
Our reference: AMC 19552 P-authorquery-v11

AUTHOR QUERY FORM

Journal: AMC

Article Number: 19552

Please e-mail or fax your responses and any corrections to:

E-mail: corrections.esch@elsevier.sps.co.in

Fax: +31 2048 52799

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the
PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also
highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in
the proof. Click on the ‘Q’ link to go to the location in the proof.

Location in
article

Query / Remark: click on the Q link to go
Please insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given name(s) and surname(s) have been identified correctly.

Q2 The number of keywords provided exceeds the maximum allowed by this journal. Please
delete one keyword.

Q3 Please note that the reference style has been changed from Name–Date style to Numbered
style as per the journal specifications.

Q4 Please check the word ‘‘simplectic’’ has been changed to ‘‘symplectic’’. Please check and
correct if necessary.

Q5 Please provide an update for Ref. [7].

Thank you for your assistance.

Please check this box if you have no
corrections to make to the PDF file

mailto:corrections.esch@elsevier.sps.co.in


1

3

4

5

6

7
8
9

10
11

12

1 4

1516
17
18
19
20
21
22
23
24

2 5

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Q1

Q2

Q3

Applied Mathematics and Computation xxx (2014) xxx–xxx

AMC 19552 No. of Pages 19, Model 3G

6 May 2014
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc
Kullback–Leibler life time testing
http://dx.doi.org/10.1016/j.amc.2014.04.027
0096-3003/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author. Address: Institut für Angewandte Statistik, Altenberger Straße 69, A-4040 Linz, Austria.
E-mail addresses: Milan.Stehlik@jku.at (M. Stehlík), peconom@upatras.gr (P. Economou), jozef.kiselak@gmail.com (J. Kiseľák), wolf-dieter
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a b s t r a c t

The paper deals with testing the hypotheses for homogeneity and point null value of the
scale parameter in the gamma family. Tests suggested here are based upon the
Kullback–Leibler divergence from an observed vector to the canonical parameter (see
Pázman, 1993 [14]), and upon its decomposition. The latter is used to derive the exact
distribution of the test statistic by convolution. A geometric integration method is used
alternatively to derive the distribution directly. Because it is observed by simulation, that
the test’s performance is poor when the shape parameter is estimated from the data, an
interval method is developed and its use is demonstrated in an analysis of real data.

� 2014 Elsevier Inc. All rights reserved.
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1. Introduction

It is natural to hope that by adopting optimal statistical procedures one is using somehow natural forms of information
merging or decomposition. In this regard, we recall recent development in the deconvolution of Kullback–Leibler informa-
tion divergence (I – divergence for short) and its relation to optimal statistical testing. For a book review on statistical infer-
ence based on standard divergence measures the reader is referred to [13].

In this paper, we concentrate on the I – divergence statistic INðy; cÞ from an observed vector y to the canonical parameter c
(see [14]) of the gamma family. A test based on INðy; cÞ can be well utilized for joint by testing the homogeneity and point
null value of the scale parameter in the gamma family. We illustrate the applicability of such a test for several real data sets,
among them one on light indicators for aeroplanes.

Information divergence can be decomposed in special cases (as in the gamma case), to construct a natural measure of
heterogeneity or a test separately for homogeneity and a point null value hypothesis with respect to (w.r.t.) the scale param-
eter. Such a measure of heterogeneity is useful not only for testing, but also for clustering, since there the application of auto-
matic methods hoping that data will disclose the true structure is deceptive (see e.g. discussion [25]). More specifically, the
exact distribution of the I – divergence statistic can be derived by a convolution of the distributions of two independent
random variables RN; SN corresponding to the likelihood ratio statistics for testing the hypotheses of homogeneity and point
null value of the scale. We show the complexities of the exact distribution of the I – divergence statistic, and derive
.richter@

doi.org/

http://dx.doi.org/10.1016/j.amc.2014.04.027
mailto:Milan.Stehlik@jku.at
mailto:peconom@upatras.gr
mailto:jozef.kiselak@gmail.com
mailto:wolf-dieter.richter@uni-rostock.de
mailto:wolf-dieter.richter@uni-rostock.de
http://dx.doi.org/10.1016/j.amc.2014.04.027
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc
http://dx.doi.org/10.1016/j.amc.2014.04.027
http://dx.doi.org/10.1016/j.amc.2014.04.027
Original text:
Inserted Text
Kullback – Leibler 

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
givenname

Original text:
Inserted Text
surname

Original text:
Inserted Text
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approximations of distributions for higher sample sizes. Such approximations are working well, and jointly with simulations
they help to determine critical test values.

The paper is organized as follows. In Section 1 we recall the I – divergence deconvolution result in [22]. Hereafter, we
study in Section 2 deconvolution of the exact distributions of the likelihood ratio test statistics in the gamma and normal
families. According to these results, we introduce a test based on INðy; cÞ and motivate it by a real data example on airplane
indicator light operating times. In Section 3, the exact distributions of the I – divergence statistic are derived for small sam-
ples by means of convolutions and geometric integration theory developed in [8]. In Section 4, the critical values of the I –
divergence statistic are computed for various samples sizes and shape parameters, based on a detailed simulation study, and
a certain difficulty of applying the proposed test is discussed when the shape parameter is unknown and has to be estimated.
In Section 5, we apply the proposed test to real data and construct credible regions for the gamma parameters. Section 6
concludes.

2. Deconvolution of the I – divergence statistic

Let y1; y2; . . . ; yN , be N independent, but not necessary identically distributed observations according to the gamma prob-
ability density function
Please
10.101
f ðyijciÞ ¼
cv i

i
y

vi�1
i

Cðv iÞ
expð�ciyiÞ; yi > 0;

0; yi 6 0:

8<
: ð1Þ
Here c :¼ ðc1; . . . ; cNÞ is the vector of the unknown scale parameters, which are the parameters of interest, and
v ¼ ðv1; . . . ;vNÞ is the vector of the known shape parameters.

This structure is motivated, for example, by a situation when we observe time intervals between ðN þ 1Þ successive ran-
dom events in a Poisson process. In this case, the parameters ci are equal to the (usually parametrized) intensity c, and the
shape parameters are all equal to 1.

The densities in (1) build a regular exponential family (see [1]) and thus the sufficient statistic for the canonical parameter
c 2 C has the form tðyÞ ¼ �y where C ¼ fðc1; . . . ; cNÞ; ci > 0; i ¼ 1; . . . ;Ng. The ‘‘covering’’ property

ftðyÞ : y 2 Yg# fEc½tðyÞ� : c 2 Cg (see [14]) together with the relation Ec½tðyÞ� ¼ @jðcÞ
@c , where jðcÞ ¼ N lnðCðvÞÞ � v

PN
i¼1 lnðciÞ,

makes it possible to associate with each value of tðyÞ a value ĉy 2 C which satisfies
@jðcÞ
@c

����
c¼ĉy

¼ tðyÞ: ð2Þ
It follows from (2) that ĉy is the MLE of the canonical parameter c in the family (1). According to (2), we can define the I –
divergence of the observed vector y from c, in the sense of [14], as INðy; cÞ :¼ Iðĉy; cÞ, thus obtaining
INðy; cÞ ¼ �
XN

i¼1

fv i � v i lnðv iÞg þ
XN

i¼1

fyici � v i lnðyiciÞg; ð3Þ
which can be simplified to
INðy; cÞ ¼ �Nðv � v lnðvÞÞ þ
XN

i¼1

fyici � v lnðyiciÞg ð4Þ
under the assumption that all the observations share the same shape parameter v; v i ¼ v 8i. Let the Kullback–Leibler diver-
gence between the distributions PH

c and Pc be defined by
IðcH; cÞ :¼
R

ln
dPcH

dPc
dPcH ; if PcH � Pc;

þ1; otherwise:
:

(

The main advantage of the I – divergence is that it can be used to test the homogeneity hypothesis
H0 : c1 ¼ c2 ¼ � � � ¼ cN versus HA : non H0 ð5Þ
and the simple scale hypothesis
H0 : c ¼ c0 versus HA : c – c0: ð6Þ
This can be justified by the statistical decomposition of the I – divergence. Let us denote the likelihood ratio (LR) of the
test for simple hypothesis H0 : c ¼ c0 versus H1 : c – c0 by k1 and the LR of the test for homogeneity H0 : c1 ¼ � � � ¼ cN in the
family (1) by k2. Then the following decomposition for every vector of canonical parameters ðc0; . . . ; c0Þ 2 CN holds:
INðy; ðc0; . . . ; c0ÞÞ ¼ � ln k1 þ ð� ln k2jc1 ¼ � � � ¼ cNÞ: ð7Þ
cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
6/j.amc.2014.04.027
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Here, the variables � ln k1 and � ln k2jc1 ¼ � � � ¼ cN , (i.e. � ln k2 under the condition H0 : c1 ¼ � � � ¼ cN) are independent.
The deconvolution (7) of IN is the consequence of Theorem 4 in [22]. Both tests are asymptotically optimal in the Bahadur
sense ([19,20]).

