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1 Introduction

Numerous results on the skewed normal distribution and its generalizations were
derived during the last decade. Already the authors in Genton (2004) list various
representations of random variables following such a distribution. In the case of
univariate skewed distributions, these representations typically make use of bivari-
ate random vectors. A unified geometric approach to different such representations
of the one-dimensional skewed normal distribution and its generalizations is given
in Günzel, Richter, Scheutzow, Schicker & Venz (2012). This approach is based
on a representation of the Gaussian law which was originally derived in Richter
(1985) and several subsequent papers for the purposes of large deviation theory.
This geometric measure representation was extended in Richter (1991) to spherical
distributions. Basic introductions into the area of geometric measure theory and re-
lated fields are given in Federer (1969), Nachbin (1976), Morgan (1984), Wijsman
(1984), Barndorff-Nielsen, Blaesild & Eriksen (1989), Schindler (2003), Kallen-
berg (2005), Krantz & Parks (2008), and in Muirhead (1982), Eaton (1983), Farrel
(1985), and Richter (2009). A certain uniquely defined measure on the Borel σ-field
B on the Euclidean sphere, the so called uniform distribution on B, plays a fun-
damental role for these considerations. Several authors have exploited properties
of this distribution for different purposes. Seppo Pynnönen (2013) demonstrates
how to use the uniform distribution on a Stiefel manifold for dealing with a fun-
damental problem in statistics. He derives the distributions of linear combinations
of internally studentized ordinary least squares residuals of multivariate regression
analysis.

The geometric representation of the Gaussian law in Richter (1985) exploits this
uniform distribution with the help of the so called intersection percentage func-
tion(ipf). The idea behind the definition of this function stems from the very old
method of measuring the content of an area or a body by comparing it with a well
studied one. Analyzing the ipf, it was shown in Günzel et al. (2012) that the univari-
ate skewed normal distribution and any of its spherical generalizations is closely
connected with measuring intersections of two half planes with the help of a bi-
variate normal or spherical distribution, respectively. This result was extended in
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Richter & Venz (2014) to the higher dimensional situation. There are other k-
variate distributions which are connected with measuring other types of subsets of
Rn with n > k. As just to mention a few of such multivariate cases, we recall that
Student and Fisher distributions and their generalizations may be studied from a ge-
ometric measure theoretical point of view by measuring one- and two-sided cones
having their apex in the origin, see Richter (1991, 1995, 2007 and 2009). The Stu-
dent distribution is also connected with considerations on non-linearly transformed
cone type sets, see Richter (1995) and Ittrich & Richter (2005), and noncentral
χ2- and Fisher-distributions are connected with balls and cones having their center
or apex outside the origin, respectively, see Ittrich, Krause & Richter (2000) and
Krause & Richter (2004). These and several other examples show that geomet-
ric measure representations apply in a great variety of situations. For some more
two-dimensional results, we refer to Kalke, Richter & Thauer (2013) and Müller &
Richter (2014).

The bivariate Gaussian measure geometric representation will be used in the present
paper to unify and to extend the proofs of two seemingly different results in Shepp
(1964) on normal functions of normal random variables, see also Cohen (1981),
Baringhaus, Henze & Morgenstern (1988) and Bansal, Hamedani, Key, Volkmer,
Zhang & Behboodian (1999) . It will turn out from Theorem 3 that both results are
just special cases of a more general representation formula for the univariate stan-
dard Gaussian law. Actually, we construct a class of standard Gaussian distributed
random variables including known cases as special cases. This class will be essen-
tially enlarged in Theorem 4 to the class Φ(Φ02,I2) of univariate standard Gaussian
random variables which are derived from bivariate standard Gaussian vectors. The
spherical extensions of these results in Theorems 5 and 6 can be viewed as well as
generalizations of a result derived in Arellano-Valle (2001).

