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Abstract

We derive a wide class of geometric representation formulas for
multivariate skewed elliptically contoured distributions and show in
a unified geometric way how some of them are related to stochas-
tic representations known in the literature. Furthermore, we make
use of the geometric measure representation to explore independence
between collections of components of accordingly distributed random
vectors, and to investigate contour plots of skewed normal densities
from a geometric viewpoint.
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1 Introduction

Over the last decade, the field of multivariate skewed distributions was a
very vibrant research area. The first well studied type of such distributions
is the multivariate skewed normal distribution that is considered in [6] and
[14]. Later on, many authors tackled different approaches to generalize this
distribution. A very important generalization for the purposes of the present
paper is the class of multivariate skewed elliptical distributions introduced
in [10]. Because of the vast development of the area of skewed distributions,
several authors as those in [1],[2] and [4] put a lot of effort into finding as
general and systematic approaches to it as possible.

Recently, the authors of [13] provided an approach to the univariate
skewed normal and univariate skewed elliptical distributions that unifies sev-
eral known representations of these distributions from a certain geometric
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point of view. At the same time, this viewpoint makes it possible to estab-
lish a whole class of new such representations. The aim of the present paper
consists in extending this geometric way of dealing with skewed distributions
to the multivariate case, and in drawing first consequences from it.

To be more concrete, in the following, we denote by Φk(·; g(k)) a continu-
ous spherical distribution on the Borel σ-field B(k) in the Euclidean space Rk

having the density generator g(k) and by SEk(ξ,Ω, δ; g(k+1)) a member of the
class of continuous skewed elliptical distributions on B(k) as it was introduced
in [10]. The results in [13] show the following. If Z ∼ SE1(0, 1, δ; g(2)), then
its cumulative distribution function (cdf) allows each of the representations

P (Z < z) = 2Φ2(C(a, b, c, d, e); g(2)), (1)

where the cone
C(a, b, c, d, e) = H1(a, b) ∩H2(c, d, e)

is the intersection of two half spaces of R2,

H1(a, b) = {(x, y)T ∈ R2 : ax+ by < 0}

and
H2(c, d, e) = {(x, y)T ∈ R2 : cx+ dy < e},

and where the parameters a, b, c, d and e fulfill the equations

z =
e√

c2 + d2
(2)

and

δ = − ac+ bd√
a2 + b2

√
c2 + d2

. (3)

In other words, if (X, Y ) ∼ Φ2(·; g(2)) then for all parameters satisfying
equations (2) and (3),

P (Z < z) = 2P (aX + bY < 0, cX + dY < e),

and
P (Z < z) = P (cX + dY < e | aX + bY < 0).

Notice that for every given pair (δ, z), there are uncountably many so-
lutions (a, b, c, d, e) of equations (2) and (3) corresponding to orthogonally

2



transformed cones C(a, b, c, d, e), hence each giving rise to its own represen-
tation formula of the cdf of a one-dimensional skewed elliptically distributed
random variable. Let

C2(δ, z) = {C(a, b, c, d, e) : a, b, c, d, e satisfy (2) and (3)}

be the class of cones whose two-dimensional spherical measure coincides with
(1/2) ·P (Z < z) where Z ∼ SE1(0, 1, δ; g(2)). Then C2(δ1, z1)∩C2(δ2, z2) = ∅
if (δ1, z1) 6= (δ2, z2). The value of the parameter δ in (3) is equal to that of the
cosine of the angle between the vectors (−a,−b)T and (c, d)T . This angle can
be considered as the opening angle of the cone C(a, b, c, d, e). Furthermore,
the absolute value of the parameter z in (2) is equal to that of the distance
from the line ∂H2(c, d, e) to the origin. The origin always belongs to the
boundary of H1(a, b). Note that we can also write H2(c, d, e) = {(x, y)T ∈
R2 : c√

c2+d2
x+ d√

c2+d2
y < z} and therefore

C(a, b, c, d, e) = {(x, y)T ∈ R2 : aT0 ( xy ) < 0, aT1 ( xy ) < z}, (4)

where aT0 = (a, b) and aT1 = ( c√
c2+d2

, d√
c2+d2

) is a normalized vector.
The proof of the above statement is immediate from the proofs of The-

orems 1 and 2 in [13] and the comments given there at the end of Section
4. The results of [13] can now be considered as special cases of the present
formulation by suitably choosing g(2), and δ = ν/

√
1 + ν2.