The above mentioned structural relationship of likelihood ratio test statistics may be useful in more complex setups, e.g.
when a nuisance parameter elimination for proportional likelihood ratio models is needed (see e.g. [3]). In the present case of
I – divergence in the gamma family, we have discussed above a decomposition of the I – divergence from an observed vector
to the canonical parameter. In [9], a generalized family of measures of divergence are investigated and applied successfully
to statistical inference. Deconvolution ideas similar to that stressed here, will be of further interest for such families of diver-
gences, too. For more open problems, e.g. those related to /-divergences and statistical information, see [24].

The above discussed case of gamma distributions extends ANOVA to that case of distributions. ANOVA, in the case of nor-
mal observations, is an archetypical example for testing homogeneity of parameters. In Section 3.5 the I – divergence in the
normal regression is presented, showing that this pseudo-distance became squared Euclidean distance.

2.1. Motivation: life testing of light indicators

In practical cases it may be observed that practitioners (e.g. reliability engineers) are testing of a particular life time (i.e.
testing a scale hypothesis) while silently ignoring the uncertainty about homogeneity in the sample. As an example of such a
situation consider the data presented in Table B.1 regarding the cumulative operating times of aeroplane indicator light dur-
ing successive failures taken from RAC database (see [4]).

It is true that the gamma distribution is a natural generalization of the instinctive choice of the exponential distribution
for modeling these data. The authors in [4] give the MLEs of the gamma parameters under the assumption of the gamma
distributed individual times-to-failure (shape parameter = 0:7 and scale parameter = 0:0000484). If the homogeneity of
the scale parameters is indeed statistically significant, we could use a directed test for scale parameter (with simple null,
and composite alternative hypothesis, typically). For example, we can rely on the exact LR test for the scale parameter using
the sum of the shape parameters x ¼ 38� 0:7 ¼ 26:6 and the total at risk

P6
j¼1Tj ¼ 552; 400. Although, the homogeneity

hypothesis is at least questionable, since not only the light indicators may have different characteristics, but also the succes-
sive failures may cause correlation resulting to changes of the scale parameter.

One remedy in such a situation is to test for both homogeneity and the scale hypotheses in single step based on I – diver-
gence INðy; c0Þ, i.e. to statistically measure the deviation of the observed vector y from the hypothesized canonical parameter
c0. This is illustrated in the next sections, and especially in Section 5. Stehlík et al. [26] illustrated some preliminary simu-
lation results in this direction.

3. Exact distribution of INðy; cÞ

Stehlík [22] derived (in Theorems 1 and 2) the exact distribution of IN ðy; dð1;1; . . . ;1ÞÞ as the distribution of the sum of
two independent variables RN; SN , where y is a sample of size N from Exp (1), d > 0 is the perturbation parameter given by
the ratio of the unknown true scale parameter and the hypothesized scale parameter, and ð1;1; . . . ;1Þ denotes the N-dimen-
sional vector with all entries equal to 1.

The c.d.f. of the random variable RN has the form
Table B
Aerolan

Num

Cum

Please
10.101
FNðqÞ ¼
FN � N

d W�1 � exp �1� q
N

� �� �� �
� FN � N

d W0 � exp �1� q
N

� �� �� �
; q > 0;

0; q 6 0

(
ð8Þ
and the density of RN has the form
fNðqÞ ¼
hðN;1;q; d�1Þ � hðN;0;q; d�1Þ; for q > 0;
0; for q 6 0:

(

Here FN is the c.d.f. of the CðN;1Þ-distribution, and for s; r; s > 0; k 2 Z we define
hðN; k; r; sÞ ¼ ð�NÞN�1sN

CðNÞ
W�k � exp �1� r

N

� �� �� �N

1þW�k � exp �1� r
N

� �� �� exp NsW�k exp �1� r
N

� �� �n o
;

where W0; W�1 are the two real-valued branches of the Lambert-W function (see [5]).
Under the null hypothesis of homogeneity, the cdf of S2 has the form (see [22]):
.1
e indicator light reliability data.

ber of failures 2 9 8 8 6 5

ulative operating time Tj 51,000 194,900 45,300 112,400 104,000 44,800

cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
6/j.amc.2014.04.027
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G2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð�xÞ

p
; for x > 0;

0; for x 6 0:

(

The density of S3 is given in [22], and for larger N, we use nonlinear function for symplectic component SN to obtain it
indirectly. The density of the statistic INðy; dð1;1; . . . ;1ÞÞ ¼ RN þ SN is given by convolution of the densities of the two sum-
mands and will be presented in the following subsections.

One can generally work with RN and SN in a separate manner, not only because one can determine their null distributions,
but also because RN and SN correspond to the likelihood ratio test statistics for homogeneity (hypothesis (5)) and simple scale
hypothesis (hypothesis (6)), respectively. Of course, one can also work simultaneously with both statistics, by studying
directly the I – divergence, as we will do in the following sections.

To our best knowledge, the exact likelihood ratio test for the scale and homogeneity in the complete sample from gamma
family has been derived in [22]. Other studies of these tests for several setups has been made in [23] and references therein.
These tests have been shown to be optimal in the sense of Bahadur (see [19,20,22]). The exact LR test of scale follows asymp-
totically a v2 distribution (see [27]).

In Sections 3.1–3.3, we derive the exact distribution of the I – divergence INðy; dð1;1; . . . ;1ÞÞ by means of convolutions of
densities of random variables RN and SN for N ¼ 2;3;4, respectively. However, for N > 4, the exact distribution becomes non-
tractable, and thus we approximate the convolution (Section 3.4) by exploiting the approximation for SN given by Bartlett
and Kendall [2].

Validation of theoretical results is made by simulation of critical constants. Additionally, in Section 3.6, we develop a dif-
ferent approach based on geometrical integration. The I – divergence in the normal regression is given in Section 3.5.

3.1. N = 2

As already mentioned, the density z2 of the sum RN þ SN; ðN ¼ 2Þ is a convolution of the densities f2 and g2 and is given by
z2ðuÞ ¼
Z 1

�1
f2ðqÞg2ðu� qÞdq;
where g2 is density of S2 and f2 is the density of R2 obtained by the c.d.f in (8). But then, the c.d.f of R2 þ S2 is
Z2ðsÞ ¼
Z s

�1
z2ðuÞdu ¼

Z s

�1

Z 1

�1
f2ðqÞg2ðu� qÞdqdu
and using the Fubini theorem, we conclude that it has the form
Z2ðuÞ ¼
Z 1

�1
f2ðqÞG2ðu� qÞdq:
In the upper half of Table B.2, the critical values of S2 þ R2 are shown. These values were computed using two different
methods. Firstly, we relied on the convolution type expression of the distribution of the I – divergence (for both exact and
approximated distribution of S2). We had to rely on numerical integration since the direct computation of certain involved
integrals was not possible. More specifically, we have used the function NIntegrate () of software Mathematica to numer-
ically evaluate the convolution integral, by sampling the integrand at a sequence of 10,000 points (MaxPoints = 10,000) of Zn

and then using numerical integration on real axis. Additionally to that approach, 100,000 (nsim = 100,000) random samples
were generated and the 1� a empirical quantiles of I2 were computed to obtain ca. It is clear that the two procedures give
similar critical values although their difference is more severe as we move to more extreme a demonstrating in that way the
weakness of the numerical integration approach.

