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Abstract

Using different types of polar and elliptical polar coordinates, different stochastic rep-
resentations of the axis-aligned and the regular two-dimensional Gaussian distribution
are derived. Advantages and disadvantages of these stochastic representations are dis-
cussed. The non-Euclidean geometric measure representation of the axis-aligned two-
dimensional Gaussian distribution in Richter (2011) is taken to derive a new geo-
metric interpretation of the correlation coefficient and to motivate a new geometric
parametrization of the regular Gaussian law. Estimators of the new parameters and
corresponding distributions are derived. A comparison with different approaches from
the literature shows the numerical stability of our results.
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1. Introduction

Gaussian random vectors and their distributions are among the most often used ones
in probability theory and mathematical statistics, see, e.g., Anderson (2003), Cambanis
et al. (1981), Fang et al. (1990), Muirhead (1982) or Tong (1990). It may be surprising
therefore that even the two-dimensional case is not yet completely studied with respect to
all its basic properties. Similarly, the correlation coefficient is one of the original notions
expressing dependence properties not only for the components of Gaussian random vectors
and plays even these days an important role in applications like finance and insurance,
see, e.g., Embrechts et al. (2002). Clearly, rotations of two-dimensional Gaussian random
vectors affect in general the correlation coefficient as well as the variances, see, e.g., Pyati
(1993). But even in the case of two correlated random variables following a joint normal
distribution it is not yet completely revealed which geometric properties of the random
vector and its distribution this coefficient reflects. The non-Euclidean geometric measure
representation of the two-dimensional heteroscedastic axis-aligned Gaussian law recently
derived in Richter (2011) stimulates some new considerations.
The focus of the present paper is first on stochastic representations of two-dimensional

Gaussian random vectors and second on a suitable parametrization of their distributions.
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It can be a fruitful way to analyze continuous random vectors by making use of coordinates
other than Cartesian ones which reflect certain basic geometric properties of the density
level sets. For example, studying spherical distributions the usual polar coordinates lead
to a geometric measure representation in Richter (1991) which enabled the authors in
Kalke et al. (2013) to derive the exact distribution of, e.g., the component-by-component
product of a continuous two-dimensional spherical distribution and to contribute this way
to studies on statistics of an elliptically contoured sample like the one in Nadarajah and
Gupta (2005). Moreover, suitable generalizations of polar coordinates were introduced for
studying the multivariate p-generalized homoscedastic normal (or power exponential) dis-
tribution and its ln,p-symmetric generalizations in Richter (2007, 2009), for studying the
heteroscedastic uncorrelated Gaussian case and its elliptically contoured generalizations
in Richter (2011, 2013), and simplex coordinates were introduced in Henschel and Richter
(2002) for studying the multivariate exponential distribution and its simplicially contoured
generalizations. In case of the ln,p-symmetric distributions, the generalized polar coordi-
nates lead to stochastic representations which were used to extend the class of skewed
distributions in Arellano-Valle and Richter (2012) and which also were used to generalize
the Box-Muller method in context of a simulation of the p-generalized normal distribution
in Kalke and Richter (2013). Again, it may be surprising that a standard mathematical
method, which was developed in earlier centuries, may even nowadays essentially con-
tribute to a real scientific novelty. However, one of the deep problems arizing in this area
of mathematical work was described in Szablowski (1998) as to find suitable coordinates.
It has been solved in Richter (2007, 2009) and developed further, e.g., in Richter (2011,
2013).
To be more concrete, imagine we are given a two-dimensional Gaussian random vector

(ξ, η)T centered at the origin with heteroscedastic and independent components and denote
its polar coordinates by RP and ΦP . It is known that RP and ΦP are not independent.
The distributions of RP and ΦP may be derived explicitly, but that of (cosΦP , sinΦP )

T

cannot be easily interpreted. Introducing elliptical polar coordinatesREP and ΦEP instead
involves the advantages thatREP and ΦEP are stochastically independent,REP has a more
simple distribution than RP and that ΦEP is even uniformly distributed. However, the
angle ΦEP itself cannot be easily interpreted and the so called uniform basis WEP from the

stochastic representation (ξ, η)T
d
= REP · WEP , which takes its values on a corresponding

axis-aligned ellipse E(a,b) with main axes of lengths 2a and 2b, does not follow a uniform
distribution on the ellipse with respect to the Euclidean arc length.
One can think about representing (ξ, η)T with the help of other kinds of coordinates

possessing other stochastical properties. In this paper, we shall make use of the E(a,b)-
generalized polar coordinates ΦGEP = ΦP and RGEP = REP having the most favorable
properties among all the types of coordinates considered here: ΦGEP and RGEP are inde-
pendent, their distributions can be derived explicitly and both random variables as well
as the corresponding basis vector UGEP = (a cos(a,b)ΦGEP , b sin(a,b)ΦGEP )

T are suitable
to describe the geometry behind the axis-aligned two-dimensional Gaussian law. Here,
cos(a,b) and sin(a,b) denote certain generalized cosine and sine functions which have been
proved to be very useful for deriving geometric measure representations on the basis of
non-Euclidean geometry in Richter (2011). In this context, RGEP can be interpreted as
a certain length and ΦGEP can be interpeted as a certain direction of a centered bivari-
ate Gaussian distributed random vector with independent components. Furthermore, the
associated basis vector UGEP follows the E(a,b)-generalized uniform distribution on E(a,b)

introduced in Richter (2011) as well.
The paper is structured as follows. A detailed comparative study of the mentioned

coordinates and their extension to the arbitrary regular Gaussian case will be made in
Section 2. It will turn out in Section 3 that the same non-Euclidean geometry which plays
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a fundamental role in Section 2 allows to formulate a new look onto the well known notion
of the correlation coefficient of a regular Gaussian distribution. All new insights gained
this way will give the motivation to introduce in Section 4 a parametrization of the regular
Gaussian distribution which reflects on the one hand the new non-Euclidean geometry
mentioned above and which is on the other hand closely connected with the well known
principal axes theory and principal component theory. For general work in the latter area
we refer to Anderson (2003), Hyvärinen et al. (2001), Jolliffe (2004) and Muirhead (1982).
Maximum likelihood estimates of the new parameters and some exact distributions are
dealt with in Sections 5 and 6, respectively. Section 7 presents an example and an outlook
on future work. The Appendix gives the proof of Theorem 6.1 which is omitted in the
main text of the paper.

2. Stochastic representations

2.1 The multiple standard case

Let (ξ, η)T be distributed according to the two-dimensional normal distribution with ex-
pectation 02 = (0, 0)T and with covariance matrix σ2I2 being a multiple of the unit matrix
I2 = diag(1, 1), σ > 0, i.e. (ξ, η)T ∼ Φ02,σ2I2 . It is well known that such a vector allows the
representation (

ξ
η

)
d
= σ · R · U

where R follows a chi-distribution with two degrees of freedom (d.f.), R ∼ χ2, and where
U is independent from R and follows the uniform distribution on the unit circle C =
{(x, y)T ∈ R2 : x2 + y2 = 1}, U ∼ ωC . Making use of random polar coordinates for
1
σ (ξ, η)

T , we have

σ · R =
√
ξ2 + η2 , U =

(
cosΦ
sinΦ

)
,

where Φ = f1(ξ, η) arctan |η/ξ|+ πf2(ξ, η) with f1(ξ, η) = 1Q1∪Q3
(ξ, η)− 1Q2∪Q4

(ξ, η) and
f2(ξ, η) = 1Q2∪Q3

(ξ, η)+ 2 · 1Q4
(ξ, η). Here, R and Φ are independent, Qi denotes as usual

the i-th quadrant of R2, i ∈ {1, . . . , 4}, and 1A is the indicator function of the set A.
One may consider the representation

1

σ
·
(
ξ
η

)
d
= R ·

(
cosΦ
sinΦ

)
(1)

as corresponding to the random polar coordinate representation of 1
σ (ξ, η)

T . Here, the
independent random variables R and Φ follow the joint density

f(R,Φ)(r, φ) =
1

2π
r e−

r2

2 , r > 0, 0 ≤ φ < 2π .

It is well known that a uniformly on the interval [0, 1) distributed random variable
U , U ∼ ω[0,1), and a standard Cauchy distributed random variable Z are connected by

F−1(U)
d
= Z where F is the cumulative distribution function (cdf) of the standard Cauchy

distribution and F−1 is the corresponding quantile function. Moreover, F (Z) ∼ ω[0,1]

because of the continuity of F . Hence, the arctan-function transforms the standard Cauchy
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distribution into the uniform distribution on [−π/2, π/2). In context of the stochastic
representation of Φ, the absolute value of a standard Cauchy distributed random variable
η/ξ is transformed into U, U ∼ ω[0,π/2), by the arctan-function, see Figure 1.
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Figure 1. The arctan-transformation of |η/ξ| yields a variable with uniform density.
(a) density of |η/ξ| (b) arctan-function (c) density of ω[0,π/2)

2.2 Notations for the axis-aligned heteroscedastic case

Here and in the following subsections, we consider vectors of uncorrelated, heteroscedastic
and at the origin centered random variables, i.e. we assume that (ξ, η)T follows the ellipti-
cally contoured normal distribution Φ02,Σ with expectation 02 and with regular covariance
matrix Σ = diag(a2, b2), which generates an axis-aligned and at the origin centered ellipse

E(a,b) =
{
(x, y)T ∈ R2 : (x, y)Σ−1(x, y)T = 1

}
, a, b > 0 ,

where

(x, y)T 7→
∣∣(x, y)T ∣∣

(a,b)
:=
(
(x, y)Σ−1(x, y)T

)1/2
defines a norm. Density level sets of such a distribution are shown in Figure 2(a).
In the following subsections, we present and compare stochastic representations for

(ξ, η)T which make use of different random coordinates. In doing so, we assume that
a ̸= b because the case a = b can be dealt with based upon the results in Subsection
2.1. The stochastic representation given there already reflects the geometry behind the
two-dimensional Gaussian distribution in the multiple standard case. The reader will find
some more or less known facts besides several new results. The new aspects turning out
from this survey will be discussed at the end of Subsection 2.4 and 2.5, respectively. This
will motivate some conclusions in the following sections.