To give a first impression of how the representation formula (1) can be
used, we derive with its help a specific representation for skewed elliptically
distributed random variables based on the maximum of two jointly elliptically
contoured distributed random variables.

It was demonstrated in [13] that different representations of skewed ellip-
tically contoured distributions can be derived in the same unified geometric
way and it will be shown later in the present paper that this unified way of
proving stochastic representations works in higher dimensions, too.

Before we go further, we recall that a continuous k-dimensional random
vector Y is called elliptically contoured distributed with location parameter
µ ∈ Rk, symmetric regular form or scale parameter matrix Σ ∈ Rk×k and
density generator g(k) : R+ → R+ if it has the density

f(y;µ,Σ, g(k)) = |Σ|−1/2g(k)((y − µ)TΣ−1(y − µ)), y ∈ Rk.

We write Y ∼ ECk(µ,Σ; g(k)) for short. For a treatment of elliptically
contoured distributions, we refer to [11].
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In the following, we show that if (X, Y )T ∼ EC2(02,
(

1 ρ
ρ 1

)
; g(2)) then

max{X, Y } ∼ SE1(0, 1, {1/2(1 − ρ)}1/2; g(2)) by making use of the cdf rep-
resentation (1) of the univariate skewed elliptical distribution. To this end,
we define the diagonal matrix D = diag(1/

√
1 + ρ, 1/

√
1− ρ) and the or-

thogonal matrix O = (1/
√

2) ( 1 1
1 −1 ) and note that the transformed vector

(U, V )T = DO(X, Y )T satisfies

(U, V )T ∼ Φ2(·; g(2)).

Since, first, P (max{X, Y } < t) can be written as P ((X, Y )T ∈ B(t)) with
B(t) = {(x, y)T ∈ R2 : x < t, y < t}, and next, (X, Y )T ∈ B(t) holds iff
(U, V )T ∈ DOB(t), we obtain

P (max{X, Y } < t) = Φ2(DOB(t); g(2)), t ∈ R. (5)

Note that DOB(t)

=

{(
x
y

)
: (

1 + ρ

2
)1/2x+ (

1− ρ
2

)1/2y < t, (
1 + ρ

2
)1/2x− (

1− ρ
2

)1/2y < t

}
is a cone in R2 that is symmetric w.r.t. the x-axis. With the notation

B̃(t) =

{
(x, y)T ∈ R2 : y > 0, (

1 + ρ

2
)1/2x+ (

1− ρ
2

)1/2y < t

}
,

we have DOB(t) = B̃(t)∪
[
( 1 0

0 −1 ) B̃(t)
]

and B̃(t)∩
[
( 1 0

0 −1 ) B̃(t)
]

= ∅, where

the origin belongs to the topological boundary of the cone B̃(t) and B̃(t)
denotes the closure of B̃(t). Thus

Φ2(DOB(t); g(2)) = Φ2(B̃(t); g(2)) + Φ2(( 1 0
0 −1 ) B̃(t); g(2)).