3.2. N = 3

In order to obtain the distribution of the I – divergence statistic, we first prove the c.d.f. of S3 to have the form
.2
values Ca for S2 þ R2 (upper table) and S3 þ R3 (lower table) (r ¼ 1; v ¼ 1; c ¼ 1).

R2 C0:1 C0:05 C0:01 C0:001

olution (MaxPoints = 104) 2.649 3.426 5.204 7.699

olution (approx. S2, MaxPoints = 104) 2.684 3.493 5.371 8.074

ivergence (nsim = 105) 2.651643 3.414478 5.239796 7.592669

R3 C0:1 C0:05 C0:01 C0:001

olution (MaxPoints = 103) 3.59 4.47 6.42 9.09

olution (approx. S3, MaxPoints = 103) 3.64 4.56 6.63 9.52

ivergence (nsim = 105) 3.581297 4.443605 6.453668 9.041494

cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
6/j.amc.2014.04.027

http://dx.doi.org/10.1016/j.amc.2014.04.027
http://dx.doi.org/10.1016/j.amc.2014.04.027
Original text:
Inserted Text
simplectic 

Original text:
Inserted Text
SubSections 3.1 – 3.3, 

Original text:
Inserted Text
(subSection 3.4) 

Original text:
Inserted Text
SubSection 3.6, 

Original text:
Inserted Text
subSection 3.5.

Original text:
Inserted Text
N=2

Original text:
Inserted Text
NIntegrate()

Original text:
Inserted Text
10000 

Original text:
Inserted Text
(MaxPoints=10000) 

Original text:
Inserted Text
100000 

Original text:
Inserted Text
100000) 

Original text:
Inserted Text
N=3



205205

206
207

209209

210

211

212

213
214

216216

217

218
219

221221

222

223
224
225

227227

228

229

230

231

232

M. Stehlík et al. / Applied Mathematics and Computation xxx (2014) xxx–xxx 5

AMC 19552 No. of Pages 19, Model 3G

6 May 2014

Please
10.101
G3ðxÞ ¼
2
R bðxÞ

aðxÞ
1
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ð1� sÞ2 � s 4

27 expð�xÞ
q

ds; for x > 0;

0; for x 6 0

(
;

where 0 < aðxÞ < bðxÞ < 1 are solutions of the algebraic equation tð1� tÞ2 ¼ 4
27 e�x. To be more specific, we obtain three roots
tkðxÞ ¼
2
3
þ 2

3
cos

2kp
3
� 1

3
arccosð2e�x � 1Þ


 �
; k ¼ 0;1;2;
where aðxÞ ¼ t2ðxÞ; bðxÞ ¼ t1ðxÞ and for the third root, cðxÞ ¼ t0ðxÞ; cðxÞ > 1 for x > 0. Notice that Cardano’s method leads to a
complex form of the roots, thus the trigonometric method should be used.

In order to obtain the c.d.f. of S3, we need to calculate the complete elliptic integrals of the first, second and third kinds
given respectively by
KðkÞ ¼
Z p=2

0

dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p ¼
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� t2Þð1� k2t2Þ

q ;

EðkÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

q
dh ¼

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2t2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p dt

and Pðn; kÞ ¼
Z p=2

0

dh

ð1� n sin2 hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p :
Notice that the total circumference of an ellipse can be given in terms of complete elliptic integrals. In the view of these
integrals, the c.d.f. of S3 can be expressed as follows,
G3ðxÞ ¼
KðmðxÞÞ kðxÞþEðmðxÞÞ eðxÞþP 1�aðxÞ

bðxÞ;mðxÞ
� �

pðxÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðxÞðcðxÞ�aðxÞÞ
p ; for x > 0;

0; for x 6 0;

8><
>:
where mðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðxÞðbðxÞ�aðxÞÞ
bðxÞðcðxÞ�aðxÞÞ

q
; kðxÞ ¼ aðxÞbðxÞ2 þ aðxÞ2bðxÞ � 5aðxÞbðxÞcðxÞ; eðxÞ ¼ bðxÞcðxÞ2 þ bðxÞ2cðxÞ � aðxÞbðxÞ2 � aðxÞ2bðxÞ

and pðxÞ ¼ 2aðxÞ2bðxÞ þ 2aðxÞ2cðxÞ þ 2aðxÞbðxÞcðxÞ � aðxÞcðxÞ2 � aðxÞbðxÞ2 � aðxÞ3. Using same arguments as for N ¼ 2, we
conclude that c.d.f. of S3 þ R3 has the form
Z3ðuÞ ¼
Z 1

�1
f3ðqÞG3ðu� qÞdq:
In the lower half of Table B.2, the critical values are presented which were obtained with the two methods described in
the two dimensional case. The only difference is that we used 1000 points for the numerical integration. It is worth mention-
ing that the duration of this approach was 35 min. From the results it is clear that the critical values have similar or smaller
differences compared with the corresponding values of the two dimensional case. For graphical comparison of c.d.fs. of
S2 þ R2 and S3 þ R3, see Fig. B.1.
1 2 3 4 5 6 7 8 9 10
u

0.2

0.4

0.6

0.8

1.0

Z_n u

Fig. B.1. Plot of the distribution functions of S2 þ R2 and S3 þ R3 (thick line).
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3.3. N = 4

The c.d.f. of S4 has form
Please
10.101
G4ðxÞ ¼
2
3!

Z bðxÞ

aðxÞ

Z s1ðx;tÞ

s2ðx;tÞ

1
st

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2t2ðsþ t � 1Þ2 � st

e�x

64

r
dsdt
for x > 0, and is 0 for x 6 0, where 0 < aðxÞ < bðxÞ < 1 are solutions of the algebraic equation � 27
128 e�x ¼ 2tðt � 1Þ3 (result of

the domain of arccos in roots Tk below – see Appendix A). Moreover,
Tkðx; tÞ ¼
2
3
ð1� tÞ 1þ cos

1
3

arccos
� 27

128
e�x

t � ðt � 1Þ3

ðt � 1Þ3

 !
� 2kp

3

 ! !
; k ¼ 0;1;2
are the solutions of the algebraic equation 64stðsþ t � 1Þ2 ¼ e�x in s. They satisfy the relationship
0 < s2ðx; tÞ < s1ðx; tÞ < 1 < s0ðx; tÞ for t 2 ð0;1Þ; x 2 ð0;1Þ. Using elliptic integrals, we can obtain the c.d.f. G4ðxÞ in the form
1
12

Z bðxÞ

aðxÞ

KðmxðtÞÞkxðtÞ þ EðmxðtÞÞexðtÞ þP 1� s2ðx;tÞ
s1ðx;tÞ

;mxðtÞ
� �

pxðtÞ

t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1ðx; tÞðs0ðx; tÞ � s2ðx; tÞÞ

p dt
for x > 0, and being 0 otherwise. Here mxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0ðx;tÞðs1ðx;tÞ�s2ðx;tÞÞ
s1ðx;tÞðs0ðx;tÞ�s2ðx;tÞÞ

q
; kxðtÞ ¼ s2ðx; tÞs1ðx; tÞ2 þ s2ðx; tÞ2s1ðx; tÞ�

5s2ðx; tÞs1ðx; tÞs0ðx; tÞ; exðtÞ ¼ s1ðx; tÞs0ðx; tÞ2 þ s1ðx; tÞ2s0ðx; tÞ � s2ðx; tÞs1ðx; tÞ2 � s2ðx; tÞ2s1ðx; tÞ and pxðtÞ ¼ 2s2ðx; tÞ2s1ðx; tÞþ
2s2ðx; tÞ2s0ðx; tÞ þ 2s2ðx; tÞs1ðx; tÞs0ðx; tÞ � s2ðx; tÞs0ðx; tÞ2 � s2ðx; tÞs1ðx; tÞ2 � s2ðx; tÞ3.

So, the c.d.f. of S4 þ R4 is given by Z4ðuÞ ¼
R1
�1 f4ðqÞG4ðu� qÞdq.