2.3 Random polar coordinate representation

The vector (ξ, η)T ∼ Φ02,diag(a2,b2) allows in polar coordinates the stochastic representation

(1) with σ = 1 and the joint density of the polar coordinates (R,Φ)T of (ξ, η)T is

f(R,Φ)(r, φ) =
1

2π a b
r e−

r2

2
N2

(a,b)(φ) , r > 0 , 0 ≤ φ < 2π .

The geometric meaning of N(a,b)(φ) =
∣∣(cosφ, sinφ)T ∣∣

(a,b)
is illustrated in Figure 2(b).
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Figure 2. (a) Density level sets of (ξ, η)T in the case a = 1, b = 2.
(b) The meaning of N(a,b)(φ), a = 2, b = 4. Here, B1 = (cosφ, sinφ)T ,

B2 = B1/N(a,b)(φ) and r0 = |B1|(a,b) < 1.

Theorem 2.1

a) The marginal density fΦ of Φ satisfies the representation fΦ(φ) = fE(a,b)(φ) where

fE(a,b)(φ) =
1

2π a bN2
(a,b)(φ)

, 0 ≤ φ < 2π . (2)

b) The function fE(a,b) : [0, 2π) → (0,∞) is π-periodical and its restriction to [0, π) is
symmetric with respect to (w.r.t.) φ = π/2. Furthermore, fE(a,b) is strictly monotonically
increasing on (0, π/2) if a < b, and analogously strictly monotonically decreasing on
(0, π/2) if a > b, see Figure 3.

Proof a) The proof follows immediately by integrating the joint density f(R,Φ)(r, φ) w.r.t.
the radius r > 0.
b) Considering N2

(a,b)(φ) in terms of cos2 φ, the monotonicity properties follow from those

of cos2 φ. �

Notice that the quantity π a b is discovered to be a suitably defined ellipse number within
a certain non-Euclidean geometry in Richter (2011), π a b = π(a,b). Another well known
representation of fΦ is

fΦ(φ) =

√
1− ρ2∗

2π (1− ρ∗ cos(2φ))
, φ ∈ [0, 2π) ,

the density of the so called offset normal distribution in the special case of uncorrelated
components ξ and η, see, e.g., Jammalamadaka and SenGupta (2001) or Mardia (1972).
Here, ρ∗ := (a2−b2)/(a2+b2). In this regard, (2) is a new non-Euclidean representation of
this special offset normal density. We shall give a probabilistic description of the quantity
ρ∗ in Section 3.
Let the set A be an element of the Borel σ-algebra A(a,b) on E(a,b) and denote by ω(a,b) the

E(a,b)-generalized uniform probability distribution on E(a,b) introduced in Richter (2011).
Then

ω(a,b)(A) =

∫
Pol∗−1

(a,b)(A)

fE(a,b)(φ) dφ , A ∈ A(a,b) .
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While Pol(a,b) : (r, φ) 7→ (x, y) means the E(a,b)-generalized elliptical polar coordinate
transformation introduced in Richter (2011), the inverse of its restriction to r = 1,
Pol∗(a.b)(φ) = Pol(a,b)(1, φ), is denoted by Pol∗−1

(a,b). We call therefore fΦ the polar angle

density corresponding to the E(a,b)-generalized uniform probability distribution on E(a,b).
The cdf of the polar angle distribution corresponding to ω(a,b) will be denoted by FΦ.

Corollary 2.2 The marginal cdf FΦ of Φ satisfies the representation FΦ = FE(a,b) where

FE(a,b)(φ) =
1

2π
arctan

[a
b
tanφ

]
+

1(π/2,2π)(φ) + 1(3π/2,2π)(φ)

2
, 0 ≤ φ < 2π .

Proof The proof of Corollary 2.2 follows by integrating fΦ. An alternative proof may be
given by using the fact that aη/(bξ) is distributed according to a Cauchy distribution. �
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Figure 3. Polar angle density fΦ and cdf FΦ corresponding to ω(a,b).

Notice that in contrast to the situation in Subsection 2.1, the transformation (ξ, η) 7→
f1(ξ, η) arctan |η/ξ|+ πf2(ξ, η) does not lead here to the uniform distribution on [0, π/2).
This is reflected in Figure 4.
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Figure 4. The arctan-transformation does not lead here to the uniform density.
(a) density of |η/ξ|, where a = 3, b = 2 (b) arctan-function

(c) density 1[0,π/2)(φ) · 4 f
E(a,b) (φ) of arctan |η/ξ|

The dotted curves correspond to the limit case a = b and ω[0,π/2).

The distribution of R =
√
ξ2 + η2 in the general case of (ξ, η)T following an absolutely

continuous Gaussian distribution was studied extensively in the middle of the last century
mostly in the context of military applications, see, e.g., the first sections in Guenther and
Terragno (1964). Nowadays, however, the random variable R has relevance not only to
military applications (Nelson, 1988) but is also of concern in industrial processing involving
the drilling of holes (McCool, 2006), in the so called home range model for animal locations
(Solow, 1990) or in measuring the accuracy of GPS point positioning and navigation (van
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Diggelen, 2007; McEwen et al., 2005). Common synonyms for R are circular error (Harter,
1960) or radial error (Weil, 1954) where circular error is only used in the special case of
zero expectation. The moments of R can be found, e.g., in Scheuer (1962) or White (1975).

Corollary 2.3

a) The conditional density of R under Φ = φ is the Rayleigh density with parameter
N−2

(a,b)(φ), φ ∈ [0, 2π).

b) The random polar coordinates R and Φ are not stochastically independent.

Proof It follows immediately from the representations of f(R,Φ) and fΦ that

fR|Φ=φ(r) = r N2
(a,b)(φ) exp

(
−r

2

2
N2

(a,b)(φ)

)
, r > 0 .

This function depends on φ because of a ̸= b, hence R and Φ are not independent. �

The result of this corollary can be found in Solow (1990) in another form but for the more
general case of an arbitrary invertible covariance matrix Σ while our notation emphasizes
the influence of the polar angle φ in terms of the quantity N2

(a,b)(φ).

The next theorem deals with representations for the cdf and pdf of the random variable
R. Especially, there will be given two representations for the pdf in b). While the repre-
sentation b2) can be found in the literature the representations a) and b1) are based upon
a geometric measure representation for the Gaussian law and seem to be new.

Theorem 2.4

a) The cdf of R is equal to zero for non positive arguments. If r > 0, then

FR(r) = 1− exp

{
−1

2

(
r

max{a, b}

)2
}

+
2

π

r

min{a,b}∫
r

max{a,b}

ρ exp

{
−ρ

2

2

}
arctan

√
r2 − ρ2min{a, b}2
ρ2max{a, b}2 − r2

dρ .

b) The density function of R vanishes for r ≤ 0 and allows for r > 0 (and a ̸= b) the two
representations

b1) fR(r) =
2

π

[∫ r

min{a,b}

r

max{a,b}

ρ exp

{
−ρ

2

2

}
r√

(ρ2b2 − r2)(r2 − ρ2a2)
dρ

]
,

b2) fR(r) =
r

ab
exp

{
−r

2(b2 + a2)

4a2b2

}
I0

(
r2(b2 − a2)

4a2b2

)
,

where I0 denotes the modified Bessel function of the first kind and order zero. For a
basic reference for I0 and related functions, see Watson (1995).

Proof We note that a) follows by using a geometric measure representation from Richter
(1995). Alternatively, one might combine a result in Guenther and Terragno (1964) and
Waugh (1961) concerning P (R < r) with the geometric measure representation of the
noncentral chisquare distribution in Ittrich et al. (2000). We omit these straightforward
but also tedious calculations and refer to Richter (2007), Kalke et al. (2013) and Günzel et
al. (2012) who examplify the use of geometric measure representations. The proof of b1)
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follows by taking the derivative of FR from a) according to Leibniz’s integral rule, that
of b2) follows by integrating the joint density of R and Φ w.r.t. the angle variable. These
proofs may be called the integral-local and local-integral approaches to the density fR,
respectively. �

Remark 2.1 In contrast to b1) the representations a) and b2) hold also if a = b and
coincide then with the cdf and the pdf of a multiple of a chi-distributed random variable. In
this regard, the new representation of the cdf reflects the deviation from a scaled cumulative
chi-distribution function.

The quantiles of the radial errors cdf are of special interest in the aforementioned ap-
plications. The median is refered to as the circular error probability (CEP) (Nelson, 1988;
Zhang and Weilian, 2012) and can either be approximated by integrating fR numerically
(Harter, 1960), by series expansions (Weil, 1954; Shnidman, 1995) or by a simple function
of a and b (Nelson, 1988). If a = b, then a−1R ∼ χ2, see Subsection 2.1. Therefore, the
quantiles can be calculated explicitly which is why this case is often assumed for simplic-
ity. Arguing that any correlation between ξ and η can be eliminated by a proper rotation
some authors assume the components of (ξ, η)T to be independent without loss of gen-
erality (w.l.o.g.), see, e.g., Gillis (1991). In fact, the distribution of R is invariant under
rotations but ‘the correlation coefficient of the old variables manifests itself in the vari-
ance of the new variables’, as criticised in Pyati (1993), which we will consider in detail in
Subsection 2.6.
To distinguish between the polar coordinates used in this subsection and those coor-

dinates used in the following subsections, let us finally denote the polar coordinates by
(R,Φ) = (RP ,ΦP ).

2.4 Random elliptical polar coordinate representation

Let REP and ΦEP denote elliptical polar coordinates of the random vector (ξ, η)T , i.e.

REP =

(
ξ2

a2
+
η2

b2

) 1

2

and ΦEP = f1(ξ, η) arctan

∣∣∣∣aηbξ
∣∣∣∣+ πf2(ξ, η) .

Following Richter (2011), we have REP = R(a,b) =
∣∣(ξ, η)T ∣∣

(a,b)
and the stochastic repre-

sentation (
ξ
η

)
d
= R(a,b) · W(a,b) with W(a,b) =

(
a cosΦEP
b sinΦEP

)
. (3)

Remark 2.2 It should be emphasized that the elliptical polar angle φEP = φEP (x, y) of
a point (x, y)T does a.e. not coincide with the (usual) polar angle φP = φP (x, y) (unless
for a = b), see Figures 5(a) and 5(b). Actually, we have

φEP (x, y) = f1(x, y) arctan
∣∣a/b tan (φP (x, y))∣∣+ πf2(x, y) ,

φP (x, y) = f1(x, y) arctan
∣∣b/a tan

(
φEP (x, y)

)∣∣+ πf2(x, y)

and tan
(
φP (x, y)

)
= b/a tan

(
φEP (x, y)

)
.