Let (X, Y ) denote a random vector taking its values in R2. If (X, Y ) follows the
two-dimensional standard Gaussian law, we shall write

(X, Y ) ∼ Φ02,I2 . (1)

The cumulative distribution function (cdf) of the standard Gaussian law on the real
line will be denoted by Φ. The following theorem was in part repeatedly proved
in Shepp (1964), Cohen (1981), Baringhaus et al. (1988) and Bansal et al. (1999)
by exploiting stable distribution theory, proving McLaurin series expansions, using
coordinate transformation or Laplace transformation, exploiting a representation of
the densities of chi-distributed random variables and various other techniques.
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Theorem 1 [A] If the random vector (X, Y ) satisfies assumption (1) then

P (
2XY√
X2 + Y 2

< w) = Φ(w), w ∈ R. (2)

[B] If relation (2) holds then assumption (1) is fulfilled.

Methods from geometric measure theory will be used in Section 3 to reprove part
[A] of this theorem and a slightly adapted version of this new proof will enable us
to even generalize part [A] of the theorem for large classes of random variables.
In words close to those in Silvermann (2000), this demonstrates the actually given
value of reproving. For the corresponding results we refer to Theorems 3 and 4.

If (X, Y ) follows a two-dimensional spherical distribution with density generator
(dg) h, i.e. if the probability density function (pdf) f(X,Y ) of (X, Y ) is

f(X,Y )(x, y) = h(||(x, y)||2), (x, y) ∈ R2

where ||.|| denotes the Euclidean norm in R2, we shall write

(X, Y ) ∼ Φh;02,I2 . (3)

The cdf of any marginal distribution of Φh;02,I2 is an univariate spherical distribution
and is denoted throughout this note by Φh. According to Fang, Kotz & Ng (1990),
its density ϕh satisfies the representation

ϕh(w) = 2

∞∫
0

h(z2 + w2)dz, w ∈ (−∞, ∞),

and the cdf itself will be called the spherical marginal h-generalization Φh of Φ. The
next theorem is a generalization of the first one and was proved in Arellano-Valle
(2001) using analytical methods which are based upon a stochastic representation
for spherically distributed random vectors. Such representations go back to Kelker
(1970), Johnson & Kotz (1970), Cambanis, Huang & Simons (1981), Anderson &
Fang (1990), Fang et al. (1990), and Fang & Shang (1990). To be more concrete,
properties of uniformly distributed vectors are combined in Arellano-Valle (2001)
with certain relations from trigonometry.

Theorem 2 [A] If (X, Y ) satisfies assumption (3) then

P (
2XY√
X2 + Y 2

< w) = Φh(w), w ∈ R. (4)
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[B] If relation (4) holds then assumption (3) is fulfilled.

The rest of this note is organized as follows. We state generalizations of Theorem 1
dealing with Gaussian distributions in Section 2.1 and generalizations of Theorem
2 dealing with spherical distributions in Section 2.2. Theorem 6 will be the main
result of this note. In Section 3 we provide geometric measure theoretical reproofs
of known results from Section 1. The proofs of the results in Section 2 will be based
upon the reproofs outlined in Section 3 and will be given in the final Section 4.

2 Main results

2.1 Classes of standard normally distributed functions of bivariate standard Gauss
vectors

Let us consider the random variable S(X, Y ) = λ1X2+λ2XY+λ3Y 2√
µ1X2+µ2XY+µ3Y 2

which is a

measurable function of the random vector (X, Y ).

Theorem 3 If (1) holds then

P (S(X, Y ) < w) = Φ(w), w ∈ R (5)

for all coefficients λi, µi, i ∈ {1, 2, 3}, satisfying

λ1 = 2a11a21, λ2 = 2(a11a22 + a12a21), λ3 = 2a12a22 (6)

and

µ1 = a211 + a221, µ2 = 2(a11a12 + a21a22), µ3 = a212 + a222 (7)

where O =

(
a11 a12
a21 a22

)
is an orthogonal matrix.

The following two examples describe those random variables which were consid-
ered under the normality assumption for (X, Y ) already in Shepp (1964), Cohen
(1981), Baringhaus et al. (1988) and Bansal et al. (1999).

Example 1 If O =

(
1 0

0 1

)
then S(X, Y ) = 2XY√

X2+Y 2 .
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Example 2 If O =
√
2
2

(
1 −1

1 1

)
then S(X, Y ) = X2−Y 2√

X2+Y 2 . Notice that the or-

thogonal matrix O used here describes an anticlockwise rotation around the origin
of R2 through the angle of 45 degrees.