3.4. N >4

As we have seen in the previous sections, complexity of the exact distribution increases tremendously. Therefore, for
N > 4, we prefer the following approximation of the distribution of SN given by Bartlett and Kendall [2]:
1
2

1þ
1þ 1

N

6


 �
v2

N�1:
By letting c :¼ 1
2 1þ 1þ1

N
6

� �
, the c.d.f. of the approximated SN is expressed as
~GNðxÞ ¼
c N�1

2 ; x
2c

� �
C N�1

2

� � ;
where cða; xÞ :¼
R x

0 ta�1e�tdt denotes the lower incomplete gamma function. Then the cdf of RN þ SN can be expressed as the
convolution fN � ~GN . From Tables B.2,B.3, it is clear that the quality of the approximation increases, as N increases and that the
approximation oversizes the value of the critical constants.

3.5. Normal distribution

There is an analogy between the radial component of the I – divergence in the normal regression and in the model (3) (for
more details see [22]). For the normal regression with y � N Nð#;r2IÞ, the I – divergence is given by INðtðyÞ; #Þ ¼ 1

2r2 jjy� #jj2

where # 2 H is an unknown parameter of the interest and r being the known variance parameter. Fig. B.2.
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Thus the LR test of the hypothesis H0 : # ¼ #0 versus H1 : # – #0, based on the statistic �2 ln k ¼ 2R�Nðr; #0Þ, has a v2
N dis-

tribution under the null hypothesis.
For a comparison with the exponential model, consider the LR test of the hypothesis H0 : c ¼ c0 versus H1 : c – c0 in the

simple generalized linear model y � expðc; . . . ; cÞ (homogeneous Poisson process). Under the null hypothesis, the LR statistics
�2 ln k ¼ 2RNðr; c0Þ is asymptotically v2

1-distributed. More extensive discussion about this test can be found in Section 5 of [22].

3.6. Geometric integration method to obtain exact distribution

In this section, we apply alternatively a geometric integration method developed in [8] to derive the exact distribution of
I2. Such a construction aims to illustrate the possible approach to the derivation of the exact distribution and can be general-
ized for arbitrary dimension Nas was demonstrated in [15,17] along with several advanced applications and a generalization
of this method. However, we concentrate here after some general results only on the simplest case, N ¼ 2, to avoid unnec-
essary prolongation of the paper.

Let us consider the vector
Please
10.101
Y ¼ ðY1; . . . ;YnÞT � ðEðc1Þ; . . . ; EðcnÞÞ
T ¼ Ec
with joint exponential density fcðyÞ ¼
Qn

j¼1ci e�ci yi ; y 2 Rn
þ. In order to obtain the c.d.f. of the I – divergence, we need first to

define some necessary functions. More specifically, we define a modified l1-norm (see [8]): jyjc ¼
Pn

i¼1ci yi, and a simplicial
radius statistic Rc :¼ jYjc which is nonnegative, Gamma (n,1) distributed. Furthermore, the symplectic component

Uc ¼ Y
Rc
; jUcjc ¼ 1, is generalized uniformly distributed on the modified simplex Sc ¼ fy 2 Rn

þ : jyjc ¼ 1g.

Definition 1. The simplicial coordinate transformation Simc : ½0;1�ðn�1Þ � ½0;1Þ ! Rn
þ, where y ¼ Simcðl1; . . . ;ln�1;vÞ is

defined by
yi ¼

v
ci

Yi�1

j¼1

ð1� ljÞli; i ¼ 1; . . . ;n� 1;

v
cn

Yn�1

j¼1

ð1� ljÞ; i ¼ n:

8>>>>><
>>>>>:
Lemma 3.1. The simplicial coordinate v allows the representation v ¼
Pn

i¼1ci yi ¼ jyjc.
Proof. Notice that
Xn

i¼1

ci yi ¼ v
Xn�1

i¼1

Yi�1

j¼1

ð1� ljÞli þ v
Yn�1

j¼1

ð1� ljÞ

¼ v
Xn�2

i¼1

Yi�1

j¼1

ð1� ljÞli þ vð1� l1Þ � � � ð1� ln�2Þln�1 þ vð1� l1Þ � � � ð1� ln�2Þð1� ln�1Þ

¼ v
Xn�2

i¼1

Yi�1

j¼1

ð1� ljÞli þ v
Yn�2

j¼1

ð1� ljÞ;
where
Q0

j¼1 ¼ 1. The assertion of the lemma follows by analogously repeating these calculations ðn� 2Þ times. h
Lemma 3.2. For the Jacobian J of the coordinate transformation Simc one gets
J ¼ Dðy1; . . . ; ynÞ
Dðv ;l1; . . . ;ln�1Þ

¼ ð�vÞn�1

c1 � � � cn

Yn�2

i¼1

ð1� liÞ
n�1�i

:

Proof. We have that ~J ¼ Dðc1 y1 ;...;cn ynÞ
Dðv ;l1 ;...;ln�1Þ

¼ ð�vÞn�1Qn�2
i¼1 ð1� liÞ

n�1�i (see [8]), and thus J ¼ Dðy1 ;...;ynÞ
Dðc1 y1 ;...;cn ynÞ

~J. h

For N ¼ 2, we denote by Dðl1;l2Þ :¼ fSimcðl;1Þjl1 6 l 6 l2g 2 BðScÞ a Borel measurable line segment (see Fig. B.3 (left
plot)). Notice that qDðl1;l2Þ ¼ fSimcðl;qÞjl1 6 l 6 l2g for any q > 0, since qSimcðl;1Þ ¼ Simcðl;qÞ.

Let us denote by SectorcðDðl1;l2Þ;vÞ :¼
Sv

q¼0qDðl1;l2Þ a set-union of line segments Dðl1;l2Þ, see again Fig. B.3 (left
plot), which can be formally understood to be a sector.

The next definition introduces the generalized arc-length measure Lc.
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Definition 2. Let LcðDðl1;l2ÞÞ :¼ d
dv k SectorcðD;vÞ
� �

jv¼1.
Note that the generalized arc-length measure Lc is closely connected with O2;1 and O1;1 where On;p denotes the p-general-

ized surface content in dimension n which was studied in [15,16].
In the following lemma, we calculate the section measure Lc for the set Dðl1;l2Þ, which enables us to define the geomet-

ric measure representation.

Lemma 3.3. The arc-length measure of the set Dðl1;l2Þ is LcðDðl1;l2ÞÞ ¼
l2�l1
c1 c2

.

Proof. We have that kðSectorcðDðl1;l2Þ;vÞÞ ¼
R v
q¼0

R l2
l¼l1

q
c1c2

dðq;lÞ. Hence, according to Definition 3.2,
LcðDðl1;l2ÞÞ ¼

R l2
l1

v
c1c2

dl
���
v¼1

. h

Lemma 3.4. The line segment Dðl1;l2Þ may be represented as
Please
10.101
Dðl1;l2Þ ¼ D�
c1

c2
� 1� l2

l2
;
c1

c2
� 1� l1

l1


 �
for 0 6 l1 6 l2 6 1, where D�ða1;a2Þ ¼ fðy1; y2Þ 2 Sc : a1 y1 6 y2 6 a2 y1g defines a line segment in a slightly different way than
Dð:; :Þ does.
Proof. Since N ¼ 2, we obtain c1 y1 ¼ v l; c2 y2 ¼ v ð1� lÞ, and vice versa, v ¼ c1 y1 þ c2 y2 and l ¼ c1 y1
c1 y1þc2 y2

. Hence,
l1 6 l 6 l2 iff; l1 6
c1 y1

c1 y1 þ c2 y2
6 l2 which is nothing else than

c1

c2
� 1� l2

l2
� y1 6 y2 6

c1

c2
� 1� l1

l1
� y1: �
Corollary 3.1. The line segment D� can be expressed in terms of the segment D as D�ða1;a1Þ ¼ D c1
c1þa2c2

; c1
c1þa1c2

� �
.

