ρ1, ρ2] ·D,

P (X ∈ Aa(D, ρ1, ρ2)) = PRa([ρ1, ρ2])PUa(D) = Cn

ρ2∫
ρ1

rn−1e−r
2/2drUE

a (D).

Let us further consider the finitely additive set function

N∗a (A) = Cn

ρ2∫
ρ1

FEa (A, r)rn−1e−r
2/2dr,A = Aa(D, ρ1, ρ2), 0 ≤ ρ1 < ρ2 <∞, D ∈ BE

a .

Due to the product structure of the set Aa(D, ρ1, ρ2), the function r → FEa (Aa(D; ρ1, ρ2), r)

is constant with the constant being UE
a (D). Hence,

N∗a (Aa(D; ρ1, ρ2)) = Cn

ρ2∫
ρ1

rn−1e−r
2/2drUE

a (D).

Now, the measure extension theorem applies �

7 General density generating functions

In this section, we assume the stochastic representation from the preceding section to be

now a defining property, but at the same time for a much larger class of random vectors.

The structure of this section follows that of Section 3 in (Richter, 2009). Let R denote the
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set of all nonnegative random variables defined on the same probability space where Ra and

Ua are defined, let F be any cumulative distribution function of a positive random variable,

and put

Ln(F ) = {X : X
d
= R · Ua, R ∈ R has c.d.f. F,R and Ua are independent}.

Throughout this section, let X be an arbitrary element of Ln(F ). The random vector X is

called axes-aligned elliptically contoured distributed and the random variable R is called its

generating variate. The assumption X ∈ Ln(F ) implies that X has a density iff R has a

density. In this case, the density of X is

ϕg,a(x) = Ca(n, g)g(|x|2a), x ∈ IRn

where g|IR+ → IR+ is called the density-generating function. It is assumed that g satisfies

the assumption In+2,g <∞. Here, we use the notation Ik,g =
∞∫
0

rk−1g(r2)dr, and

Ca(n, g) =
1

nπEn (a) In,g

is the suitably chosen normalizing constant. It follows from

P (R < r) = P (X ∈ Ba(r)) =

∫
Ba(R)

ϕg,a(x)dx = Ca(n, g)

r∫
0

ρn−1g(ρ2)dρ OE(Ea)

that the density f of R allows the representation

f(r) = I−1
n,gr

n−1g(r2)I(0,∞)(r).

We shall use the notation ECg,a for an axes-aligned elliptically contoured distribution defined

this way. This distribution is the axes-aligned elliptically contoured Gaussian distribution if

its density-generating function g is gG where gG(r) = I(0,∞)(r)e
−r/2. In this case, we have

I−1
n,g = Cn. The measure ECgG,a = Φa is a product measure.

Theorem 16 The axes-aligned elliptically contoured distribution having density-generating

function g satisfies the representation

ECg,a(A) =
1

In,g

∞∫
0

FEa (A, r)rn−1g(r2)dr,A ∈ Bn.
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Proof :

The proof may be formulated similar to that of Theorem 15 and Theorem 4 in (Richter,

2009). It is therefore sufficient to give here a sketch of this proof. We consider

ECg,a(A) =

∫
A

ϕg,a(x)dx = Ca(n, g)

∫
(TEa )−1(A)

rn−1g(r2)J∗(TEa )(φ)d(r, φ)

for the special sets of the type A = Aa(D, ρ1, ρ2). Because of the definition of Ln(F ) and the

product structure of the set A,

P (X ∈ Aa(D, ρ1, ρ2)) = PR([ρ1, ρ2])PUa(D) =

ρ2∫
ρ1

f(r)dr UE
a (D).

Let us introduce now the finitely additive set function

EC∗g,a(A) =
1

In,g

∞∫
0

FEa (A, r)rn−1g(r2)dr,A = Aa(D, ρ1, ρ2), 0 ≤ ρ1 < ρ2 ≤ ∞, D ∈ BE
a .

It follows from the properties of the i.p.f. and the definition of f that

EC∗g,a(Aa(D, ρ1, ρ2)) =

ρ2∫
ρ1

f(r)dr UE
a (D).