Let us recall that it was shown already in Shepp (1964) by exploiting stable dis-
tribution theory and in Cohen (1981) by using McLaurin expansion that under (1)
the random variable 2XY√

X2+Y 2 follows the standard Gaussian law. Some elementary
proofs of this result were given in Baringhaus et al. (1988) and a characterization
of the standard Gaussian law by this property was derived in Bansal et al. (1999).
The proof of Theorem 3 will be based upon an invariance property of the bivariate
Gaussian law and will be given in Section 4.

The aim of our following consideration is to significantly enlarge the class of uni-
variate random variables being standard Gaussian distributed if assumption (1) is
fulfilled. To this end, we denote the Euclidean circle of radius r and having its
center in the origin of R2 by

C(r) = {(x, y) ∈ R2 : x2 + y2 = r2}, r > 0.

Lemma 1 Let the Borel sets A and B from R2 satisfy the equation

B ∩ C(r) = O(r)[A ∩ C(r)] for almost all r > 0

where each O(r) is an orthogonal matrix. Then

Φ02,I2(B) = Φ02,I2(A).

The method of measuring subsets of R2 resulting from this lemma will be called
the bivariate standard Gaussian measure indivisiblen method. This method reflects
in a generalized sense the ancient ideas of Cavalieri and Torricelli and was basically
established in Richter (1985) and some subsequent papers within certain consider-
ations on multivariate large deviation probabilities. Moreover, it was exploited in
several papers for studying the Gaussian measure of sets from certain statistically
well motivated classes of sets, e.g., in Richter (1995), Ittrich et al. (2000), Krause
& Richter (2004) and Ittrich & Richter (2005) as just to mention a few of them.
The next definition is in the spirit of such work. It makes use of the notion of the
Euclidean circle ipf of a Borel set A from R2 which is defined as

F(A, r) =
1

2πr
l(A ∩ C(r)), r > 0

where l means the Euclidean arc-length.
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Definition 1 A random variable T : R2 → R belongs to the class IpfRep of random
variables if the Euclidean circle ipfs of its sublevel sets

A(w) = {(x, y) ∈ R2 : T (x, y) < w}, w ∈ R,

allow the joint representation

F(A(w), r) = I[0,w](r)I[0,∞)(w) + I[|w|,∞)(r)[
1

2
+
sign(w)

2π
arccos(1− 2w2

r2
)].

Example 3 It follows immediately from the proof in Section 3.1 that, under the
assumptions (6) and (7), S(X, Y ) ∈ IpfRep.

Definition 2 If a bivariate random vector (X, Y ) satisfies the assumption (1) and,
for a function T : R2 → R, the random variable T (X, Y ) follows the univari-
ate standard Gaussian distribution then we say that T (X, Y ) belongs to the class
Φ(Φ02,I2) of univariate standard Gaussian random variables derived from a bivari-
ate standard Gaussian vector.

Theorem 4 If the random variable T satisfies the assumption T ∈ IpfRep then
T (X, Y ) ∈ Φ(Φ02,I2).

In other words, if there holds (1) and T ∈ IpfRep then

P (T (X, Y ) < w) = Φ(w), w ∈ R.

Example 4 It is well known that the random variables T (X, Y ) = X and T (X, Y ) =

Y belong to the class Φ(Φ02,I2) and that their cdfs may be determined by measur-
ing half planes. Figure 2 indicates that the Φ02,I2-value of a half plane might be
composed by the Φ02,I2-values of two quadrants from R2 arising in the proof of
Theorem 3. This provides formally a reproof of the well known result on marginal
distributions, using the method of Section 3.

Remark 1 An example of a certain non-linear transformation of a cone which has
the same ipf as the cone itself was introduced in Richter (1995) and further devel-
oped in Ittrich & Richter (2005) for the purposes of non-linear regression analysis.
In such cases, Lemma 1 applies. Notice that one can construct different types of
statistics from the class IpfRep in an analogous way. For more examples of how
this method works, we refer to Richter (1995).
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According to Lemma 1, the Euclidean circle ipfs of the random variable’s T sub-
level sets became the main tool of investigation in this note. Making use of it, we
are now in a position to further generalize the results of Theorems 3 and 4. This
will be done in the next section.