Proof. Recognize that a1 ¼ c1
c2
� 1�l2

l2
is the same as c2 a1

c1
¼ 1

l2
� 1 or 1

l2
¼ a1 c2þc1

c1
or finally l2 ¼

c1
c1þc2 a1

; Analogously,

a2 ¼ c1
c2
� 1�l1

l1
is valid if and only if l1 ¼

c1
c1þc2 a2

: h

The following definition specifies a class of sets which are appropriate for geometric integration method introduced in
this section.

Definition 3. A set A 2 B2
þ belongs to the systemM� of subsets of R2

þ, if there exist functions ai : ½0;1Þ ! 0;1½ Þ; i 2 f1;2g,
with 0 < a1 < a2 <1, and numbers 0 6 v0 < v1 61, such that A allows the decomposition
A ¼
[v1

v¼v0

vD�ða1ðvÞ;a2ðvÞÞ;
see also Fig. B.3. Let Ec denote the probability measure induced by ðEðc1Þ; Eðc2ÞÞ on B
2
þ.
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For A 2 B
2 we have EcðAÞ ¼

R
A fcðyÞdy, and from Lemma 3.2 it follows that
Table B
Critical

S4 þ

I-div

Conv

S5 þ

I-div

Conv

Please
10.101
EcðAÞ ¼
Z

Sim�1
c ðAÞ

Y2

i¼1

ci

 !
e�v j � vj dðl;vÞ

c1 c2
:

Thus we have shown the following lemma.

Lemma 3.5. The measure satisfies the representation EcðAÞ ¼
R

Sim�1
c ðAÞ

ve�v dðl;vÞ; A 2 B2.

Theorem 3.1. For A 2 M�,
EcðAÞ ¼ c1 c2

Z v1

v0

ve�v a2ðvÞ � a1ðvÞ
ðc1 þ c2 a1ðvÞÞðc1 þ c2 a2ðvÞÞ

dv :
Proof. We have that EcðAÞ ¼
R

Sim�1
c ðAÞ

ve�v dðl;vÞ, and from Definition 3 that
A ¼
[v1

v¼v0

vD�ða1ðvÞ;a2ðvÞÞ:
So, from Corollary 3.1, we have A ¼
Sv1

v¼v0
vD c1

c1þc2a2ðvÞ
; c1
c1þc2a1ðvÞ

� �
and from Definition 1, we obtain
EcðAÞ ¼
Z v1

v¼v0

Z c1
c1þc2a1 ðvÞ

c1
c1þc2a2 ðvÞ

ve�v dðl;vÞ:
Lemma 3.3 gives EcðAÞ ¼
R v1

v0
ve�v c1c2LD dv where
LD ¼ Lc D
c1

c1 þ c2a2ðvÞ
;

c1

c1 þ c2a1ðvÞ


 �
 �
¼ 1

c1c2

c1

c1 þ c2a1ðvÞ
� c1

c1 þ c2a2ðvÞ


 �
¼ a2ðvÞ � a1ðvÞ
ðc1 þ c2a1ðvÞÞðc1 þ c2a2ðvÞÞ;
which gives the required result. h
Remark 3.1. The Lc arc-length measure of the simplex Sc is
LcðScÞ ¼ lim
a2!1

Lc D
c1

c1 þ c2a2
;

c1

c1 þ c2a1


 �
 �����
a1¼0
¼ lim

a2!1

a2

c1ðc1 þ c2a2Þ
¼ 1

c1c2
:

Definition 4. The probability law xcðDÞ ¼ LcðDÞ
LcðScÞ ;D 2 BðScÞ is called the c� generalized uniform distribution on the Borel sub-

sets BðScÞ of Sc.
Definition 5. The function F cðA;vÞ ¼ xcð1v A \ ScÞ;v > 0 is, for every c > 0, called the j � jc-related intersection percentage
function of the set A; A 2M�.

For analogous notions being used in the theory of ln;p-symmetric distributions, we refer to [15,17,8]. Note that the sets
1
v A \ Sc can be interpreted within a generalized method of indivisibles as discussed in these papers, too.

Corollary 3.2. For A 2 M�, EcðAÞ ¼
R v1

v0
ve�vF cðA;vÞdv .
Proof. From Corollary 3.1 and Remark 3.1, we have
EcðAÞ ¼
Z v1

v0

ve�v LcðD�ða1ðvÞ;a2ðvÞÞÞ
LcðScÞ

dv;
where D�ða1ðvÞ;a2ðvÞÞ ¼ ð1v AÞ \ Sc. h
.3
values Ca for S4 þ R4 (upper table) and S5 þ R5 (lower table) (r ¼ 1; v ¼ 1; c ¼ 1).

R4 C0:1 C0:05 C0:01 C0:001

ergence (nsim = 105) 4.447175 5.43199 7.499567 10.59929

olution (approx. S4, MaxPoints = 103) 4.54 5.53 7.76 10.80

R5 C0:1 C0:05 C0:01 C0:001

ergence (nsim = 105) 5.317319 6.308037 8.584385 11.64449

olution (approximated S5, MaxPoints = 103) 5.39 6.46 8.81 11.99
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Table B.4
Critical values C0:05;N;v for INðy; cÞ for different sample sizes. (Critical values were computed based on 100,000 samples.)

v Sample size

5 10 15 20 25 30 35 40 45 50 60 70 80 90 100

0.15 7.743 13.124 18.066 22.875 27.560 32.084 36.627 41.013 45.496 49.964 58.622 67.306 75.911 84.482 92.692
0.20 7.563 12.675 17.529 22.080 26.455 30.951 35.306 39.630 43.927 48.152 56.498 64.772 73.090 81.204 89.470
0.40 7.003 11.643 15.970 20.163 24.173 28.181 32.091 35.932 39.920 43.604 51.272 58.587 66.113 73.524 80.822
0.60 6.659 11.097 15.199 19.106 22.980 26.668 30.378 34.049 37.668 41.294 48.317 55.459 62.380 69.379 76.179
0.80 6.482 10.754 14.639 18.506 22.179 25.811 29.377 32.818 36.384 39.784 46.590 53.295 59.984 66.790 73.549
1.00 6.307 10.502 14.312 18.051 21.616 25.104 28.589 32.021 35.356 38.787 45.563 52.048 58.637 65.094 71.562
1.20 6.213 10.294 14.060 17.688 21.226 24.636 27.998 31.469 34.739 38.056 44.618 51.060 57.492 63.854 70.175
1.40 6.132 10.147 13.896 17.486 20.861 24.229 27.683 31.066 34.222 37.561 43.899 50.282 56.550 62.938 69.083
1.60 6.073 9.990 13.747 17.267 20.621 24.019 27.320 30.603 33.902 37.041 43.394 49.749 55.877 62.132 68.284
1.80 6.040 9.970 13.593 17.089 20.477 23.789 27.075 30.398 33.572 36.728 43.029 49.262 55.443 61.600 67.645
2.00 5.960 9.894 13.493 16.994 20.319 23.687 26.840 30.081 33.327 36.390 42.713 48.888 55.091 61.129 67.181
2.50 5.888 9.715 13.273 16.717 20.027 23.302 26.591 29.606 32.807 35.975 42.117 48.205 54.226 60.216 66.172
3.00 5.814 9.656 13.179 16.595 19.841 23.101 26.250 29.344 32.482 35.590 41.701 47.769 53.693 59.705 65.554
4.00 5.737 9.539 13.025 16.365 19.602 22.790 25.902 28.999 32.080 35.171 41.245 47.095 52.992 58.901 64.632
5.00 5.716 9.462 12.903 16.265 19.469 22.641 25.698 28.790 31.915 34.864 40.844 46.803 52.602 58.553 64.128
6.00 5.676 9.375 12.838 16.120 19.395 22.513 25.591 28.594 31.776 34.711 40.665 46.489 52.342 58.169 63.855
8.00 5.638 9.309 12.779 16.051 19.239 22.402 25.380 28.414 31.464 34.404 40.397 46.297 52.059 57.691 63.468

Fig. B.4. The critical values C0:05;N;v for INðy; cÞ with respect to the sample size N and the shape parameter v (left plot) and the C0:05;N;v for N ¼ 40 with the
corresponding fraction polynomial of relationship (9) (right plot).
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The expression from Corollary 3.2 well applies to the lower level sets of INðy; cÞ; N ¼ 2 i.e. to obtain the cumulative dis-
tribution function in an alternative way to convolution discussed in Sections 3.1–3.4. Moreover, it may be generalized to
higher dimensions, too.