Therefore,
Φ2(DOB(t); g(2)) = 2Φ2(B̃(t); g(2)). (6)

Here, B̃(t) is the cone C(a, b, c, d, e) with parameters a = 0, b = −1, c =
(1+ρ

2
)1/2, d = (1−ρ

2
)1/2 and e = t. Inserting these values into (2) and (3),

we obtain z = t and δ = {1/2(1 − ρ)}1/2 and from representation (1) then
follows that

2Φ2(B̃(t); g(2)) = P (Z < t), (7)
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where Z ∼ SE1(0, 1, {1/2(1− ρ)}1/2, g(2)). Hence, on combining (5), (6) and
(7), we observe that

P (max{X, Y } < t) = P (Z < t), t ∈ R,

i.e. the maximum statistic follows an univariate skewed elliptical distribution
with parameters (ξ,Ω) = (0, 1) and skewing parameter δ = {1/2(1 − ρ)}1/2

if the two-dimensional elliptically contoured sample distribution has location
parameter µ = 02 and its scale parameter matrix Σ is actually a correlation
matrix, Σ =

(
1 ρ
ρ 1

)
. This explicit result may be also derived from Proposition

10 in [8] concerning classes of distributions, and its proof given there. Cor-
responding results assigning the one-dimensional skewed normal or skewed
spherical distribution to the maximum distribution of two-dimensional Gaus-
sian or spherical vectors are due to [16], [3], and [15]. For certain gener-
alizations of such results that are based upon a representation of skewed
ln,p-symmetric distributions in [5], we refer to [9] and [17].

In the first proof of the main result of the present paper, we follow
the approach in [12] of defining a skewed elliptically contoured distribu-
tion by stating its density. We say that a k-dimensional random vector
Z is distributed according to the skewed elliptically contoured distribution
SEk(ξ,Ω, δ; g(k+1)), where ξ ∈ Rk, δ ∈ Rk, Ω is a symmetric and positive def-
inite (s.p.d.) k×k matrix, δ and Ω fulfill δTΩ−1δ < 1, and g(k+1) : R+ → R+

is the density generator of an elliptically contoured distribution in Rk+1, if it
has the density

fZ(z) = 2|Ω|−1/2

∫ λT (z−ξ)

−∞
g(k+1)(s2 + (z − ξ)TΩ−1(z − ξ)) ds, (8)

where
λ = (1− δTΩ−1δ)−1/2Ω−1δ. (9)

We mention here that the distribution SEk(ξ,Ω, δ; g(k+1)) was originally in-
troduced in [10] in another way and refer for details to Proposition 1 in
Section 2. Additionally, throughout the rest of the paper, we assume that
the matrix Ω is a correlation matrix. Note that our assumptions imply that(

1 δT

δ Ω

)
is positive definite and that δ ∈ (−1, 1)×k. We will prove this in

Appendix A.
The main aim of the present paper is to establish a multivariate gen-

eralization of the results in [13] as they were stated in the first part of this
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section. For this purpose, we generalize the class of cones C2(δ, z) to a proper
multivariate version. This will be done in Section 2. Following this line, we
present then in Theorem 1 a multivariate extension of the representation (1).
In Section 3, we investigate relations between the geometric measure repre-
sentations proved in the present paper and some stochastic representations of
skewed elliptically contoured distributed random vectors already known from
the literature. Actually, we show that the latter may be derived in a unified
geometric way from the new representation in Theorem 1. In Section 4, we
further exploit the geometric representation formula in Theorem 1. First, we
formulate geometrically stated conditions for the independence of collections
of components of a skewed normal random vector. Next, the application of
Theorem 1 will be extended to a greater class of cones through symmetriza-
tion. Finally, we give some new interpretations for density contour plots of
two-dimensional skewed normal vectors.