2.2 Classes of functions of two-dimensional spherical random vectors following
the univariate spherical marginal h-generalization Φh of Φ

In the present section we state far-reaching generalizations of the results presented
in the previous section. To be concrete, results will be given under the assumption
(3) upon the random vector (X, Y ) being much more general than those under
assumption (1). Assumption (3) allows both heavy and light distribution tails of
the bivariate vector distribution. Examples of different types of density generating
functions can be found, e.g., in Fang et al. (1990) and in Kalke et al. (2013). First,
we give a generalization of Theorem 3.

Theorem 5 If (X, Y ) satisfies (3) then P (S(X, Y ) < w) = Φh(w), w ∈ R for all
coefficients λi, µi, i ∈ {1, 2, 3} fulfilling conditions (6) and (7), respectively.

At the same time as this theorem generalizes Theorem 3, it generalizes part A of
Theorem 2. The following definition extends Definition 2.

Definition 3 If a bivariate random vector (X, Y ) satisfies assumption (3) and, for a
function T : R2 → R, the random variable T (X, Y ) follows the univariate spher-
ical marginal h-generalization Φh of Φ then we say that T (X, Y ) belongs to the
class Φh(Φh;02,I2) of univariate random variables following a spherical marginal
h-generalization Φh of Φ derived from a bivariate spherical distribution.

The final and main result of this note follows immediately the line of the previous
results and their proofs in Sections 3 and 4.

Theorem 6 If T ∈ IpfRep then T (X, Y ) ∈ Φh(Φh;02,I2).

That is, if (3) and T ∈ IpfRep then P (T < w) = Φh(w), w ∈ R.
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3 Reproofs

3.1 Geometric measure theoretical proof of Theorem 1 [A]

In this section, we shall give a geometric measure theoretical reproof of Theorem
1[A]. Reproofs are of special interest in the area of didactics of mathematics. They
help to make mathematical relationships more clear. For a discussion of the general
value of reproofs, see Silvermann (2000). Sometimes, reproofs open new perspec-
tives for proving either sharper or more general versions of known results. Actually,
the latter is the case in the present note. To be more concrete, our reproofs of known
results in Section 3 will be the basic parts in Section 4 of the proofs of the main
results from Section 2. Let

W =
2XY√
X2 + Y 2

.

We consider now the two-dimensional Borel set

A(w) = {(x, y) ∈ R2 :
2xy√
x2 + y2

< w}, w ∈ R.

There holds
P (W < w) = Φ02,I2(A(w)), w ∈ R.

The probability P (W < w) can be splitted as

P (W < w) = I(−∞,0)(w)P (sign(X) 6= sign(Y ), W < w)

+I[0,∞)(w)[
1

2
+ P (sign(X) = sign(Y ), W < w)], w ∈ R.

The shaded areas in Figures 1-3 illustrate the sets to be measured in R2 with Φ02,I2

or Φh;02,I2 for representing the cdf of W under the assumption (1) or (3), respec-
tively.

The p-functional |.|p : R2 → [0,∞) which is defined by

|(x, y)|p := (|x|p + |y|p)1/p, (x, y) ∈ R2

is a norm if p ≥ 1 and, according to Moszyńska & Richter (2012), an antinorm if
p ∈ (0, 1) and a semi-antinorm if p < 0. Making use of this functional, we get

P (W < w) = I(−∞,0)(w)P (sign(X) 6= sign(Y ), |(X, Y )|−2 > −
w

2
)

+I[0,∞)(w)[
1

2
+ P (sign(X) = sign(Y ), |(X, Y )|−2 <

w

2
) ].
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|w|
2

|w|
2

(a) w=-5

|w|
2

|w|
2

(b) w=-2

Figure 1. Values from the left tail of the cdf of T are the Gaussian or spherical
measure of the shaded areas.

|w|
2

|w|
2

(a) w=-1

w
2

w
2

(b) w=1

Figure 2. Values from the central region of the cdf of T . Skip over the case w = 0

being closely connected with the case of a half space.

w
2

w
2

(a) w=4

w
2

w
2

(b) w=7

Figure 3. Values from the right tail of the cdf of T are Φ02,I2 or Φh;02,I2-measure
values of the shaded areas.
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Let the sectors of the canonical fan in R2 be denoted according to the anticlockwise
enumeration by C1, ..., C4 and let F(A(w), r), r > 0 be the Euclidean circle ipf of
the set A(w). Then

F(A(w), r) =
4∑
i=1

F(A(w) ∩ Ci, r).