The joint density of R(a,b) and ΦEP is

f(R(a,b),ΦEP )(r, φ) =
1

2π
r e−

r2

2 , r > 0 , 0 ≤ φ < 2π ,
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Figure 5. (a) Polar angle φP (x, y) and elliptical polar angle φEP (x, y) where (x, y) = (4, 1),
(a, b) = (5, 2) and r =

∣∣(x, y)T ∣∣
(a,b)

.

(b) The angles φEP (x, y) and φP (x, y) of (x, y) running anti-clockwise oriented
through E(a,b) and starting from (a, 0).

hence R(a,b) and ΦEP are independent where R(a,b) follows the chi-distribution with two
d.f., R(a,b) ∼ χ2, and ΦEP is uniformly distributed on the interval [0, 2π), ΦEP ∼ ω[0,2π).
For a deeper understanding of the quantities in representation (3), let us define the subsets

AP (φ1, φ2) :=
{
(x, y)T = r(φP ) (cosφP , sinφP )

T : φ1 ≤ φP (x, y) ≤ φ2

}
,

AEP (φ1, φ2) :=
{
(x, y)T = (a cosφEP , b sinφEP )

T : φ1 ≤ φEP (x, y) ≤ φ2

}
of the ellipse E(a,b) where 0 ≤ φ1 < φ2 < 2π and r(φP ) = N−1

(a,b)(φP ). Then

P
(
W(a,b) ∈ AEP (φ1, φ2)

)
= P (φ1 ≤ ΦEP ≤ φ2) =

φ2 − φ1

2π
.

This does not mean, however, that W(a,b) follows the uniform distribution on the el-
lipse E(a,b) w.r.t. the Euclidean arc length (as it would for a = b). To demonstrate
this, let a > b and denote the Euclidean arc length by AL. Then AL (AEP (0, π/4)) <
AL (AEP (π/4, π/2)) while AL (AP (0, π/4)) > AL (AP (π/4, π/2)), see also Figure 6.
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Figure 6. W(a,b) is not uniformly distributed: The case a > b.

The previous results do not give a comprehensive insight into the nature of the bivariate
and at the origin centered normal distribution. On the one hand, the introduction of ran-
dom polar coordinates as in Subsection 2.3 does not lead to a decomposition of (ξ, η)T into
independent factors. On the other hand, the introduction of random elliptical coordinates
as in Subsection 2.4 is strongly connected with the described problems of interpreting the
resulting random angle. Moreover, the uniform distribution of the angle ΦEP does not
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reflect the non uniform distribution on E(a,b) of the corresponding random vector W(a,b).
Searching for a deeper understanding of the axis-aligned Gaussian law, we shall make use
of coordinates in the next section which play a basic role in non-Euclidean or Minkowski
geometry.

2.5 Random E(a,b)-generalized elliptical polar coordinate representation

Let us consider now the E(a,b)-generalized elliptical polar coordinates (RGEP ,ΦGEP )
T of

(ξ, η)T ,

RGEP = R(a,b) = REP =

∣∣∣∣(ξη
)∣∣∣∣

(a,b)

and ΦGEP = ΦP = Φ

where Φ is the usual polar angle. These coordinates were introduced in Richter (2011) and
it follows immediately from the considerations in Example 15 there that R(a,b) and Φ are

independent and satisfy R(a,b) ∼ χ2, Φ ∼ FE(a,b) , that is, the random variables R(a,b) and
Φ follow the joint density function

f(R(a,b),Φ)(r, φ) = r e−
r2

2
1

2π(a,b)N
2
(a,b)(φ)

, r > 0 , 0 ≤ φ < 2π . (4)

Further, let U(a,b) = (a cos(a,b)(Φ), b sin(a,b)(Φ))
T where

cos(a,b)(φ) =
cosφ

aN(a,b)(φ)
and sin(a,b)(φ) =

sinφ

bN(a,b)(φ)

denote the E(a,b)-generalized trigonometric functions, see Figures 7(a) and 7(b).

1

−1

π

2
π 3π

2
2π

(a, b) = (1, 1) (a, b) = (2, 3) (a, b) = (0.5, 3) (a, b) = (5, 3)

ϕ

(a)

1

−1

π 2π

(a, b) = (1, 1) (a, b) = (2, 3) (a, b) = (0.5, 3) (a, b) = (5, 3)

ϕ

(b)

Figure 7. (a) The E(a,b)-generalized sine function. (b) The E(a,b)-generalized cosine function.

The random vector (ξ, η)T satisfies the stochastic representation(
ξ
η

)
d
= R(a,b) · U(a,b) (5)

withR(a,b) and U(a,b) being independent, U(a,b) ∼ ω(a,b),R(a,b) ∼ χ2 and also withR(a,b) be-
ing independent of Φ. Formula (5) will be called the stochastic representation correspond-
ing to the E(a,b)-generalized elliptical polar coordinate representation of an axis-aligned and
at the origin centered (elliptically contoured) Gaussian random vector. For emphasizing
the non-standard geometric nature of U(a,b), one might also speak about this approach as
a non-Euclidean geometric-stochastic representation. Although the random vector W(a,b)
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in Subsection 2.4 follows the same distribution as U(a,b) in this subsection, the stochastic
representation (5) may be preferable over the stochastic representation (3), because the
polar angle used inhere describes in a more natural way than ΦEP the direction of (ξ, η)T .
In this regard, the distribution of Φ described in Theorem 2.1 perfectly reflects the distri-
bution of U(a,b). Consequently, we restrict our considerations in the following sections to
the type of coordinates used here. While the meaning of the quantity R(a,b) is pretty clear,
we want to give more explanation for the density of Φ. To this end, let us consider a closed
parametric curve CΦ : [0, 2π) → R3 defined by CΦ(φ) = (a cos(a,b)(φ), b sin(a,b)(φ), fΦ(φ)).
One may call this curve the E(a,b)-generalized elliptical polar representation of fΦ, see
Figure 8(a). Moreover, the values fΦ(φ) are closely connected with cone-probabilities
P (V ∈ C(Ai)) = P (U(a,b) ∈ Ai) where Ai = AP (φi − ε, φi + ε) generates the cone

C(Ai) =

{
(x, y)T ∈ R2 :

(x, y)T

|(x, y)T |(a,b)
∈ Ai, |(x, y)T |(a,b) ≤ 1

}

for some ε > 0 and V follows the uniform distribution on K(a,b) = {(x, y)T ∈ R2 :

|(x, y)T |(a,b) ≤ 1}, see Example 4.4. (b) in Richter (2011) and Figure 8(b). Here, large
values of fΦ(φi) correspond to large values of P (U(a,b) ∈ Ai) as well as small values of
fΦ(φi) correspond to small values of P (U(a,b) ∈ Ai).

x

y

fΦ(ϕ)

ϕ

a

b

(a)

y

x

0

0

a

b E(a,b)

A2
A1

ϕ1

ϕ2

(b)

Figure 8. In both figures it is a = 4 and b = 1.
(a) The E(a,b)-generalized elliptic polar representation CΦ for fΦ.

(b) Large values of fΦ(φi) correspond to those of P
(
U(a,b) ∈ Ai

)
. Here, ε = 4◦, φ1 = 8◦ and φ2 = 82◦.

In directional statistics the density f of a polar angle is sometimes represented by the
closed curve ((1+f(φ)) cosφ, (1+f(φ)) sinφ), φ ∈ [0, 2π), which is called circular or polar
representation of the density f (w.r.t. the unit circle C), see, e.g., Jammalamadaka and
SenGupta (2001) or Mardia and Jupp (2000). A circular representation of fΦ is shown in
Figure 9.

2.6 Regularly distributed Gaussian vectors

Let now the vector (ξ, η)T be distributed according to a regular normal distribution, i.e.
(ξ, η)T ∼ Φµ,Σ with an arbitrary expectation vector µ = (µ1, µ2)

T ∈ R2 and a regular
covariance matrix

Σ =

(
σ21 ρ σ1σ2

ρ σ1σ2 σ22

)
.
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fΦ(ϕ)

C

ϕ

1 + a

2πb

1 + b

2πa

−1 1

−1

1

Figure 9. Circular representation of fΦ in the case a = 4, b = 1.

With regard to the basic concept in principal component analysis, see for example An-
derson (2003), the random vector (ξ − µ1, η − µ2)

T can be orthogonally transformed to
follow an axis-aligned Gaussian distribution Φ02,diag(a2,b2) with variances a2 and b2 being
the eigenvalues of Σ. In other words, the ellipse E generated by the symmetric positive-
definite matrix Σ and µ, E =

{
(x, y)T ∈ R2 : (x− µ1, y − µ2)Σ

−1(x− µ1, y − µ2)
T = 1

}
,

can be rotated clockwise with respect to µ and through the angle α, α ∈ [0, π/2), to an
axis-aligned ellipse E(a,b) + µ where a and b are the half lengths of the principal axes of E
and where α is the anticlockwise-measured (acute) angle included by the positive x-axis
and one of the principal axes of E − µ. The half length of this principal axis associated
with the rotation angle α will be denoted by a, see Figure 10. Notice that every orthogonal
transformation of E−µ can be represented by a properly chosen rotation of E−µ. Putting
α = 0 if both σ1 = σ2 and ρ = 0, there is a one-to-one map

T(AA,R) : (a, b, α) 7→ (σ1, σ2, ρ)

from the parameters in the axis-aligned case to those in the regular case where (σ1, σ2, ρ) ∈
(0,∞)2 × (−1, 1) and (a, b, α) ∈

(
{(x, y) ∈ R2 : x > 0, y > 0, x ̸= y} × [0, π/2)

)
∪{

(x, x, 0) ∈ R3 : x > 0}
}
. The inverse of this map, T−1

(AA,R) : (σ1, σ2, ρ) 7→ (a, b, α), is given

by

α = α(Σ) =


0 ρ = 0 (6.1)

γ +

{
0 ρ (σ1 − σ2) > 0

π/2 ρ (σ1 − σ2) < 0
σ1 ̸= σ2 ∧ ρ ̸= 0 (6.2)

π/4 σ1 = σ2 ∧ ρ ̸= 0 (6.3)

(6)

where γ = 1
2 arctan 2σ1σ2 ρ

σ2
1−σ2

2
and

a = a(Σ) =
√
σ21 cos

2 α+ σ22 sin
2 α+ 2 ρ σ1σ2 sinα cosα ,

b = b(Σ) =
√
σ22 cos

2 α+ σ21 sin
2 α− 2 ρ σ1σ2 sinα cosα .