2 Main result

As announced, we now introduce more general classes of cones than the one
considered in Section 1. The cones studied in this section are intersections of
k + 1 half spaces from Rk+1, where at least one of them contains the origin
in its boundary. Each of the classes of cones C(z) will be used to repre-
sent the cdf of the k-dimensional skewed elliptically contoured distribution
SEk(0,Ω, δ; g(k+1)) by the values 2Φk+1(C(z); g(k+1)), z ∈ Rk. To this end,
we specify the cones that are needed to formulate a suitable multivariate
generalization of formula (1). The half space

H0(a0) = {y ∈ Rk+1 : aT0 y < 0}, a0 ∈ Rk+1,

contains the origin in its boundary while the boundaries of the half spaces

Hi(ai, zi) = {y ∈ Rk+1 : aTi y < zi}, zi ∈ R, ai ∈ Rk+1, i = 1, ..., k,

do not contain the origin, in general. The vectors a0, ...,ak are assumed to
be linearly independent and the vectors a1, ... ,ak are assumed to satisfy the
normalization assumption

||ai|| = 1, i = 1, ..., k.
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One of the consequences is that in the case k = 1 equation (2) reads as z = e.
The cones of interest are now

C(a0,a1, ...,ak; z) = H0(a0) ∩ (
k⋂
i=1

Hi(ai, zi)), z ∈ Rk.

We say that a cone C(a0,a1, ...,ak; z) belongs to the class Ck+1(Ω, δ, z),
where the parameters δ = (δ1, ..., δk) and z belong to Rk and Ω =
(ωi,j)i,j=1,...,k is a k × k s.p.d. correlation matrix, and δTΩ−1δ < 1, if
the vectors a0, ...,ak satisfy the equations

δi =
−aT0 ai
||a0||

, i = 1, ..., k,

ωi,j = ωj,i = aTi aj, i < j, i, j = 1, ..., k.

(10)

If φ0,i ∈ (0, π) denotes the angle between ∂H0(a0) and ∂Hi(ai, zi), i = 1, ..., k,
and φi,j ∈ (0, π) is the angle between ∂Hi(ai, zi) and ∂Hj(aj, zj), i, j =
1, ..., k then (10) means

δi = cos(φ0,i) and ωi,j = ωj,i = − cos(φi,j), i < j, i, j = 1, ..., k.

In case of k = 1, Ω = 1 is the only admissible value for Ω. Note that
C2(1, δ, z) is equal to C2(δ, z) from Section 1.

In the following, we generalize representation (1) to the multivariate set-
ting. The inequality u < v, where u,v ∈ Rk, is to be read componentwise.

Theorem 1. If Z ∼ SEk(0,Ω, δ; g(k+1)) then, for all cones C(a0,a1, ...,ak; z)
from the class Ck+1(Ω, δ, z), the cdf of Z allows the representation

P (Z < z) = 2Φk+1(C(a0,a1, ...,ak; z); g(k+1)), z ∈ Rk. (11)

One may say that the parameters of the cdf of the skewed elliptically
contoured distribution are expressed in this theorem in terms of geometric
parameters of the cones C(a0,a1, ...,ak; z), and vice versa. Similarly to
equation (4), we can write

C(a0,a1, ...,ak; z) = {y ∈ Rk+1 : aT0 y < 0, aT1 y < z1, ...,a
T
k y < zk}. (12)

The absolute value of zi is the distance of ∂Hi(ai, zi) from the origin, i =
1, ..., k. Here, min{‖w‖ : aTw = z} = |z|/‖a‖ is the distance of the hyper-
plane {w ∈ Rk+1 : aTw = z} from the origin. Furthermore, we have the
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above stated relations following from (10), between the distribution parame-
ters δ and Ω and the angles between the hyperplanes that are boundaries of
the cone.

Classes Ck+1(Ω, δ, z) corresponding to different parameters (Ω, δ, z) are
disjoint. For SEk(0,Ω, δ; g(k+1)) and z being fixed, there are uncountably
many cones generated by orthogonal cone transformations which satisfy the
representation (11).

Lemma 1. If C(a0,a1, ...,ak; z) and C(a∗0,a
∗
1, ...,a

∗
k; z) are (k+1)-dimensional

cones which are elements of the same class Ck+1(Ω, δ, z) then there is an
orthogonal transformation O such that

C(a0,a1, ...,ak; z) = OC(a∗0,a
∗
1, ...,a

∗
k; z).