Now, the measure extension theorem applies �

The geometric measure representation formulae in Theorems 15 and 16 enable one to derive

exact distributions of several suitably chosen statistics T = T (X) when the sampling dis-

tribution is an elliptically contoured distribution. This was shown in (Richter, 2009) (and

several papers mentioned therein) for the analogous situation of an ln,p-symmetric sampling

distribution.

Remark 17 a)It follows from the representation

ϕg,a(x) = Ca(n, g) g(|x|2a) =
1

a1 · . . . · an

[
g(|x|2a)
ωnIn,g

]
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that the density generator g̃ and the density generating function g of an axes-aligned ellipti-

cally contoured distribution are connected by the equation

g̃(|x|2a) =
g(|x|2a)
ωn · In,g

, x ∈ Rn .

b) Consequently, an alternative representation of ECg,a is

ECg,a(A) =

∞∫
0

OE (A ∩ Ea(r)) g̃(r2) dr, A ∈ Bn.

8 Discussion

Geometric measure representation formulae apply to many statistical and probabilistic pro-

blems. Typical applications are only in exceptional cases three-line-examples but in general

rather complex calculations. This is analogous to typical applications of characteristic func-

tions. But while the theory of characteristic functions is well developed and the characteri-

stic function exists for any probability distribution, the research area of geometric measure

representations in the sense of the present paper is rather new and we are far from kno-

wing finally the general nature of analogous geometric measure representations for arbitrary

location-scale models or other models like those in (Lange and Sinsheimer, 1993). An answer

to this general question would surely be of high interest, but the work on measure-theoretical

results going a certain step into this direction is still under progress. For only to speak about

geometric-analytical problems behind this probabilistic-statistical question, they concern,

e.g., our understanding of the notion of surface content and the extension of the method of

indivisibles wich was initially developed by the pupils of Galilei, Cavalieri and Torricelli, and

further developed in the sense of the present paper only during the last 30 years. Both the

suitably modified notion of the (non-Euclidean) surface content and the generalization of the

method of indivisibles are closely connected with the i.p.f. This function is most frequently

known in applications for the geometric representation of the standard Gaussian law. Among

these applications are the construction of exact tests and confidence regions in non-linear

regression, the derivation of exact probabilities of correct classifications, the evaluation of
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probabilities and quantiles of noncentral distributions as well as remainder-term estimations

in the multivariate central limit theorem and the determination of the asymptotic behavior

of large deviation probabilities in the multivariate case. Several references for such appli-

cations and a certain survey over this work are given in (Richter, 2009). This research is

also directed to generalize some of the classical statistical results in the general linear and

the generalized linear model when the normality assumption is replaced by the assumption

that the error vector follows, e.g., an ln,p-symmetric or another non-normal distribution. The

distributions of certain statistics from regression analysis and analysis of variances may be

generalized this way. Using geometric measure representations and corresponding stochastic

representations, recently in (Kalke et al., 2012) the exact distributions of linear combinati-

ons, products and ratios of simplicial or spherical variates are derived, in (Arrellano-Valle

and Richter, 2012) the notion of skewed distributions is extended to that of skewed ln,p-

symmetric distributions and in (Kalke and Richter, 2012) the classical polar and rejecting

polar methods were extended to generating p-generalized Gaussian random variables. Finally

it will become clear only in the future which kind of all the mentioned possible applications

of geometric measure representations will be the most useful application of Theorem 16. The

ellipsoid-number function which was introduced in Section 3 may be of interest in different

branches of mathematics and science.

In data analysis, one is often interested in parametric density generating functions. Such

functions allow easy and fast adaption of the model to a given data set and the parameters

can sometimes even be interpreted in a specific way.

Example 18 The density-generating function

gK(r) = rM−1e−βr
γ

, r > 0, β > 0, γ > 0, 2M + n > 2

generates the (heteroscedastic axes-aligned elliptically contoured) Kotz-type distribution in

Rn. This is the multinormal distribution if (M,β, γ) = (1, 1
2
, 1).
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Example 19 The density-generating function

gP (r) =
1(

1 + r
m

)m+n
2

, r > 0, m > 0

generates the n-dimensional (heteroscedastic axes-aligned elliptically contoured) Student dis-

tribution. Note that several characterizations of the Student distribution were given in (Arrellano-

Valle and Bolfarine, 1995). The more general density-generating function

gP (r) =
1(

1 + r
m

)M , r > 0, M >
n

2
, m > 0

generates a Pearson-VII-type distribution.