(7)

The nontrivial cases (6.2) and (6.3) occurring in the evaluation of α(Σ) in (6) are illus-
trated in Figure 11 by giving the corresponding density level sets of (ξ, η)T ∼ Φµ,Σ where
w.l.o.g. it is µ = 02. Notice that γ < 0 in Figure 11(a) and that the omitted subcase
σ1 > σ2, ρ ̸= 0 in Figure 11 was already dealt with in Figure 10.



Chilean Journal of Statistics 13

−1

0

1

2

3

−1 0 1 2 3 4 5

ab
α = γ

E

(a)

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1

b
a

α

(b)

Figure 10. Density level sets of (ξ, η)T for σ1 > σ2.

(a) µ =
(
2
1

)
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(
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)
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(−2
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(
2 −0.75

−0.75 1

)

−3

−2

−1

0

1
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b

α = γ +
π

2

γ

(a)
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−1
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1
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b

a

α

(b)

−3
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−1

0

1

2

3
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a
b

α =
π

4

(c)

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

b

a
α =

π

4

(d)

Figure 11. The case (6.2), σ1 < σ2: (a) Σ =
(

1 0.75
0.75 2

)
(b) Σ =

(
1.75 −0.9
−0.9 2

)
The case (6.3): (c) Σ =

(
2 0.75

0.75 2

)
(d) Σ =

(
1 −0.3

−0.3 1

)

Keep in mind that DΣDT = diag(a2, b2) = cov
(
D
(
ξ, η
)T)

where

D = D(α) =

(
cosα sinα
− sinα cosα

)
is an orthogonal matrix defining a clockwise rotation through the uniquely defined angle
α and w.r.t. the origin. That is why we refer to (6) and (7) as the geometric represen-
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tation of α, a and b. The rows of D are orthonormal eigenvectors of Σ corresponding
to the eigenvalues a2 and b2 and in addition, the rows define the principal components
(cosα, sinα)(ξ − µ1, η − µ2)

T and (− sinα, cosα)(ξ − µ1, η − µ2)
T of (ξ − µ1, η − µ2)

T

having variances a2 und b2. From the latter interpretation of a2 and b2 as eigenvalues of
Σ follow the representations

max{a, b} = max{a(Σ), b(Σ)} =

√
σ21 + σ22 +

√
(σ21 − σ22)

2 + 4ρ2σ21σ
2
2

2
,

min{a, b} = min{a(Σ), b(Σ)} =

√
σ21 + σ22 −

√
(σ21 − σ22)

2 + 4ρ2σ21σ
2
2

2
.

(8)

We therefore refer to (8) as the algebraic representation of the eigenvalues of the covariance
matrix Σ arranged in descending order. In contrast to the geometric representations in (7),
it seems at the first look that there is no (explicit) use of the rotation angle α = α(Σ) in
(8). But notice that the correlation coefficient ρ = ρ(α) depends on α in a well defined but
subtle way. This will be discussed in detail in the next section.

To summarize our considerations so far, the centered and rotated (principal component)
vector (

X
Y

)
:= D(α)

(
ξ − µ1
η − µ2

)
follows an axis-aligned Gaussian distribution that generates an ellipse E(a,b) with a =

a(Σ) > 0, b = b(Σ) > 0. With regard to Subsection 2.5, the random vector (ξ, η)T satisfies
therefore the representation(

ξ
η

)
d
= µ+D(α)T

(
R(a,b) · U(a,b)

)
(9)

where the parameter triple (a, b, α) is uniquely determined by (6) and (7), R(a,b) and U(a,b)

are independent and R(a,b) ∼ χ2, U(a,b) ∼ ω(a,b). Formula (9) will be called the E(a,b)-
generalized elliptical polar coordinate representation of a regularly distributed Gaussian
random vector. Notice thatR(a,b) = |D(α)(ξ−µ1, η−µ2)T |(a,b), i.e.R(a,b) can be interpreted

as the value of the Minkowski functional w.r.t. the set D(α)TE(a,b) at the point (ξ −
µ1, η − µ2)

T . Incidentally, the chi-distribution of R(a,b) in (3), (5) or (9), respectively, is

a consequence of the well known fact that (Z − µ)TΣ−1(Z − µ) is chi-square distributed
with m degrees of freedom if Z ∼ Φµ,Σ, µ ∈ Rm and Σ ∈ Rm×m, see, e.g., Muirhead
(1982). Moreover, the radius R(a,b) and Φα = Φ+α mod 2π, where Φα is the polar angle

of (ξ − µ1, η− µ2)
T and Φ is the polar angle of D(α)(ξ − µ1, η− µ2)

T , follow the joint pdf

f(R(a,b),Φα)(r, φ) = r e−
r2

2
1

2π(a,b)N
2
(a,b)(φ− α)

, r > 0 , 0 ≤ φ < 2π .

Equation (4) implies fΦα
(φ) = fΦ((φ−α) mod 2π), 0 ≤ φ < 2π. We shall call D(α)TU(a,b)

the generalized uniform basis of the random vector (ξ − µ1, η − µ2)
T and R(a,b) its gener-

alized radius variable. This notion follows the one in Fang et al. (1990) and extends it in
the spirit of Richter (2011) to non-Euclidean geometry. The representation (9), however,
differs essentially from those in Cambanis et al. (1981) and Tong (1990), which refer to
the uniform distribution ωC on the unit circle (w.r.t. the Euclidean arc length). For the
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discussion of the possibility to choose the parameters a and b in descending order see
Remark 6.2

Let us finally discuss the main new aspect turning out from the survey given in this sec-
tion. As we have seen, there are several other more or less known and common possibilities
to represent the random vector (ξ, η)T with the help of a certain angle and a certain radius
variable. As indicated in Subsections 2.5 and 2.6, however, there are pretty good reasons
for us to follow further here the approach in (9), which is based on non-Euclidean geome-
try. Moreover, this geometric-stochastic representation of a regularly distributed Gaussian
random vector itself motivates us to introduce a corresponding parametrization of the
Gaussian law in Section 4. Before doing this, we will analyze in Section 3 the meaning of
the correlation coefficient within this non-Euclidean geometric approach.

3. The non Euclidean geometric representation of ρ

We consider again the random vector (ξ, η)T ∼ Φ02,Σ and assume that Σ is regular and
has two different eigenvalues. As it was shown in Section 2, the distribution of (ξ, η)T is
strongly connected then with a non-Euclidean geometry. In this context, equation (9) gives
a decomposition of (ξ, η)T into independent random elements, an E(a,b)-generalized radius
and a generalized uniform basis. The latter follows a generalized uniform distribution on
the ellipse E(a,b) rotated anti-clockwise through the angle α, where (a, b, α) can be obtained
from (6) and (7). Besides, the considerations in Subsection 2.6 make clear that the existence
of both linear and stochastic dependencies between ξ and η result only from the rotation
of a Gaussian random vector with independent components through the angle α. Hence, if
a ̸= b, the rotation angle α causes the existence of a nontrivial relationship between ξ and
η and can be used therefore as a parameter expressing dependence properties. This raises
the questions in which sense the usual stochastic parameters σ21, σ

2
2 and ρ are suitable to

describe the geometry behind the regular Gaussian law and especially in which sense ρ
reflects the linear (geometric) dependencies between ξ and η.
As can be seen in Figures 12(a) and 12(b), the variances σ21 and σ22 do not indicate a lot
about the shape of the density level sets D(α)TE(a,b) of (ξ, η)

T if the correlation coefficient

is unknown. Also, if ρ is known but one of the two variances σ21 and σ22 is unknown, then
again the shape of the density level sets of (ξ, η)T may look in various different ways, see
Figures 12(c) and 12(d). Consequently, one has to know the complete triple (σ21, σ

2
2, ρ) to

understand the regular Gaussian law from the geometric point of view. In contrast, the
quantities a2 and b2 determine already the lengths-ratio of the principle axes of the density
level sets of (ξ, η)T and in this sense a main part of their shape even if the rotation angle
α is unknown. On the other hand, the angle α already involves a certain main direction of
the considered density level sets even if a2 and b2 are unknown. In this context, tanα is
the slope of the principle axis of (ξ, η)’s density level sets having half length a, and tanα is
also the slope of the line through the origin with minimum or maximum expected squared
distance to (ξ, η)T if a > b or a < b, respectively, see Anderson (2003) or Hyvärinen et
al. (2001). It is common to consider ρ as a parameter expressing dependence properties
of ξ and η. Let us emphasize here as a consequence of Subsection 2.6 that Σ = Σ(α) and
especially ρ = ρ(α) are functions of the rotation angle α where

ρ(α) =
sinα cosα · (1− b2

a2 )√
cos2 α+ b2

a2 sin
2 α
√

b2

a2 cos2 α+ sin2 α
, 0 ≤ α <

π

2
. (10)
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Figure 12. (a), (b) The shape of the density level sets D(α)TE(a,b) with σ2
1 = 16 and σ2

2 = 4 depends on ρ.

(c), (d) The shape of D(α)TE(a,b) with σ2
1 = 4 and ρ = 0.8 depends on σ2

2 .