Proof. We define ã0 := a0/||a0|| and ã∗0 := a∗0/||a∗0|| and note that the sets
{ã0,a1, ...,ak} and {ã∗0,a∗1, ...,a∗k} are both bases of Rk+1. Therefore, there
exists a unique linear map f : Rk+1 → Rk+1 such that ã0 = f(ã∗0) and
ai = f(a∗i ), i = 1, ..., k. By using the assumptions of Lemma 1, it can be
shown that the map f is orthogonal, i.e. for any pair of vectors v,w ∈
Rk+1 holds < f(v), f(w) >=< v,w > where < ·, · > denotes the standard
scalar product in Rk+1. Hence, there is an orthogonal matrix O such that
ã0 = Oã∗0 and ai = Oa∗i , i = 1, ..., k. It follows that C(a0,a1, ...,ak; z) =
OC(a∗0,a

∗
1, ...,a

∗
k; z).

It is one of the aims of the present note to make as clear as possible the
relations between the well established techniques from the area of skewed
distributions and the new techniques from the geometric approach. In this
sense, we present in the following two alternative proofs of Theorem 1 in order
to show different aspects of these relations. The first proof uses essentially the
orthogonal invariance property in Lemma 1. The second one shows that one
can also start from the stochastic representation of skewed elliptical random
vectors that was basically used in [10].

Proof 1 of Theorem 1. It was shown in [7] that if Ω is a correlation matrix
then (9) is equivalent to

δ =
Ωλ

(1 + λTΩλ)1/2
. (13)
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Let us consider a random vector(
X0

Y

)
∼ ECk+1(0k+1,

(
1 0Tk
0k Ω

)
; g(k+1)) (14)

where X0 and Y take values in R and Rk, respectively. It follows from (8),

(14), and
∣∣∣ 1 0T

k
0k Ω

∣∣∣ = |Ω| that

P (Z < z) = 2|Ω|−1/2

∫
y<z

∫ λTy

−∞
g(k+1)(s2 + yTΩ−1y) ds dy

= 2|Ω|−1/2

∫
y<z

∫ λTy

−∞
g(k+1)((s,yT )

(
1 0Tk
0k Ω

)−1(
s
y

)
) ds dy

= 2P (Y < z, X0 < λ
TY ).

Because Ω is regular, there is a regular k × k-matrix C such that

Ω = CCT . (15)

It follows from the properties of elliptically contoured distributions that if
Y ∗ := C−1Y then(

X0

Y ∗

)
=

(
1 0Tk
0k C−1

)(
X0

Y

)
∼ Φk+1(·; g(k+1)).

Let

A∗0(z) := {(x0,y
T )T ∈ Rk+1 : x0 < λ

Ty, y < z}, z ∈ Rk,

then

2P (Y < z, X0 < λ
TY ) = 2P ((X0,Y

T )T ∈ A∗0(z))

= 2P
(

(X0,Y
∗T )T ∈ A0(z)

)
where

A0(z) =

(
1 0Tk
0k C−1

)
A∗0(z) =

{(
x0

y∗

)
∈ Rk+1 : x0 < λ

TCy∗, Cy∗ < z

}
.

Hence,
P (Z < z) = 2Φk+1(A0(z); g(k+1)). (16)
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The set A0(z) allows the representation

A0(z) =
{
y ∈ Rk+1 : a∗0

Ty < 0, a∗1
Ty < z1, ..., a

∗
k
Ty < zk

}
where a∗0

T = (1, −λTC), a∗i
T = (0, eTi C), i = 1, ..., k, and ei denotes the ith

usual unit vector of Rk. The vectors a∗0,a
∗
1, ...,a

∗
k are linearly independent

because C is a full-rank matrix. Furthermore, we have the following equations
which together with (13), prove that the vectors a∗i , i = 0, 1, ..., k, satisfy
(10):

−a∗0Ta∗i
||a∗0||

=
λTCCTei

(1 + λTCCTλ)1/2
=

λTΩei

(1 + λTΩλ)1/2
= δi, i = 1, ..., k,

a∗i
Ta∗j = eTi CC

Tej = eTi Ωej = ωi,j, i, j = 1, ..., k,

thus
||a∗i ||2 = ωi,i = 1, i = 1, ..., k.