Example 20 The density-generating function

g(r) =

1∫
0

u(k/2)+ν−1e−ur
2/2du

generates the k-dimensional (heteroscedastic axes-aligned elliptically contoured) Slash distri-

bution. This family is used in (Lange and Sinsheimer, 1993) for adaptive robust regression.

The following example of a set A is just one of the simplest examples where Theorem 16

applies.

Example 21 Let A(r) = {x ∈ Rn : |x|2a < r}. Then FEa (A(r), ρ) = I(0,
√
r)(ρ). Hence, the

density of the random variable |X|2a is

d

dr
ECg,a(A(r)) =

1

2In,g
r
n
2
−1g(r) I(0,∞)(r) .

This density was called in (Richter, 1991), for the special case a = 11 = (1, ..., 1), the g-

generalized χ2-density with n d.f..

Obviously,

1

In,g
= Ca(n, g) a1 · ... · an ωn .
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Remark 22 It is well known that

In,gK =
Γ(n−2+2M

2γ
)

2γβ
n−2+2M

2γ

and In,gP =
m

n
2

2
B(

n

2
,M − n

2
).

Hence,

Ca(n, gK) =
γβ

n−2+2M
2γ

π
n
2 a1...an

Γ(n
2
)

Γ(n−2+2M
2γ

)
and Ca(n, gP ) =

Γ(M)

(mπ)
n
2 a1...anΓ(M − n

2
)

where Γ(.) and B(., .) denote the Gamma- and the Beta-function, respectively.

Example 23 Assume that a statistic T generates sets

A(t) = {x ∈ Rn : T (x) < t}, t ∈ R

in such a way that the i.p.f. r → FEa (A(t), r) does not depend on r > 0, i.e. it attains the

constant value FEa (A(t)). Then, according to Theorem 16,

ECg,a(A(t)) = FEa (A(t)), t ∈ R.

Hence, the distribution of T does not depend on the density generating function g. Such

statistics will be called robust w.r.t. the density generating function.

Remark 24 As can be seen from the proof of Theorem 6 in (Richter, 2009), the derivation

of the t-dependent value FEa (A(t)), i.e. of the function t → FEa (A(t)) will become an exten-

sive work in interesting cases. To realize this work and to draw all the possible conclusions

concerning the theory of statistical modeling would go beyond the scope of the present paper.

We restrict our consideration in the following two examples therefore to the derivation of

a certain robustness property of two statistics which are generalizations of two well known

statistics.

Example 25 Generalized Fisher-statistic Let us call the statistic

T (X) = T (X1, ..., Xm+n) =

1
m

m∑
1

(Xi
σi

)2

1
n

n∑
1

(Xm+i

σm+i
)2
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a generalized Fisher-statistic. For each t > 0, the subset of the sample space

Kt = {(x1, ..., xm+n) ∈ Rm+n : T ((x1, ..., xm+n)) < t}

is a cone with vertex in the origin. The intersection of this cone with any ellipsoid Ea(r), r > 0

is

Kt ∩ Ea(r) = {(x1, ..., xm+n) ∈ Rm+n :

1
m

m∑
1

(xi
σi

)2

1
n

n∑
1

(xm+i

σm+i
)2

< t,

m∑
1

(
xi
σi

)2 +
n∑
1

(
xm+i

σm+i

)2 = r2}.

If we introduce generalized ellipsoidal coordinates from Section 4 separately in the two sub-

spaces L1 = L({e1, ..., em}) and L2 = L({em+1, ..., em+n}) which are spanned up by the vectors

from the standard orthonormal basis from Rm+n then we find that

Kt ∩ Ea(r) = {(r1

r2

)2 ≤ mt

n
, r2

1 + r2
2 = r2}

where ri describes the radius variable in the subspace Li, i = 1, 2. This means that the

structure of this intersection does not change if we change r. In other words, the i.p.f.

r → FEa (Kt, r) of the cone does not depend on r > 0. Hence, the generalized Fisher-statistic

T (X) is robust w.r.t. the density-generating function.