In the case w > 0,

F(A(w) ∩ C2, r) = F(A(w) ∩ C4, r) =
1

4
,∀r > 0,

F(A(w) ∩ C1, r) = F(A(w) ∩ C3, r) =
1

4
, 0 ≤ r ≤ w

and
F(A(w), r) =

1

2
+ 2F(A(w) ∩ C1, r), r > w.

Moreover,

A(w) ∩ C1 ∩ C(r) = P (
rw

2
) ∩ C1 ∩ C(r) (8)

where
P (t) = {(x, y) : xy < t}, t ∈ R.

In a certain sense, calculations needed for considering the ipf of the setA(w) which
is generated by the statistic W are transformed into calculations needed for consid-
ering the ipf of the set P ( rw

2
) which is generated by the random variable X · Y . It

follows from the results in Kalke et al. (2013) that the restriction of the ipf of the
set P (t), t > 0 to the set P (t) ∩ C1 allows the representation

F(P (t) ∩ C1, r) =
α

π
I
(
√

2|t|,∞)
(r) +

1

4
I
[0,
√

2|t| ](r)

where

α =
1

4
arccos(1− 8t2

r4
).

With t = rw
2

and α = 1
4

arccos(1− 2w2

r2
), we have that

F(A(w), r) = (
1

2
+

1

2π
arccos(1− 2w2

r2
)) I[w,∞)(r) + I[0, w](r). (9)

Now, the geometric measure representation formula in Richter (1985 and 1995),
see also Kalke et al. (2013), applies such that

P (W < w) = Φ02,I2(A(w))
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=

w∫
0

re−r
2/2dr +

∞∫
w

re−r
2/2[

1

2
+

1

2π
arccos(1− 2w2

r2
)]dr

= 1− e−w2/2 +
1

2

∞∫
w

re−r
2/2dr +

1

2π

∞∫
w

re−r
2/2 arccos(1− 2w2

r2
)dr

= 1− 1

2
e−w

2/2 +
1

2π

∞∫
w

re−r
2/2 arccos(1− 2w2

r2
)dr.

It follows immediately that
d

dw
P (W < w)

=
1

2
we−w

2/2+
1

2π

∞∫
w

re−r
2/2(−1)

−4w/r2√
1− (1− 2w2

r2
)2
dr− 1

2π
we−w

2/2 arccos(1−2w2

w2
)

=
1

π

∞∫
w

re−r
2/2 dr√

r2 − w2
.

On changing variables r2 − w2 = z2, we get dz = r dr√
r2−w2 and

d

dw
P (W < w) = φ0,1(w).

The following calculations will show that the latter equation is also true if w < 0.

In this case,

F(A(w) ∩ C1, r) = F(A(w) ∩ C3, r) = 0,∀r > 0,

F(A(w) ∩ C2, r) = F(A(w) ∩ C4, r) = 0, 0 ≤ r ≤ w

and
F(A(w), r) = 2F(A(w) ∩ C2, r), ∀r > w.

Further,

A(w) ∩ C2 ∩ C(r) = P (
wr

2
) ∩ C2 ∩ C(r) (10)

= {(x, y) ∈ R2 : x < 0, y > 0, x2 + y2 = r2,
2(−x)y

r
> −w}.

It follows from the results in Kalke et al. (2013) that the restriction of the ipf of the
set P (t), t < 0 to the set P (t) ∩ C2 allows the representation

F(P (t) ∩ C2, r) = (
1

4
− α

π
) I

(
√

2|t|,∞)
(r), r > 0.
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With t = rw
2

, we conclude that

F(A(w), r) = 2 (
1

4
− α

π
) I[|w|,∞)(r). (11)

It follows from (9) and (11) that W ∈ IpfRep. The geometric measure representa-
tion applies, hence

P (W < w) = Φ02,I2(A(w))

=

∞∫
|w|

re−r
2/22[

1

4
− 1

4π
arccos(1− 2w2

r2
)]dr

=
1

2
e−w

2/2 − 1

2π

∞∫
|w|

re−r
2/2 arccos(1− 2w2

r2
)dr.