Considering the correlation coefficient as a function defined for α ∈ [0, 2π), α 7→ ρ(α) is
π-periodical and if a > b, ρ is strictly monotonically increasing on (0, π/4) ∪ (3π/4, π)
and strictly monotonically decreasing on (π/4, 3π/4). Analogously, if a < b, the function
α 7→ ρ(α) is strictly monotonically increasing on (π/4, 3π/4) and strictly monotonically
decreasing on (0, π/4)∪(3π/4, π), see Figure 13. Moreover, α 7→ ρ(α) satisfies ρ (π/4− α) =
ρ (π/4 + α) and ρ (π/2− α) = −ρ (π/2 + α). Incidentally, the latter properties of α 7→

1

−1

π

2
π

(a2, b2) = (15, 2)

(a2, b2) = (8, 2)

(a2, b2) = (3, 2)

(a2, b2) = (2, 15)

ρ(α)

α

Figure 13. The correlation coefficient ρ as a function of α, α ∈ [0, π).

ρ(α), α ∈ [0, 2π), make clear that it suffices to consider the rotation angle as an element of
[0, π/2) to obtain any possible correlation −1 < ρ(α) < 1. To be more concrete, for given
a > b > 0 the maximum and minimum values of ρ(α) are ρ∗ = (a2 − b2)/(a2 + b2) and
zero, respectively. On the other hand, the maximum and minimum values of ρ(α) are zero
and ρ∗ < 0, respectively, if b > a > 0. This means that the general inequalities −1 ≤ ρ ≤ 1
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can be specified by the sharper inequalities

min {0, ρ∗} ≤ ρ ≤ max {0, ρ∗} , (11)

where ρ∗ = ρ(π/4) and |ρ∗| < 1, which we have not been aware of in the literature. As
limb/a→0 ρ(α) = 1 and lima/b→0 ρ(α) = −1, a and b may be chosen in such a way that an
arbitrary prespecified value from (−1, 1) is attained by the correlation coefficient. For a
basic study of the closely connected notion of a maximal correlation for given marginals
we refer to Fréchet (1957) and Höffding (1940). Notice that in terms of the non-Euclidean
norm | · |(a,b), ρ is given by

ρ(α) =
ρ∗ sin(2α)

2
·


∣∣∣∣(cos (α+ π/2)

sin (α+ π/2)

)∣∣∣∣
(a,b)∣∣∣∣(cos (α)sin (α)

)∣∣∣∣
(a,b)

+

∣∣∣∣(cos (α)sin (α)

)∣∣∣∣
(a,b)∣∣∣∣(cos (α+ π/2)

sin (α+ π/2)

)∣∣∣∣
(a,b)

 . (12)

We call therefore (12) the non-Euclidean geometric representation for the correlation co-
efficient of the regular Gaussian law. This representation demonstrates that ρ relies on
the underlying geometry of the density level sets of (ξ, η)T . In detail, in representation
(10) the correlation coefficient ρ depends not only on the rotation angle α and the ratio
of the half lengths a and b of the principal axes, but even both of these quantities are
weighted and mixed in a sophisticated way. In the non-Euclidean geometric representa-
tion (12), the correlation coefficient ρ depends on the rotation angle α and the ratio of
the E(a,b)-generalized lengths of the unit vectors corresponding to the polar angles α and
α+ π/2. Recall that tanα and tan (α+ π/2) are the slopes of the lines through the origin
with extremal expected squared distances to (ξ, η)T . Moreover, the quantities α, a, b are
weighted and mixed by the π/2-periodical function

ψ(α) =
1

2
·
(
N(a,b) (α+ π/2)

N(a,b)(α)
+

N(a,b)(α)

N(a,b) (α+ π/2)

)
,

which takes it’s minimal value 1 at α = π/4 and it’s maximal value ψ̃ = (a/b + b/a)/2
at α = 0. In this context, the π-periodicity of the function ρ(α) follows from that of the
function sin(2α), because π is the least common multiple of the periods of both functions,
see Figure 14(a). Notice that in Figure 14(b) the level l of ψ̃ tends to ∞ if b/a→ 0.

1

2

−1

π

2
π

ψ̃

sin(2α)

ψ(α)

α

(a)

10

20

30

10 20 30

l = 1

l = 2

l = 3

l = 10

a

b

(b)

Figure 14. (a) The functions sin(2α) and ψ(α).

(b) Level sets of ψ̃ considered as a function of a and b, where a > b > 0.
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As a consequence of this discussion, we will use in what follows the rotation angle α
instead of the correlation coefficient ρ to express the stochastic and linear dependencies
between ξ and η, particularly with regard to the fact that every such dependency can be
eliminated by a clockwise oriented rotation through the angle α. Finally, let us remark
that the case a = b entails ρ ≡ 0 for any rotation angle and α = 0 at the same time.
To summarize this section, we point out that there are good reasons to describe the

regular Gaussian distribution with the help of the parameter vector (a, b, α) instead of
(σ1, σ2, ρ). This reparametrization of the Gaussian density will be introduced in the next
section.

4. The principal axes parametrization of the Gaussian law

In this section, we derive a parametrization of the regular Gaussian law which reflects
on the one hand the non-Euclidean geometric nature of the stochastic representation (9)
from Subsection 2.6 and which is on the other hand closely connected with a basic idea in
principal component analysis. Regardless of the multiplicity of books and papers concern-
ing the last mentioned subject, see for example Anderson (2003), Hyvärinen et al. (2001),
Jolliffe (2004) and Muirhead (1982), the authors were not aware in the literature of the
parametrization presented in this section.
Consider ρ ∈ (0, 1),

Σ =

(
σ21 ρ σ1σ2

ρ σ1σ2 σ22

)
, |(x, y)T |Σ := (x, y)Σ−1(x, y)T ,

and let the vector (ξ, η)T be distributed according to a regular normal distribution with
expectation vector µ = (µ1, µ2)

T ∈ R2 and regular covariance matrix Σ. Using the Σ-norm
| · |Σ, the density of the random vector (ξ, η)T may be written as

f(ξ,η)(x, y) =
1

2π (detΣ)
1

2

exp

{
−1

2

∣∣∣∣(x− µ1
y − µ2

)∣∣∣∣2
Σ

}
, (x, y)T ∈ R2 .

It follows from Subsection 2.6 that detΣ = a2b2 and

f(ξ,η)(x, y) =
1

2π(a,b)
exp

{
−1

2

∣∣∣∣D(α)

(
x− µ1
y − µ2

)∣∣∣∣2
(a,b)

}
(13)

where the triple of parameters (a, b, α) has the meaning as in (6) and (7). This in-
cludes that α is uniquely determined in [0, π/2), a > 0, b > 0, and that D(α) satisfies
D(α)Σ−1D(α)T = diag

(
a−2, b−2

)
. Moreover, the pdf of (ξ, η)T can be represented as

f(ξ,η)(x, y) =
1

2π(a,b)
exp

{
−1

2

(
N2

(a,b)(α)(x− µ1)
2 +N2

(a,b)(α+ π/2)(y − µ2)
2
)}

· exp
{
sin(2α)N2

(a,b)(π/4) ρ∗ (x− µ1)(y − µ2)
}

(14)

=
1

2π(a,b)
exp

{
−s

2
1(x− µ1)

2 + s22(y − µ2)
2 − 2c2 ρ∗ sin(2α)(x− µ1)(y − µ2)

2

}
where c2 = (a2 + b2)/(2 a2b2). Here, ρ∗ = (a2 − b2)/(a2 + b2) is according to (11) the
maximum or minimum value of the correlation coefficient ρ(α) for given a > b or b > a,
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respectively. Recall that according to Richter (2011) the quantity π(a,b) = π a b denotes

the ellipse number of E(a,b). The quantities s21, s
2
2 and c2 allow the following geometric

interpretations:

s21 =

∣∣∣∣(cosαsinα

)∣∣∣∣2
(a,b)

, s22 =

∣∣∣∣(cos (α+ π
2

)
sin
(
α+ π

2

))∣∣∣∣2
(a,b)

and c2 =

∣∣∣∣(cos π4sin π
4

)∣∣∣∣2
(a,b)

,

see Figure 15(a). Here, the vector (cosπ/4, sinπ/4)T corresponds to the angle α∗ = π/4,
which is according to Section 3 connected with the extremal correlation coefficient ρ∗.

−6

−4

−2

0

2

4

6
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α

π
4
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·
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(a)
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(
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L(~s1)

L(~s2)

(b)

Figure 15. (a) The quantities s1, s2 and c are the | · |(a,b)-lengths of the vectors

s⃗1 = ( cosαsinα ), s⃗2 =
(

cos(α+π/2)
sin(α+π/2)

)
and c⃗ =

(
cosπ/4
sinπ/4

)
, respectively.

(b) The quantities a2b2s21, a
2b2s22 and a2b2c2 are variances of the coeffi-

cients corresponding to the orthogonal projections of (X,Y )T onto the one-
dimensional subspaces L(s⃗2), L(s⃗1) and L(c⃗), respectively.

The quantities s21, s
2
2 and c2 can also be considered from a stochastic point of view as

a2b2s21 = V

(⟨(
X
Y

)
,

(
cos(α+ π/2)
sin(α+ π/2)

)⟩)
, a2b2s22 = V

(⟨(
X
Y

)
,

(
cosα
sinα

)⟩)

and a2b2c2 = V
(⟨
(X,Y )T , (cosπ/4, sinπ/4)T

⟩)
where (X,Y )T = D(α) ((ξ, η)T − µ) and

⟨· , ·⟩ denotes the Euclidean inner product in R2, see Figure 15(b). With regard to principal
component analysis, the components of D(β)(X,Y )T = D(α + β)((ξ, η)T − µ) have vari-
ances lower than max{a2, b2} and greater than min{a2, b2} for any β not beeing a multiple
of π/2 and a ̸= b. In this context,

min{a2, b2} < V (ξ) < max{a2, b2} and min{a,2 b2} < V (η) < max{a2, b2}

if α ̸= 0 and a ̸= b. The formula (13) or any of the representations in (14) will be called
the principal axes representation of the two-dimensional regular Gaussian density with
parameters (a, b, α) satisfying a > 0, b > 0 and α ∈ [0, π/2), (ξ, η)T ∼ ΦPAa,b,α, where a = b
implies α = 0.
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5. Point Estimation

5.1 Estimation of the semi-major and the semi-minor axes lengths

In this subsection, we consider a sample of i.i.d. random vectors (ξ1, η1)
T , . . . , (ξn, ηn)

T

from a two-parameter Gaussian density with expectation µ = 02, which can be written
according to the principal axes representation (13) as

f(ξ,η)(x, y) =
1

2πab
· exp

{
−1

2

(
(x cosα+ y sinα)2

a2
+

(−x sinα+ y cosα)2

b2

)}
(15)

where (a, b) ∈ Θ2 is the unknown parameter vector, Θ2 = {(x, y) ∈ R2 : x > 0, y > 0, x ̸=
y}, and α ∈ [0, π/2) is assumed to be a known angle of rotation. The maximum likelihood
estimators of a2 and b2 are a.s. given by

â2 =
1

n

n∑
i=1

(ξi cosα+ ηi sinα)
2 and b̂2 =

1

n

n∑
i=1

(ηi cosα− ξi sinα)
2 .