4. Simulation study

In the previous Sections, the decomposition of the I – divergence statistic was used in order to determine its null distri-
bution. This decomposition allows to test separately the homogeneity and the scale hypotheses. In this section, we use sim-
ulations to test simultaneously both the hypotheses directly, without applying the exact distribution.

To this end, a detailed simulation study was carried out in order to compute the critical values of the I – divergence for
various samples sizes and shape parameters. Furthermore, in this section, we also present the challenges to apply the pro-
posed test when the shape parameter v is unknown and has to be estimated.

4.1. Critical values

The simple form of the I – divergence statistic, and the fact that the null distribution of the I – divergence distance is inde-
pendent from the assumed null scale parameter, make the computation of its critical values given the shape parameter v a
simple task for any sample size.
Please cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
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Table B.5
The simulated size of the proposed test for a ¼ 0:05, calculated after plugging in the estimated gamma shape parameter.

v Sample size

10 20 30 40 60 80 100

ML MM ML MM ML MM ML MM ML MM ML MM ML MM

0.4 0.0066 0.0990 0.0054 0.1042 0.0064 0.1074 0.0074 0.1190 0.0052 0.1316 0.0066 0.1160 0.0038 0.1020
0.8 0.0124 0.0620 0.0138 0.0734 0.0150 0.0788 0.0154 0.0936 0.0138 0.0834 0.0136 0.0936 0.0136 0.0882
1.0 0.0126 0.0590 0.0152 0.0706 0.0156 0.0758 0.0192 0.0858 0.0188 0.0788 0.0190 0.0750 0.0184 0.0806
1.2 0.0160 0.0538 0.0166 0.0612 0.0188 0.0706 0.0178 0.0688 0.0188 0.0728 0.0184 0.0752 0.0224 0.0792
1.6 0.0206 0.0512 0.0216 0.0576 0.0238 0.0656 0.0250 0.0610 0.0276 0.0736 0.0280 0.0710 0.0248 0.0622
2.0 0.0206 0.0484 0.0244 0.0540 0.0244 0.0532 0.0234 0.0550 0.0268 0.0608 0.0296 0.0624 0.0272 0.0650
4.0 0.0254 0.0418 0.0316 0.0474 0.0314 0.0508 0.0304 0.0470 0.0320 0.0506 0.0378 0.0596 0.0332 0.0526
8.0 0.0278 0.0358 0.0344 0.0430 0.0334 0.0432 0.0412 0.0490 0.0380 0.0454 0.0372 0.0442 0.0388 0.0470

Table B.6
The simulated size of the proposed test for a ¼ 0:05, calculated after plugging in both the estimated gamma parameters.

v Sample size

10 20 30 40 60 80 100

ML MM ML MM ML MM ML MM ML MM ML MM ML MM

0.4 0.0042 0.0914 0.0042 0.0958 0.0050 0.1006 0.0072 0.1136 0.0060 0.1354 0.0074 0.1278 0.0060 0.1390
0.8 0.0102 0.0568 0.0138 0.0712 0.0150 0.0786 0.0154 0.0936 0.0144 0.0868 0.0148 0.0974 0.0174 0.0968
1.0 0.0110 0.0548 0.0144 0.0688 0.0154 0.0746 0.0196 0.0862 0.0208 0.0830 0.0212 0.0786 0.0206 0.0848
1.2 0.0142 0.0502 0.0162 0.0592 0.0186 0.0702 0.0182 0.0704 0.0198 0.0744 0.0196 0.0768 0.0230 0.0798
1.6 0.0176 0.0480 0.0216 0.0576 0.0242 0.0658 0.0254 0.0614 0.0276 0.0730 0.0264 0.0688 0.0214 0.0584
2.0 0.0196 0.0464 0.0248 0.0550 0.0250 0.0548 0.0240 0.0552 0.0268 0.0608 0.0290 0.0612 0.0246 0.0616
4.0 0.0252 0.0418 0.0332 0.0512 0.0348 0.0552 0.0320 0.0486 0.0330 0.0520 0.0338 0.0542 0.0284 0.0434
8.0 0.0270 0.0348 0.0374 0.0452 0.0386 0.0490 0.0440 0.0522 0.0400 0.0470 0.0364 0.0438 0.0344 0.0430
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As a consequence, in order to compute the critical values, a detailed simulation study was carried out based on the
gamma distribution with scale parameter c ¼ 1. More specifically, 100,000 samples were generated under the null hypoth-
eses for each combination of sample size (N = 5, 10, . . ., 50, 60, . . ., 100) and shape parameter (v = 0.15, 0.2, 0.4, . . ., 2, 2.5, 3, 4,
5, 6, 8) and the critical values for different significant levels a where computed. In Table B.4 of Appendix A, the critical values
for a ¼ 0:05 are presented. It is clear from Table B.4 that the critical values increase as the sample size increases and decrease
as the shape parameter v increases. In Fig. B.4 (left plot) the critical values C0:05;N;v are plotted with respect to the sample size
N and the shape parameter v.

In order to determine possible non-linear functional relationships between the critical values, the sample size and the
shape parameter v, we relied on fractional polynomials models [18,21]. The following relationship presents the best second
degree fractional polynomials model obtained by this procedure
Please
10.101
C0:05;N;v ¼ 1:28248þ 0:564928 � N þ 1:1303 log N þ
ffiffiffiffi
N
v

r
�0:496904þ 0:271317 log

N
v


 �
 �
þ v�0:5 0:864955� 0:11949 � v�3=2� �

: ð9Þ
The above relationship has an excellent fit to the critical values of Table B.4 from Appendix A. This is demonstrated both
in the right plot of Fig. B.4 in which the above relationship is plotted for N ¼ 40 with the corresponding critical values of
Table B.4, and by the high coefficients of determination of the model (R2 ¼ 0:9997). The use of the above relationship is rec-
ommended for 0:15 6 v 6 8 and 5 6 N 6 100.

4.2. Plugging in an estimated shape parameter

The null distribution of the I – divergence, and as a consequence its critical values, depend not only on the sample size but
also on the gamma shape parameter. Given a gamma sample with known shape parameter, the application of the
I – divergence is straightforward with the help of Table B.4 (see Appendix A) or relationship (9). Unfortunately, the shape
parameter is unknown in most of the real cases and has to be estimated. In such cases, it is clear that the behavior of the
I – divergence depends on how good the available estimation is.

In order to investigate the performance of the I – divergence when the shape parameter is estimated and then plugged
into the relationship (3), the following simulation study was carried out by generating 5000 gamma samples under the
null hypotheses and for each combination of sample size (N ¼ 10;20;30;40;60;80;100) and shape parameter
(v ¼ 0:4;0:8;1;1:2;1:6;2;4) (scale parameter was set equal to 1).
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Fig. B.5. The I – divergence as a function of c and v for aerolane light indicators and the surface (in darker gray) determining the critical values (left plot) and
the contour plot for the parameters’ ‘‘credible’’ regions along with the point estimations obtain by different procedures (right plot).
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For each sample, two of the most popular estimation procedures were used, the maximum likelihood (ML) and the
method of moments (MM), and the estimation of the shape gamma parameter was obtained under the null hypotheses
(homogeneity and (H0 : c ¼ 1)). Then the estimated gamma shape parameter was plugged into the I – divergence and the
value of the test statistic was calculated. Next, two different approaches were followed in order to calculate the critical value
of the test. Firstly, the critical values from Table B.4 (Appendix A) were used (adopting the true gamma shape parameter).
Secondly, the critical values were calculated from the relationship (9) with the use of the estimated shape parameter. In
every case, the proportions of the samples for which the null hypotheses were rejected, or not, were recorded. The results
from these approaches are presented in Tables B.5 and B.6 in Appendix A.