This yields

d

dw
P (W < w) = −w

2
e−w

2/2 +
1

2π

∞∫
|w|

re−r
2/2 4w/r2√

1− (1− 2w2

r2
)2
dr

+
1

2π
we−w

2/2 arccos(1− 2) =
1

π

∞∫
|w|

re−r
2/2 dr√

r2 − w2
.

Changing variables as in the case w > 0, the result follows immediately.

3.2 Geometric measure theoretical proof of Theorem 2[A]

Because of the equation

P (W < w) = Φh;02,I2(A(w))

this proof follows basically the line of the preceding one until that point where
we proved that W ∈ IpfRep. Now, the geometric measure representation formula
for the spherical distribution with dg h in Richter (1991) applies. Notice that the
integral

Ih =

∞∫
0

r h(r2)dr

occuring in that formula for an arbitrary dg h equals 1
2π

. Hence, for w > 0,

P (W < w) = Φh;02,I2(A(w))
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= 2π

 1

4π
+

1

2

w∫
0

rh(r2)dr +
1

2π

∞∫
w

rh(r2) arccos(1− 2w2

r2
)dr

 .

It follows that
d

dw
P (W < w) = πwh(w2)

+

∞∫
w

rh(r2)
4w/r2√

1− (1− 2w2

r2
)2
dr − wh(w2) arccos(−1)

= 2

∞∫
w

r√
r2 − w2

h(r2)dr.

If w < 0 then

P (W < w) = 2π

∞∫
|w|

rh(r2)2[
1

4
− 1

4π
arccos(1− 2w2

r2
)]dr

= π

∞∫
|w|

rh(r2)dr −
∞∫
|w|

rh(r2) arccos(1− 2w2

r2
)dr.

Hence,

d

dw
P (W < w) = −πwh(w2)+

∞∫
|w|

rh(r2)
4w/r2√

1− (1− 2w2

r2
)2
dr+wh(w2) arccos(1−2)

= 2

∞∫
|w|

r√
r2 − w2

h(r2)dr = 2

∞∫
0

h(z2 + w2)dz.

4 Proofs of the main results

The basic idea is to further exploit the geometric measure representations of the
two-dimensional Gaussian and spherical distribution laws in the proofs of Theo-
rems 4 up to 6. The proof of Theorem 3, however, more directly refers to known
results.
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Proof of Theorem 3 It follows from the well known invariance properties of the
bivariate standard Gaussian law that

P (

(
X

Y

)
∈ A(w)) = P (O

(
X

Y

)
∈ A(w))

for any orthogonal matrix O. Hence,

Φ(w) = P (
2XY√
X2 + Y 2

< w)

= P (
2(a11X + a12Y )(a21X + a22Y )√
(a11X + a12Y )2 + (a21X + a22Y )2

< w)

= P (
λ1X

2 + λ2XY + λ3Y
2√

µ1X2 + µ2XY + µ3Y 2
)

where the coefficients λi and µi, i = 1, 2, 3 satisfy the equations (6) and (7), respec-
tively.

Proofs of Theorems 4,5 and 6

Looking through again the reproofs of Theorems 1 and 2 and the final proof of
Theorem 3, Definition 1 and Lemma 1 apply. Theorems 4, 5 and 6 are now imme-
diate conclusions from the consideration in Section 3. These proofs show that if we
use geometric measure representations in the proofs of Theorems 1 and 2 then the
proofs of the generalizations in Theorems 4, 5 and 6 become quite short. However,
some of the earlier proofs of, e.g., Theorem 1 are actually shorter than our reproof
in Section 3.1.

Acknowledgement The author thanks Seppo Pynnönen for the very insightful dis-
cussions during authors stay 2012 in Vaasa which were among several other things
also closely connected with the basic notion of the uniform distribution. This no-
tion is dealt with in the present note just in a very special case while the much more
advanced interest of Seppo is in Pynnönen (2013) in Stiefel manifolds. The author
also thanks Thomas Dietrich for drawing the figures in PSTricks.
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