Hence, the cone A0(z) belongs to the class Ck+1(δ,Ω, z). Because of Lemma
1, every cone C(a0,a1, ...,ak; z) from the same class can be mapped orthog-
onally onto A0(z). Because of the orthogonal invariance of the spherical
distribution Φk+1(·; g(k+1)),

Φk+1(C(a0,a1, ...,ak; z); g(k+1)) = Φk+1(A0(z); g(k+1)). (17)

The claim of Theorem 1 now follows on combining (16) and (17).

Before we present the announced alternative proof of Theorem 1, we
recall the stochastic representation of skewed elliptically contoured random
vectors that was basically used in [10]. Here, L(.|.) denotes the conditional
probability law.

Proposition 1. If

(
X0

Y

)
∼ Elk+1(

(
0
ξ

)
,

(
1 δT

δ Ω

)
; g(k+1)) then the skewed

elliptically contoured distribution allows the conditional distribution repre-
sentation

SEk(ξ,Ω, δ; g(k+1)) = L(Y |X0 > 0).

In [10], the statement of Proposition 1 was actually the definition for the
skewed elliptical distribution, and the density representation (8) was derived
from it. The following second proof of Theorem 1 makes use of Proposition
1.
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Proof 2 of Theorem 1. Let C(a0,a1, ...,ak; z) be a cone from the class
Ck+1(δ,Ω, z). We define the (k+ 1)×k-matrix A by A =

(
a1 a2 . . . ak

)
and assume that

(
U0

U

)
∼ Φk+1(·; g(k+1)) where U0 and U take values in R

and Rk, respectively. Note that

Φk+1(C(a0,a1, ...,ak; z); g(k+1)) = P (AT
(
U0

U

)
< z,aT0

(
U0

U

)
< 0)

=
1

2
P (AT

(
U0

U

)
< z |aT0

(
U0

U

)
< 0)

=
1

2
P (AT

(
U0

U

)
< z | − aT0

||a0||

(
U0

U

)
> 0).

Hence, with the notation ã0 = − a0

||a0|| ,

2Φk+1(C(a0,a1, ...,ak; z); g(k+1)) = P (AT
(
U0

U

)
< z | ãT0

(
U0

U

)
> 0). (18)

It follows from the equations (10) that δ = AT ã0 and Ω = ATA. The
properties of elliptically contoured distributions ensure that(

ãT0
AT

)(
U0

U

)
∼ Elk+1(0k+1,

(
1 δT

δ Ω

)
; g(k+1)).

Finally, with X0 = ãT0

(
U0

U

)
and Y = AT

(
U0

U

)
, Proposition 1 yields

L

(
AT
(
U0

U

)
| ãT0

(
U0

U

)
> 0

)
= SEk(0k,Ω, δ, g

(k+1)). (19)

The claim of Theorem 1 follows on combining (18) and (19).

3 Stochastic representations

It is known from the second proof of Theorem 1 that representation for-
mula (11) can be derived from the conditional distribution representation in
Proposition 1. In this section, we demonstrate how, vice versa, Theorem 1
can be used to derive this and other representations. This way, we reprove
in a unified geometric way several representations of the skewed elliptically
contoured distribution, including that of Proposition 1.
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3.1 Representation based upon selection mechanism

In this subsection, we re-prove Proposition 1 by using Theorem 1. Thereby,
we restrict us to the special case that ξ = 0k and Ω is a correlation matrix.
The case of arbitrary ξ can be treated similarly by changing Y with Y − ξ.