We observe that â2 and b̂2 are scaled squares of the row-norms of the sample(
ξ
η

)
(n)

:=

(
ξ1 ξ2 . . . ξn
η1 η2 . . . ηn

)

rotated clockwise through the angle α w.r.t. the origin 02, i.e.

â2 =
1

n

∥∥∥∥∥(cosα sinα
)(ξ

η

)
(n)

∥∥∥∥∥
2

and b̂2 =
1

n

∥∥∥∥∥(− sinα cosα
)(ξ

η

)
(n)

∥∥∥∥∥
2

(16)

where ∥ · ∥ denotes the Euclidean norm in Rn. The exact and asymptotic distributions of

â2 and b̂2 will be determined in Section 6.

5.2 The case of three unknown parameters

Let (ξ, η)T(n) = (ξ(n), η(n))
T again be a sample from the Gaussian density in (15) where

now (a, b, α) ∈ Θ3 = Θ2 × [0, π/2) is assumed to be completely unknown. The maximum
likelihood estimators of a2, b2 and α are a.s. given by

â2 =
1

n

∥∥∥∥∥(cos α̂ sin α̂
)(ξ

η

)
(n)

∥∥∥∥∥
2

, b̂2 =
1

n

∥∥∥∥∥(− sin α̂ cos α̂
)(ξ

η

)
(n)

∥∥∥∥∥
2

and

α̂ =

{
1
2 arctan

Z
N , if Z ·N > 0

1
2 arctan

Z
N + π

2 , if Z ·N < 0

where Z = 2 ⟨ξ(n), η(n)⟩ , N =
∥∥ξ(n)∥∥2 −

∥∥η(n)∥∥2 and where ⟨· , ·⟩ denotes from now
on the Euclidean inner product in Rn. Notice that the maximum likelihood approach for
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estimating (a, b, α) is in this case equivalent to applying T−1
(AA,R) to the suitably transformed

components of

Σ̂ =
1

n

( ∑n
i=1 ξ

2
i

∑n
i=1 ξiηi∑n

i=1 ξiηi
∑n

i=1 η
2
i

)
,

i.e.

T−1
(AA,R)

√√√√ 1

n

n∑
i=1

ξ2i ,

√√√√ 1

n

n∑
i=1

η2i ,

∑n
i=1 ξiηi√∑n

i=1 ξ
2
i

√∑n
i=1 η

2
i

 =

(√
â2,

√
b̂2, α̂

)
.

Moreover, the result of this approach is also equal to that of the method of moments
approach taking into account the three moments of second order Eξ21 , Eη

2
1 and Eξ1η1. In

this context, the diagonalisation of Σ̂ leads according to equations (8) to the representations

max
{
â2, b̂2

}
=

1

2n

∥ξ(n)∥2 + ∥η(n)∥2 +

√(
∥ξ(n)∥2 − ∥η(n)∥2

)2

+ 4
⟨
ξ(n), η(n)

⟩2 (17)

and

min
{
â2, b̂2

}
=

1

2n

∥ξ(n)∥2 + ∥η(n)∥2 −

√(
∥ξ(n)∥2 − ∥η(n)∥2

)2

+ 4
⟨
ξ(n), η(n)

⟩2 (18)

for the maximum likelihood estimators of max{a2, b2} and min{a2, b2}.

6. Distribution of Point Estimators

6.1 The MLEs of a2 and b2 in case of a known rotation angle α

Consider the maximum likelihood estimators â2 and b̂2 in Subsection 5.1, i.e. in the case of

a known angle α. As D(α)
(
ξi ηi

)T ∼ Φ02,diag(a2,b2) according to Subsection 2.6, it follows

immediately from the representations in (16) that n â2/a2 ∼ χ2
n and n b̂2/b2 ∼ χ2

n. For any

finite sample size â2 and b̂2 are unbiased, stochastically independent and have variances
2a4/n and 2b4/n, respectively. For increasing sample sizes it follows from the law of large
numbers that a.s. (

â2

b̂2

)
−→
n→∞

(
a2

b2

)
.

Also notice that maximum likelihood estimators in exponential families are consistent and
asymptotically normal, see for example Lehmann (1983). Hence,

L

(
√
n

(
â2 − a2

b̂2 − b2

))
=⇒ Φ

02,
(
2a4 0
0 2b4

) , n→ ∞ .
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6.2 The three parameter case

The distributions of the maximum likelihood estimators of λ1 := max{a2, b2} and λ2 :=
min{a2, b2} from Subsection 5.2, that is in case of an unknown rotation angle α, have been
studied, e.g., in Anderson (2003) and Muirhead (1975, 1982). After a brief review of their

results we will give representations for the cdfs of the maximum likelihhood estimators λ̂1
and λ̂2 which seem to be new, see Theorem 6.1.

Consider the maximum likelihood estimator λ̂1 of max{a2, b2}, which is the greatest

eigenvalue of Σ̂, see Subsection 5.2. It is a well known fact that n Σ̂ ∼ W2(Σ, n) where
W2(Σ, n) denotes the two-dimensional Wishart distribution with n degrees of freedom,

i.e. n λ̂1 is the largest eigenvalue of a W2(Σ, n)-distributed random matrix. In Muirhead
(1982) a representation for the distribution function of the largest eigenvalue of aW2(Σ, n)-
distributed random matrix is given and it follows immediately from there that

P
(
λ̂1 < x

)
=

Γ (
√
π)

2Γ
(
n+3
2

)
Γ
(
n+2
2

) ( nx
2ab

)n
1F1

(
n

2
;
n+ 3

2
;−nx

2
diag

(
a−2, b−2

))
(19)

where

1F1(c; d;M) =

∞∑
k=0

∑
κ(k)

(c)(k)

(d)(k)

Cκ(M)

k!

is the hypergeometric function with matrix argument M ∈ R2×2 and parameters c > 0,
d > 0. For a precise definition of pFq(c1, . . . , cp; d1, . . . , dq;M), M ∈ Rm×m, m ∈ N, a
partition κ(k) = (k1, . . . , km) of k, the zonal polynomial Cκ of order κ and the notation
(c)(k), we refer to Muirhead (1982). The hypergeometric function with matrix argument

M ∈ R2×2 was expressed in Muirhead (1975) as an infinite sum involving hypergeometric
functions with scalar arguments. From there, we have

P
(
λ̂1 < x

)
= τ (nx)n exp

(
−nx

2

(
a−2 + b−2

))
[B −A] , x > 0 , (20)

with

τ = 2−n−1√π (ab)−n Γ

(
n+ 3

2

)
Γ

(
n+ 2

2

)
,

A = n

∞∑
k=0

(
1
2

)
(k)(

n+3
2

)
(k)

(
nx
2

(
a−2 + b−2

))k
k!

2F1

(
−k
2
,
1

2
− k

2
;
1

2
− k; 4

(
ab

a2 + b2

)2
)

and

B

n+ 1
=

∞∑
k=0

(
1
2

)
(k)(

n+1
2

)
(k)

(
nx
2

(
a−2 + b−2

))k
k!

3F2

(
−k
2
,
1

2
− k

2
,
n

2
;
1

2
− k,

n

2
+ 1; 4

(
ab

a2 + b2

)2
)
.

Alternatively to the representations (19) and (20), which involve series of zonal polyno-
mials, we present in the following theorem a new integral representation for the cdf F

λ̂1

of λ̂1 and additionally a new integral representation for the cdf F
λ̂2
, i.e. the cdf of the

smallest eigenvalue of the W2(Σ, n)-distributed random matrix n Σ̂. It will turn out that
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these integral representations are particularly useful for the numerical evaluation of F
λ̂1

and F
λ̂2
, see Section 7.

Theorem 6.1 The cdf of λ̂1 satisfies the representation

F
λ̂1
(x) =

(
ω2
n

(2π(a,b))n

∫ √
nx

r=0

∫ √
nx−r2

s=0
(rs)n−1e−

r2

2a2 − s2

2b2 ds dr

+
2ωnωn−1

(2π(a,b))n

∫ √
nx

r=0

∫ √
nx

s=
√
nx−r2

(rs)n−1e−
r2

2a2 − s2

2b2

∫ π

2

arccos
√
g
sinn−2(ψ1) dψ ds dr

)
1(0,∞)(x)

and the cdf F
λ̂2

satisfies the representation

F
λ̂2
(x) =

(
ω2
n

(2π(a,b))n

[∫ √
nx

r=0

∫ ∞

s=
√
nx
(rs)n−1e−

r2

2a2 − s2

2b2 ds dr

+

∫ ∞

r=
√
nx

∫ √
nx

s=0
(rs)n−1e−

r2

2a2 − s2

2b2 ds dr

]

+
2ωnωn−1

(2π(a,b))n

∫ ∞

r=
√
nx

∫ ∞

s=
√
nx
(rs)n−1e−

r2

2a2 − s2

2b2

∫ arccos
√
g

0
sinn−2(ψ1) dψ ds dr

)
1(0,∞)(x)

where g := g(r, s;n, x) := 1+nx (nx− r2− s2)/(r2s2) and ωk = 2πk/2/Γ (k/2) denotes the
Euclidean surface area of the k-dimensional unit sphere Sk, k ≥ 1.