It follows from the results in both Tables that none of the applied procedures maintain the required size of the test
(a ¼ 0:05) since in almost all the cases the size of the test differed more than 0:006 ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 � 0:95=5000

p
from its nom-

inal value. More specifically, the simulated size of the test depends on the underlying true value of the shape parameter, and
the MLE increases while for the MM decreases as the shape parameter increases. Comparing the different approaches and
estimation techniques, it seems that the use of the critical values of Table B.4 in Appendix A or of the critical values obtained
from the relationship (9) with the use of the estimated shape parameter does not have a significant impact of the simulated
size, and that the MLE presents generally a worse behavior than the MM. As a consequence, we can conclude that the plug-in
strategy for the I – divergence does not provide an acceptable solution to the problem of unknown shape (and scale)
parameter.

5. Applying the proposed test to real data

As was demonstrated in the previous section, the plug-in strategy does not seem to work well and so an alternative
approach has to be developed in order to apply the proposed test to real data when no previous information is available
for the gamma shape parameter. Such an approach is described just after a short discussion on the structure of the null
hypotheses. Next the application of this approach is applied to real data sets in order to clarify the procedure.

5.1. The structure of the null hypotheses

The I – divergence given in relationship (3) can be used in order to test for homogeneity (5) and to check the scale (6)
hypotheses simultaneously. So, if the value of the I – divergence is smaller than the critical value CN;a, both of the null
hypotheses can not berejected. On the other hand, if the value of the statistic is larger than the critical value we should
conclude that at least one of the null hypothesis is rejected. Although, based on the structure of the hypotheses, we should
assume that either both hypotheses are rejected or the scale hypothesis is rejected. More specifically, if homogeneity
hypothesis holds then for some c (probably not the one that we test) the Iðy; cÞ should be smaller than CN;a, which is inde-
pendent of the true c. So, plugging in a value for the c, as the MLE – which may not be a very good estimation, especially for
small sample sizes, may result in a rejection of the null hypotheses due to the incorrect selection of the value of the c
Please cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
10.1016/j.amc.2014.04.027
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Fig. B.6. As in Fig. B.5 for the ball bearing data set.

Fig. B.7. The skewness (left plot) and the kurtosis (right plot) of the gamma distribution for the non rejection ‘‘credible’’ region of the shape parameter using
the MLE of the gamma scale parameter (0.0558).
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parameter. The situation can be more severe when we estimate the shape parameter as we have seen in the previous Section.
To overcome this obstacle, we propose a different approach in the following subsection.

5.2. Credible regions for the gamma parameters

The application of the proposed test is straightforward when the value of the shape parameter and the scale parameter of
the gamma distribution can be assumed to be known. In such cases, we actually test indirectly a third hypothesis concerning
the adopted value of the shape parameter and by that point of view the test can be interpreted as a goodness of fit test for the
Gamma distribution. Unfortunately, the shape parameter is unknown in most of the cases. Additionally, in most real life
applications it is also unlikely to have any information and for the value of the scale parameter that we have to adopt for
the null scale hypothesis. As we have already mentioned, a misspecification of the null scale parameter c and the use of
an estimated shape parameter to the I – divergence can lead to a wrong decision. To overcome this problem, we propose
to treat the I – divergence as a function of the scale c and the shape v parameters and to check if there exists a region of
values for the parameter for which none of the null hypotheses are rejected. A similar approach was applied by Economou
and Stehlík [7] in order to test the need of frailty modeling in survival and reliability data through homogeneity test.

This approach does not only allow us to avoid selecting a single value for the c (which may be inaccurate) but also pro-
vides us with ‘‘credible’’ intervals for the values of both the parameters under which we can not reject the null hypotheses.
By this approach, along with the homogeneity and the scale hypotheses, we actually test indirectly a third hypothesis con-
cerning the value of the shape parameter.
Please cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
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Fig. B.8. The I – divergence as a function of c and v, for the first data set from [10], and the surface (in darker gray) determining the critical values (left plot)
and the contour plot for the parameters’ ‘‘credible’’ regions along with the point estimators obtained by different procedures (right plot).

Fig. B.9. The I – divergence as a function of c and v for the second data set from [10], and the surface (in darker gray) determining the critical values (left
plot) and the contour plot for the parameters’ ‘‘credible’’ regions along with the point estimators obtained by different procedures (right plot).
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It is true that such an approach does not solve directly the hypothesis testing problem but provides us with ‘‘credible’’
regions for the parameters that can be very useful for a researcher. More specifically, the lack of knowledge of the true value
of the scale and the shape parameter can be overcome by the researchers choice or knowledge or belief on the true value of
the parameters of the population under study by providing him/her a range of values of the parameters that leads to the non
rejection of both the homogeneity and the scale hypotheses.

5.3. Applications

For illustration purposes, the previous described procedure is applied to four real data sets taken from literature and the
aeroplane light indicators data set presented in Section 2. The applications for two of the data sets (taken from [10]) are pre-
sented in Appendix, along with the Mathematica code for the accompanying plots.

As a first example, we use the data set presented in Section 2. Since the sample size is extremely small it is naturally to
have little or no confidence on the MLE of the parameters. On the other hand the proposed approach gives some useful
Please cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
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information on the gamma parameters given that both the homogeneity and the scale hypothesis are not rejected. As a con-
sequence, we treat INðy; cÞ not only as a function of c but also as a function of v, and we construct a three dimensional plot of
INðy; cÞ versus the c and the v parameters. At the same plots, we have embedded also the surface (in darker gray) determined
by relationship (3) for the corresponding sample size. These plots are presented on the left part of Fig. B.5. The two null
hypotheses are not rejected for any point ðc0;v0Þ satisfying INðy; c0Þ < C0:05;N;v¼v0 , determining this way ‘‘credible’’ regions
for the parameters c and v. For these regions, none of the null hypotheses is rejected. At the right parts of Fig. B.5, these
‘‘credible’’ regions are also plotted with the help of a contour plot. The MLE (filled circle) and the estimator obtained by
the method of moments (filled square), which all belong to the non rejection area for both the data sets are pointed also
in the contour plot. The estimates are very close to each other and this is why the two points cannot be distinguish easily
from the plot.

As a last example, we consider the data set presented in [12] and used in [11] for illustrating how their techniques for
discriminating between the gamma and log-normal distribution work. The data consist of 23 records on the number of mil-
lion revolutions before, failure of a ball bearing in a life test. Although, [11] suggest to choose the log-normal distribution
rather than the gamma distribution for the data, we prefer to apply the proposed test. This is done because [11] also pointed
out that the two fitted distributions (the gamma and the lognormal) are quite close to each other, and so we study the life-
time of a ball bearing under the gamma distribution by determining the gamma parameters’ ‘‘credible’’ regions for which
none of the tested null hypotheses are rejected. Additionally, to strengthen this choice, it is worth mentioning that some
of the sample descriptive statistics such as the skewness and the kurtosis (0.942 and 3.489 respectively) are closer to the
corresponding values predicted by the fitted gamma (0.997 and 4.490) than the fitted lognormal distribution (1.852 and
9.658) (using the maximum likelihood method), making the choice between the two distributions more doubtful.

In Fig. B.6, the two plots along with the point estimations based on the maximum likelihood method and on the method
of moments are presented. If we were willing to adopt the assumption of the gamma distribution and not to reject the homo-
geneity hypothesis we should adopt one point in the gray area of the right plot of Fig. B.6. When adopting, for example, the
MLE of the gamma scale parameter (0.0558), we have to adopt a value between the 2.1207 and 5.07977 for the shape param-
eter. This region for the shape parameter belongs to a range of values for the skewness and the kurtosis for the distribution of
the number of million revolutions before, failure of a ball bearing in the life test (see Fig. B.7), which not only can be consider
reasonable but are also consistent with the corresponding characteristics of the sample. This should result into consider the
gamma distribution at least as a plausible choice for describing the data.