Example 26 Generalized Student-statistic In a similar way as in the preceding special

case one can prove that the generalized Student-statistic

T (X) = T (X1, ..., Xn) =
X1

1
n−1

n∑
2

(σ1
σi
Xi)2

is robust w.r.t. the density-generating function.

Acknowledgment The author is grateful to the Reviewers who’s hints and questions sti-

mulated for the most part the Discussion in Section 8.

References
Arrellano-Valle, R.B. and H.Bolfarine (1995). On some charachterizations of the t-distribution.

28



Statistics and Probability Letters 25,79-85.

Arrellano-Valle, R.B. and W.-D.Richter (2012). On skewed ln,p-symmetric distributions. The

9th Tartu Conference on Multivariate Statistics. Abstracts of Communication, in print; paper

to submit.

Busemann,H. (1947). The isoperimetric problem in the Minkowski plane. Am. J. Math.

69:863-871.

Cambanis,S., Huang,S. and Simons,G. (1981). On the theory of elliptically contoured distri-

butions. J. Multivariate Anal. 11:368-385.

Evans, L.C. and Gariepy, R.F. (1992). Measure theory and fine properties of functions. New

York: CRC Press.

Kalke, S., Richter, W.-D. and F.Thauer (2012). Linear combinations, products and ratios of

simplicial or spherical variates. Communications in Statistics, Theory and Methods, in print.

Kalke, S. and W.-D. Richter (2012). Simulation of the p-generalized Gaussian distribution,

submitted.

Lange, K. and J.S. Sinsheimer (1993). Normal/Independent distributions and their applica-

tions in robust regression. Journal of Computational and Graphical Statistics,Vol.2, No.2,

175-198.

Richter,W.-D. (1991). A geometric method in stochastics (in German). Rostock.Math.Kolloqu.

44:63-72.

Richter,W.-D. (2007). Generalized spherical and simplicial coordinates. J. Math. Anal. Appl.

336:1187-1202.

Richter,W.-D. (2009). Continuous ln,p-symmetric distributions. Lithuanian Math. Journal,

Vol. 49, No. 1, 93-108.

Richter,W.-D. (2011). Ellipses numbers and geometric measure representations. Journal of

Applied Analysis, vol.17, in print.

Tong,Y.L. (1990). The Multivariate Normal Distribution. Springer Verlag.

29



Appendix: Proof of Theorem 10

The proof will be given in four steps. First, we change variables xi
ai

= yi, i = 1, ..., n.The

Jacobian of this transformation is

|D(x1, ..., xn)

D(y1, ..., yn)
| = a1 · ... · an.

Next, we change variables

y1 = r̃µ1, y2 = r̃(1− |µ1|2)1/2µ2, ..., yn−1 = r̃(1− |µ1|2)1/2 · ... · (1− |µn−2|2)1/2µn−1,

yn = +(−)r̃(1− |µ1|2)1/2 · ... · (1− |µn−2|2)1/2(1− |µn−1|2)1/2.

As it was shown in the proof of Theorem 2 in (Richter, 2007), the Jacobian of this transfor-

mation is

| D(y1, ..., yn)

D(r̃, µ1, ..., µn−1)
| = r̃n−1

n−1∏
i=1

(1− |µi|2)(n−2−i)/2.

Third, we change variables

r̃ = r, µi = cos(ai,ai+1)(φi), i = 1, ..., n− 1.

The Jacobian of this transformation is

|D(r̃, µ1, ..., µn−1)

D(r, φ1, ..., φn−1)
| = | det diag(1,

d

dφ1

cos(a1,a2)(φ1), ...,
d

dφn−1

cos(an−1,an)(φn−1))|.

It is known from (Richter, in print) that

cos′(ai,ai+1)(φi)) = − sinφi
aia2

i+1N
3
(ai,ai+1)(φi)

.

Hence,

|D(r̃, µ1, ..., µn−1)

D(r, φ1, ..., φn−1)
| =

n−1∏
i=1

sinφi
aia2

i+1N
3
(ai,ai+1)(φi)

.

On combining all three transformations, we get finally

J(TEa )(r, φ1, ..., φn−1) = a1 · ... · an · rn−1

n−1∏
i=1

(sin(ai,ai+1)(φi))
n−2−i

n−1∏
i=1

sinφi
aia2

i+1N
3
(ai,ai+1)(φi)

.
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