Proof There will be given a scetch of the proof in the Appendix. �

Remark 6.1 The representations in Theorem 6.1 can be reformulated on using

∫ π

2

arccos
√
g
sinn−2(ψ) dψ =


n

2
−1∑

k=1

√
g(1−g)

n−1
2

−k

n−2 · Ck +
(π

2
−arccos

√
g)

n−2 · Cn

2
−1 , if n is even

n−1

2∑
k=1

√
g(1−g)

n−1
2

−k

n−2 · Ck , if n is odd

,

where n ≥ 3,

Ck =

k−1∏
i=1

n− 2i− 1

n− 2i− 2
=

(
3−n
2

)
(k−1)(

4−n
2

)
(k−1)

, k ∈ N, 1 ≤ k ≤ n− 1

2
,

and
∏0
i=1 ai := 1, ai ∈ R.

Proof Let n ≥ 3. Integration by parts yields

∫ π

2

arccos
√
g
sinn−2(ψ) dψ =

√
g · (1− g)

n−3

2

n− 2
+
n− 3

n− 2

∫ π

2

arccos
√
g
sinn−4(ψ) dψ ,

which can be used to prove the representation of
∫ π

2

arccos
√
g sin

n−2(ψ) dψ by induction on
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n. Notice that ∫ π

2

0
sinn−2(x) dx =

√
π · Γ

(
n−1
2

)
2 · Γ

(
n
2

) , n ≥ 2 .

Further details of the proof are left to the reader. �

There are different reasons for the usefulness of Theorem 6.1. First of all, the integral
representations of the cdfs F

λ̂1
and F

λ̂2
in Theorem 6.1 can be easier implemented than the

infinite series representation in (19). Notice here that neither the hypergeometric function
with matrix argument M nor the involved zonal polynomials Cκ(M) are available as basic
functions of common computing environments. A second reason is the numerical stability
of the involved integrals for large arguments x of the cdfs and small values of the sample
size n. Using an adaptive quadrature with fault tolerance ε, F

λ̂1
(x) can be approximated

very accurately even in this case, see Section 7.

Remark 6.2 Instead of the one-to-one map T(AA,R) in Subsection 2.6 we could have
introduced a quite similar map T ∗

(AA,R) where the parameters a and b, however, are assumed

to be arranged in descending order, a ≥ b, and where α has domain [0, π). Considering
T ∗
(AA,R) would involve the advantages that differently from (11) any correlation −ρ∗ ≤ ρ ≤
ρ∗ could be attained by a suitable specification of the rotation angle α ∈ [0, π) and that
the cdfs of the maximum-likelihood estimators of a2 and b2 could be computed, e.g., on
the basis of Theorem 6.1. At the same time, however, the evaluation of the rotation angle
α would become more complicated than in (6). The same would hold for the maximum-
likelihood estimators of a2 and b2 in (16) if α ∈ [0, π).

7. Example and Outlook

Consider a sample of i.i.d. random vectors (ξ1, η1)
T , . . . , (ξn, ηn)

T from the Gaussian dis-
tribution Φ02,Σ with

Σ =
1

4

(
5

√
3√

3 7

)
and let ρ denote the correlation coefficient of ξ1 and η1. Then ρ =

√
3/35 ≈ 0.29277 and

T−1
(AA,R)(σ1, σ2, ρ) =

(√
2, 1, π/3

)
. Therefore, Σ has principal axes of length 2a = 2

√
2,

2b = 2 and (ξ1, η1)
T is distributed as the product of the generalized radius R(

√
2,1) and the

generalized uniform basis vectorD(π/3)T U(
√
2,1), (ξ1, η1)

T ∼ ΦPA√
2,1,π/3

, whereR(
√
2,1) ∼ χ2

and U(
√
2,1) ∼ ω(

√
2,1) are independent. The maximal correlation attainable (by rotation)

in this configuration of a and b is given by ρ∗ = (a2− b2)/(a2+ b2) = 1/3, see (11). Hence,
ξ1 and η1 can be regarded as kind of nearly maximally correlated in this configuration as
ρ is already pretty close to ρ∗. A simulation of the sample considered above for different
values of n on the basis of the statistical software R gives realisations of the MLEs from
Section 5.2, see Table 1. As can be seen there, the introduced estimates approximate
the corresponding parameters very accurately if the sample size is large enough. In this
context, the theoretical investigation of sufficient sample sizes for the considered estimators
is an interesting open problem, which may be focussed in a future work. Regardless of this
aspect, it is helpful to know the distributions of the point estimators in order to use the
principal axes parametrization of the Gaussian law in statistical modelling. On the one
hand, statistical inference for large sample sizes n can be based on the theory of exponential
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Table 1. Realisations of λ̂1 = max
{
â2, b̂2

}
, λ̂2 = min

{
â2, b̂2

}
and α̂ where a2 = 2, b2 = 1 and α = π/3 ≈ 1.0472.

MLE \ n 100 1000 10000 100000 1000000

λ̂1 1.917 2.045 2.025 2.005 2.001

λ̂2 1.095 0.977 1.019 1.003 0.999

α̂ 1.195 1.117 1.039 1.041 1.046

families. Here,

L

√
n

 â2 − 2

b̂2 − 1
α̂− π/3

 =⇒ Φ03,Ψ , n→ ∞ ,

where Ψ = diag
(
2a4, 2b4, a2b2/

(
(a2 − b2)2

)) ∣∣
a2=2,b2=1

= diag (8, 2, 2), see, e.g., Lehmann

(1983). On the other hand, dealing with a small sample size, the cumulative distribution
functions F

λ̂1
and F

λ̂2
can be approximated very accurately on the basis of Theorem 6.1,

even if the corresponding argument x of the cdf is very large. In this regard, a numerical
integration using the adaptive Lobatto-rule w.r.t. an estimated absolute error tolerance
ε = 10−9 leads to an approximated cdf F̃

λ̂1
and to the quantile approximations presented

in Table 2. For a review of the basic principles of adaptive quadrature see, e.g., Gander
and Gautschi (2000). Ensuring

F
λ̂1

(
F̃−1

λ̂1

(q) + 10−4
)
≥ F̃

λ̂1

(
F̃−1

λ̂1

(q) + 10−4
)
− ε > q ,

F
λ̂1

(
F̃−1

λ̂1

(q)− 10−4
)
≤ F̃

λ̂1

(
F̃−1

λ̂1

(q)− 10−4
)
+ ε < q ,

for q ∈ {0.95, 0.99, 0.999, 0.9999} where the respective first inequality is caused by the
adaptive Lobatto-rule, we say that these quantile approximations are at least correct to
the first 4 decimals. In contrast, the approximation of F

λ̂1
(x) using representation (19)

becomes difficult if x is large, although the authors in Koev and Edelman (2006) made an
implementation of the right side in (19) available. Their implementation is very fast and
effective for moderate values of x but also numerically instable for large values of x and
could not be used to get quantile approximations for F

λ̂1
. Even the representation in (20)

seems to be less appropriate than the one in Theorem 6.1 if x is sufficiently large, although
the approximation of F

λ̂1
(x) on the basis of (20) is also stable in this case. However, the

approximations of F
λ̂1
(x) determined on the basis of (20) are less accurate due to the very

slow convergence of the involved infinite series. The corresponding quantile approximations
of F

λ̂1
differ significantly from those determined with the help of Theorem 6.1, see Table

2. Let us finally state that it is still an open problem to determine the cdf of α̂ and to
discuss the dependence-independence properties of all estimators.
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Table 2. Quantile approximations of F
λ̂1

for a2 = 2, b2 = 1 and n = 5 on the basis of representation (20) using the

first 80 summands and Theorem 6.1, respectively. Notice that the quantile approximations according to Theorem

6.1 are at least correct to the first 4 decimals.

Method F̃−1

λ̂1

(0.95) F̃−1

λ̂1

(0.99) F̃−1

λ̂1

(0.999) F̃−1

λ̂1

(0.9999)

Theorem 6.1 4.9479 6.6903 9.0472 11.2825

Representation (20) 4.7587 6.3471 8.5074 10.5938

Appendix A. Proof of Theorem 6.1

We consider a sample (ξi, ηi)
T , i = 1, . . . , n of i.i.d. (ξi, ηi)

T , (ξi, ηi)
T ∼ Φ02,Σ, with regular

covariance matrix Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, ρ ̸= 0 and ξT(n) = (ξ1, . . . , ξn), η

T
(n) = (η1, . . . , ηn).

Consequently,
(
ξ(n)

η(n)

)
∼ Φ02n,Σ2n×2n

with Σ2n×2n :=
(

Σ1 Σ12

Σ12 Σ2

)
, Σi = σ2i In, i = 1, 2, Σ12 =

ρσ1σ2In and In being the n× n identity matrix. Let (a, b, α) be the uniquely determined
triple corresponding to (σ1, σ2, ρ). It follows from (17) and (18) in Subsection 5.2 that

P
(
λ̂1 < t

)
= P

((
ξ(n)

η(n)

)
∈ A1(t)

)
= Φ02n,Σ2n×2n

(
A1(t)

)
and that P

(
λ̂2 < t

)
= Φ02n,Σ2n×2n

(
A2(t)

)
where t > 0, λ̂1 := max

{
â2, b̂2

}
, λ̂2 :=

min
{
â2, b̂2

}
,

A1(t) =


(
v(n)
w(n)

) ∣∣∣∣ ∥v(n)∥2 + ∥w(n)∥2 +

√(
∥v(n)∥2 − ∥w(n)∥2

)2

+ 4
⟨
v(n), w(n)

⟩2
< 2nt

 ,

A2(t) =


(
v(n)
w(n)

) ∣∣∣∣ ∥v(n)∥2 + ∥w(n)∥2 −

√(
∥v(n)∥2 − ∥w(n)∥2

)2

+ 4
⟨
v(n), w(n)

⟩2
< 2nt

 ,

and where v(n), w(n) are n-dimensional Euclidean vectors. The Borel sets Ai(t), i = 1, 2,

possess some kind of invariance property. LetD(β) =
(

cosβ sinβ
− sinβ cosβ

)
for arbitrary β ∈ [0, 2π)

and consider for any 2n-dimensional vector
( v(n)

w(n)

)
= ( v1 ... vn w1 ... wn )T its transformation

to
( x(n)

y(n)

)
:= (x1, . . . , xn, y1, . . . , yn)

T where(
xi
yi

)
:= D(β) ·

(
vi
wi

)
=

(
vi cosβ + wi sinβ
wi cosβ − vi sinβ

)
, i = 1, . . . , n .