6. Conclusions

Summarizing, we illustrated in this paper the possibility of divergence testing for reliability engineering. In particular, we
have illustrated the importance of decomposition of divergences, which may provide us a form of statistical regularization or
optimal statistical procedures. We have also derived the exact distribution by geometric integration theory and by convo-
lutions. These approaches shows a high technical complexity of exact distributions, and as a consequence the use of approx-
imation is needed for N > 4. Finally, the application of the introduced tests in real data sets was addressed by constructing
‘‘credible’’ regions for the gamma parameters for which none of the homogeneity and the scale hypothesis is rejected.
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Appendix A

A.1. Lambert W function

The Lambert W function is defined to be the multivalued inverse of the complex function f ðyÞ ¼ yey. As the equation
yey ¼ z has an infinite number of solutions for each (non-zero) value of z 2 C, the Lambert W has an infinite number of
branches. Exactly one of these branches is analytic at 0. Usually this branch is referred to as the principal branch of the Lam-
bert W and is denoted by W or W0. The other branches all have a branch point at 0. These branches are denoted by Wk where
k 2 Z n f0g. The principal branch and the pair of branches W�1 and W1 share an order 2 branch point at z ¼ �e�1. A detailed
discussion of the branches of the Lambert W can be found in [6]. For more information about the implementation and some
computational aspects, see [5].

A.2. Functions forming domain of integration for G4

If we denote
Please
10.101
A	ðxÞ ¼
3
4
� S

4
ffiffiffi
2
p 	 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� 3e�x

8g
� 3

8
g þ 1ffiffiffi

2
p
S

s
;
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where
Please
10.101
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 3e�x

g
þ 3g

s

and
g ¼ e�x þ e�3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�e3x þ e4x

p� �1=3
;

then
aðxÞ ¼ A�ðxÞ; bðxÞ ¼ AþðxÞ:
A.3. Additional applications and Mathematica Code

The two data sets given in the Mathematica code at the end of this section present the empirical variance of the repeated
measurements of the glucose levels of diabetic patients. The first data set consists of the variances of the duplicate measure-
ments of 13 diabetic patients and the second data set consists of the variances of triplicate measurements of 31 diabetic
patients. In [10], these sample variances were assumed to be distributed according to Cð1=2; c=2Þ and Cð1; cÞ, respectively,
where c is the within-patients population variance. A pooled estimate for c given by [10] is 1=14:56.

In a first approach, we test for these data sets the hypothesis
H0 : c1 ¼ c2 ¼ . . . ¼ cN versus HA :¼ non H0
and the scale hypothesis
H0 : c ¼ c0 versus HA : c – c0;
where c0 ¼ 1=14:56 is the pooled estimate for c.
For both the data sets, the null hypotheses are not rejected since the value of the I – divergence statistic using the

assumed shape parameter is each time smaller than the critical value obtained by relationship (3) in the main text. More
specifically, we have for the first data set that
INðx; c0=2Þ ¼ 8:48464 < 14:2447 ¼ C0:05;N¼13;v¼1=2
and for the second one, that
INðx; c0Þ ¼ 23:3075 < 25:843 ¼ C0:05;N¼31;v¼1:
Kimber [10] argued that it is likely to be identify some outliers in these two data sets. Thus, one may have little or no trust
to the pooled estimate for the c parameter. Additionally, there is no theoretical background about the assumed shape param-
eters. This is why we will additionally apply the proposed approach described in the previous subsection in order to deter-
mine ‘‘credible’’ regions for both the parameters for which neither the homogeneity nor the scale hypotheses is rejected.

Thus, we treat INðy; cÞ not only as a function of c but also as a function of v, and we construct a three dimensional plot of
INðy; cÞ versus the c and the v parameters for each sample. At the same plots, we embedded also the surface (in darker gray)
determined by relationship (3) for the corresponding sample size. These plots are presented on the left part of Figs. B.8 and
B.9 for the first and the second data set. The two null hypotheses are not rejected for any point ðc0;v0Þ satisfying
INðy; c0Þ < C0:05;N;v¼v0 which allows us to determine in this way ‘‘credible’’ regions for the parameters c and v. For these
regions, none of the null hypotheses is rejected. At the right parts of these figures, the ‘‘credible’’ regions are also plotted with
the help of a contour plot. The point suggested by [10] (empty circle), the MLE (filled circle) and the estimator obtained by
the method of moments (filled square), which all belong to the non rejection area for both the data sets, are pointed also in
the contour plot.

The analysis of the data was carried out by the following Mathematica Code.

Idiv[_,v_,data_]:¼-Sum[v-vLog[v],{i,1,Length[data]}] +
Sum[data[[i]]� vLog[data[[i]]],{i,1,Length[data]}];

Idivcrit[n_,v_]:¼1.28248 + 0.564928n�
0.496904(n/v)

^
0.5 � 0.11949/v

^
2. + 0.864955/v

^
0.5 + 1.1303Log[n]+

0.271317(n/v)
^
0.5Log[n/v]

(*First data set*)

data1={13.005,18.000,0.605,19.845,75.645,1.805,1.125,3.125,
6.125,1.805,11.045,0.005,13.52}

EstimatedDistribution[data1,GammaDistribution[v,gamma]];

EstimatedDistribution[data1,GammaDistribution[v,gamma],
cite this article in press as: M. Stehlík et al., Kullback–Leibler life time testing, Appl. Math. Comput. (2014), http://dx.doi.org/
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ParameterEstimator-> "MethodOfMoments"];

a1 = Plot3D[{Idiv[,v,data1],
Idivcrit[Length[data2],v]},{,.01,.15},{v,0.15,2},
PlotStyle-> {Gray,Automatic},ClippingStyle-> Opacity[0.15],

AxesLabel-> {"","v"}];
a2 = DensityPlot[{If[
Idiv[,v,data1]-Idivcrit[Length[data1],v]< 0,

Idiv[,v,data2]-Idivcrit[Length[data1],v],]},} {,.01,.15},{v,0.15,2},
ColorFunction-> "AuroraColors",FrameLabel-> Automatic];

a41 = ListPlot[{{1/(214.56),1/2}},PlotStyle-> Black,

PlotMarkers-> "n[EmptyCircle]"];
a42 = ListPlot[{{1/25.94420693337358‘,0.4911575189180527‘}},
PlotStyle-> Black,PlotMarkers-> "n[FilledCircle]"];

a43 = ListPlot[{{1/29.328669709753576‘,0.4344790416271278‘}},
PlotStyle-> Black,PlotMarkers-> "n[FilledSquare]"];

a4 = Show[{a41,a42,a43}];
a3 = ColorConvert[

Show[GraphicsGrid[{{a1,Show[a2,a4]}}],ImageSize-> 900],

"Grayscale"]

(*Second data set*)

data2={29.043,12.653,1.363,22.943,32.363,7.770,28.210,1.963,
7.413,10.943,7.930,12.463,30.970,0.723,6.040,1.470,0.813,

1.293,26.080,5.590,29.403,0.790,98.023,5.373,14.573,0.903,

4.890,13.080,3.610,41.333,3.253};
EstimatedDistribution[data2,GammaDistribution[v,gamma]];

EstimatedDistribution[data2,GammaDistribution[v,gamma],

ParameterEstimator-> "MethodOfMoments"];

a1 = Plot3D[{Idiv[,v,data2],
Idivcrit[Length[data1],v]},{,.01,.5},{v,0.15,2},
PlotStyle-> {Gray,Automatic},ClippingStyle-> Opacity[0.15],

AxesLabel-> {"","v"}];
a2 = DensityPlot[{If[Idiv[,v,data2]-Idivcrit[Length[data2],v]< 0,

Idiv[,v,data2]-Idivcrit[Length[data2],v],]},{,.01,.5},{v,0.15,2},
ColorFunction-> "AuroraColors",FrameLabel-> Automatic];

a41 = ListPlot[{{1/14.56,1}},PlotStyle-> Black,

PlotMarkers-> "n[EmptyCircle]"];
a42 = ListPlot[{{1/18.894547252006998‘,0.7909211358640081‘}},
PlotStyle-> Black,PlotMarkers-> "n[FilledCircle]"];

a43 = ListPlot[{{1/24.313932291118682‘,0.614631010535975‘}},
PlotStyle-> Black,PlotMarkers-> "n[FilledSquare]"];

a4 = Show[{a41,a42,a43];
a3 = ColorConvert[

Show[GraphicsGrid[{{a1,Show[a2,a4]}}],ImageSize-> 900],

"Grayscale"]
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