Direct calculations show that ∥v(n)∥2 + ∥w(n)∥2 = ∥x(n)∥2 + ∥y(n)∥2 and√(
∥v(n)∥2 − ∥w(n)∥2

)2
+ 4

⟨
v(n), w(n)

⟩2
=

√(
∥x(n)∥2 − ∥y(n)∥2

)2
+ 4

⟨
x(n), y(n)

⟩2
,

which implies
( x(n)

y(n)

)
∈ Ai(t) if and only if

( v(n)

w(n)

)
∈ Ai(t), i = 1, 2. Hence, for β = α it

follows

P
(
λ̂1 < t

)
= Φ02n,Ψ2n×2n

(A1(t)) and P
(
λ̂2 < t

)
= Φ02n,Ψ2n×2n

(A2(t))
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where Ψ2n×2n =
(
a2In 0n×n

0n×n b2In

)
and 0n×n denotes the n× n zero matrix. Consider

Φ02n,Ψ2n×2n
(Ai(t)) =

∫
Ai(t)

1

(2π)n(ab)n
· exp

{
−
∥x(n)∥2

2a2
−

∥y(n)∥2

2b2

}
d(x(n), y(n)) , (A1)

i = 1, 2, and denote by SPHn : Mn → Rn, Mn := [0,∞) × M∗
n, M

∗
n := [0, π)n−2 ×

[0, 2π) the n-dimensional spherical coordinate transformation. We introduce n-dimensional
spherical coordinates in the two n-dimensional subspaces L1 = span{e1, . . . , en} and L2 =
span{en+1, . . . , e2n} of R2n, where {e1, . . . , e2n} denotes the canonical basis of R2n. The
almost one-to-one transformation T :Mn ×Mn → R2n defined by

T (r,

=:ϕ︷ ︸︸ ︷
ϕ1, . . . , ϕn−1, s,

=:ψ︷ ︸︸ ︷
ψ1, . . . , ψn−1) =

(
SPHn(r, ϕ1, . . . , ϕn−1)
SPHn(s, ψ1, . . . , ψn−1)

)
has the Jacobian

JT (r, ϕ, s, ψ) = JSPHn
(r, ϕ) · JSPHn

(s, ψ) = (rs)n−1
n−1∏
k=1

(sinϕk sinψk)
n−1−k .

Equation (A1) can now be written as

Φ02n,Ψ2n×2n
(Ai(t)) =

∫
{T−1[Ai(t)]}

JT (r, ϕ, s, ψ)

(2π)n(ab)n
· exp

{
− r2

2a2
− s2

2b2

}
d(r, s, ϕ, ψ) , i = 1, 2 .

Notice that any vector (xT(n), y
T
(n))

T ∈ R2n satisfies the inequalities

∥x(n)∥2 + ∥y(n)∥2 +
√

(∥x(n)∥2 − ∥y(n)∥2)2 + 4
⟨
x(n), y(n)

⟩2 ≥ 2 ·max {∥x(n)∥2, ∥y(n)∥2} ,
(A2)

∥x(n)∥2 + ∥y(n)∥2 −
√

(∥x(n)∥2 − ∥y(n)∥2)2 + 4
⟨
x(n), y(n)

⟩2 ≤ 2 ·min {∥x(n)∥2, ∥y(n)∥2} .
(A3)

Thus,
( x(n)

y(n)

)
∈ A1(t) implies ∥x(n)∥ ≤

√
nt and ∥y(n)∥ ≤

√
nt. The inequalities turn

to equations whenever x(n) ⊥ y(n). The left side of (A3) equals zero iff y(n) = q x(n).
Therefore, the set A2(t), in contrast to A1(t), does not entail general conditions on the
Euclidean lengths of x(n) and y(n). In consequence, we have

Φ02n,Ψ2n×2n
(A1(t)) =

√
nt∫

r=0

√
nt∫

s=0

∫{
(ϕ,ψ) |

(
x(r,ϕ)
y(s,ψ)

)
∈A1(t)

} JT (r, ϕ, s, ψ)
(2π)n(ab)n

· e−
r2

2a2 − s2

2b2 d(ϕ, ψ) ds dr ,

(A4)

Φ02n,Ψ2n×2n
(A2(t)) =

∫ ∞

r=0

∫ ∞

s=0

∫{
(ϕ,ψ) |

(
x(r,ϕ)
y(s,ψ)

)
∈A2(t)

} JT (r, ϕ, s, ψ)
(2π)n(ab)n

· e−
r2

2a2 − s2

2b2 d(ϕ, ψ) ds dr .

(A5)
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We also observe for fixed r, s and ϕ = (ϕ1, . . . , ϕn−1) that∫{
ψ |

(
x(r,ϕ)
y(s,ψ)

)
∈Ai(t)

} JSPHn
(s, ψ) d(ψ) =

∫{
ψ |

(
x(r,ϕ)
y(s,ψ)

)
∈Ai(t)

} sn−1
n−1∏
k=1

(sinψk)
n−1−k d(ψ)

is the Euclidean surface area in Rn of the Borel set Mi(x(n), s) :={
y(n) ∈ Sn(s) |

( x(n)

y(n)

)
∈ Ai(t)

}
where x(n) = x(r, ϕ) and where Sn(s) ⊆ Rn denotes

the n-dimensional unit sphere with radius s, s > 0. For any orthogonal matrix O ∈ Rn×n

we have

O ·Mi(x(n), s) =
{
Oy(n) ∈ Sn(s) |

( x(n)

y(n)

)
∈ Ai(t)

}
=
{
z(n) ∈ Sn(s) |

(
x(n)

OT z(n)

)
∈ Ai(t)

}
(∗)
=
{
z(n) ∈ Sn(s) |

(
Ox(n)

z(n)

)
∈ Ai(t)

}
= Mi(Ox(n), s)

where (∗) means the usage of the invariance of the Euclidean inner product in Rn under or-
thogonal transformations. Moreover, the Euclidean surface area SAn(B) of a Borel set B ⊆
Rn is invariant under orthogonal transformations. Hence, O·Mi(x(n), s) =Mi(Ox(n), s) has
the same surface area as Mi(x(n), s). Notice that ∥Ox(n)∥ = ∥x(n)∥, i.e. the surface area of
the set Mi(x(n), s) depends on the radius r but not on the angle vector ϕ of x(n) = x(r, ϕ)
and will therefore be denoted by SAn,i(r, s), i = 1, 2.
We consider SAn,i(r, s) = SAn(Mi(x

∗
(n), s)) where x∗(n) := (r, 0, . . . , 0)T ∈ Rn. Let us

furthermore introduce n-dimensional spherical coordinates (s, ψ) = (s, ψ1, . . . , ψn−1) for
arbitrary y(n) ∈ Rn, i.e. in particular y1 = s cosψ1. It follows

∥x∗(n)∥
2 + ∥y(n)∥2 ±

√
(∥x∗(n)∥2 − ∥y(n)∥2)2 + 4

⟨
x∗(n), y(n)

⟩2
= r2 + s2 ±

√
(r2 − s2)2 + 4r2s2 cos2 ψ1 .

Considering the sets A1(t) and A2(t) we have the inequalities

r2 + s2 +
√

(r2 − s2)2 + 4r2s2 cos2 ψ1 < 2nt , (A6)

r2 + s2 −
√

(r2 − s2)2 + 4r2s2 cos2 ψ1 < 2nt , (A7)

respectively. For fixed values of r > 0 and s > 0 inequality (A6) as well as (A7) is a
condition on the angle ψ1 only. For solving these inequalities we introduce the function

g = g(r, s) = g(r, s;n, t) :=
n2t2 − nt(r2 + s2) + r2s2

r2s2
,

see Figure A1. Therefore, the initially (n−1)-dimensional problem of evaluating SAn,i(r, s)
for fixed r > 0, ϕ ∈M∗

n, s > 0, is reduced to a one dimensional problem concerning ψ1,

SAn,i(r, s) = SAn
(
Mi(x(n), s)

)
= SAn

({
y(n) ∈ Sn(s) |

( x(n)

y(n)

)
∈ Ai(t)

})
= SAn

({
y(n) ∈ Sn(s) |

(
x∗
(n)

y(n)

)
∈ Ai(t)

})
= SAn

({
y(n)(s, ψ) | ψ ∈M∗

n, ψ1 satisfies (A6) or (A7), respectively
})

.
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√
nt

√
nt

r

s

g ≥ 1

g > 0

g > 0

g ≤ 0

g ≤ 0

Figure A1. Behaviour of the function g according to (r, s) for fixed n ≥ 2, t > 0.

Note that ψ1 is restricted to [0, 2π) if n = 2 and that ψ1 ist restricted to [0, π) if n > 2.
Exploiting the properties of the function g it follows

SAn,1(r, s) =


sn−1ωn , if r2 + s2 < nt

2sn−1ωn−1

∫ π

2

arccos
√
g sin

n−2(ψ1) dψ1 , if (r ≤
√
nt) and

(nt− r2 ≤ s2 ≤ nt)
0 , otherwise

(A8)

and

SAn,2(r, s) =

{
2sn−1ωn−1

∫ arccos
√
g

0 sinn−2(ψ1) dψ1 , if (r >
√
nt) and (s >

√
nt)

sn−1ωn , otherwise
(A9)

where r > 0, s > 0, g := g(r, s;n, t) and where ωk, k ≥ 1, denotes the Euclidean surface
area of the k-dimensional unit sphere. Finally, we have∫{

(ϕ,ψ) |
(
x(r,ϕ)
y(s,ψ)

)
∈Ai(t)

} JT (r, ϕ, s, ψ) d(ϕ, ψ)

=

∫
ϕ∈M∗

n

JSPHn
(r, ϕ)

∫{
ψ |

(
x(r,ϕ)
y(s,ψ)

)
∈Ai(t)

} JSPHn
(s, ψ) dψ dϕ

=

∫
ϕ∈M∗

n

JSPHn
(r, ϕ) · SAn,i(r, s) dϕ

= rn−1ωn · SAn,i(r, s) (A10)

where SAn,i(r, s) can be replaced by (A8) or (A9), respectively. Using (A4) and (A5) as

well as (A10) in P
(
λ̂i < t

)
= Φ02n,Ψ2n×2n

(Ai(t)), i = 1, 2, completes the proof of Theorem

6.1.
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