The matrix

(
1 δT

δ Ω

)
is assumed to be s.p.d., hence we can write

(
1 δT

δ Ω

)
=

BBT with a certain non-singular (k + 1) × (k + 1)-matrix B. We define(
X∗0
Y ∗

)
:= B−1

(
X0

Y

)
, where

(
X0

Y

)
satisfies the assumptions of Proposition

1. Because of the properties of elliptical distributions,(
X∗0
Y ∗

)
∼ Φk+1(·; g(k+1)).

Let
A∗1(z) := {(x0,y

T )T ∈ Rk+1 : x0 > 0, y < z}, z ∈ Rk.

We have

P (Y < z|X0 > 0) = 2P (Y < z, X0 > 0) = 2P ((X0,Y
T )T ∈ A∗1(z))

= 2P
(

(X∗0 ,Y
∗T )T ∈ A1(z)

)
,

where

A1(z) = B−1A∗1(z) =

{
B−1

(
x0

y

)
∈ Rk+1 : −x0 < 0, y < z

}
=

{(
x∗0
y∗

)
∈ Rk+1 :

(
−1 0Tk
0k Ik

)
B

(
x∗0
y∗

)
<

(
0
z

)}
.

We get the following intermediate result:

P (Y < z|X0 > 0) = 2Φk+1(A1(z); g(k+1)). (20)

The set A1(z) allows the representation

A1(z) =
{
y ∈ Rk+1 : aT0 y < 0, aT1 y < z1, ..., a

T
k y < zk

}
where aT0 = −eT1B, aTi = eTi+1B, i = 1, ..., k, and ei denotes now the ith unit
vector of Rk+1. The vectors a0,a1, ...,ak are linearly independent because
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the matrix B is of full rank. Furthermore, the following equations show that
the parameter vectors a0,a1, ...,ak satisfy (10):

−aT0 ai
||a0||

=
eT1BB

Tei+1

(eT1BB
Te1)1/2

=

eT1

(
1 δT

δ Ω

)
ei+1(

eT1

(
1 δT

δ Ω

)
e1

)1/2
=
δi
1
, i = 1, ..., k,

aTi aj = eTi+1BB
Tej+1 = eTi+1

(
1 δT

δ Ω

)
ej+1 = ωi,j, i, j = 1, ..., k,

thus
||ai||2 = ωi,i = 1, i = 1, ..., k.

Therefore, A1(z) is a cone from the class Ck+1(Ω, δ, z). Proposition 1 now
follows from (20) and Theorem 1.

3.2 Representation based upon linear combination

The following stochastic representation of a skewed elliptically contoured
random vector was originally derived in another way in [8] and [12], and in
slightly different notation. In this subsection, we re-prove this result using
Theorem 1.

Proposition 2. Let

(
X0

Y

)
∼ ECk+1(0k+1,

(
1 0Tk
0k Ψ

)
; g(k+1)), where Ψ is a

s.p.d. k× k correlation matrix. Further, let Zj = δj|X0|+ (1− δ2
j )

1/2Yj, j =
1, ..., k, where δ = (δ1, ..., δk)

T ∈ (−1, 1)k, and ∆ = diag(δ1, ..., δk), and
Z := (Z1, ..., Zk)

T = |X0|δ + (Ik −∆2)1/2Y . Then

Z ∼ SEk(0k,Ω, δ; g(k+1)),

where
Ω = δδT + (Ik −∆2)1/2Ψ(Ik −∆2)1/2. (21)

To prove Proposition 2, we use that the matrix Ψ is s.p.d., so that Ψ =
CCT with certain regular k× k matrix C. Let Y ∗ := C−1Y . It follows from
the properties of elliptically contoured distributions that(

X0

Y ∗

)
=

(
1 0Tk
0k C−1

)(
X0

Y

)
∼ Φk+1( · ; g(k+1)).

13



With

A∗2(z) := {(x0,y
T )T ∈ Rk+1 : δ|x0|+ (Ik −∆2)1/2y < z}, z ∈ Rk,

we observe that

P (δ|X0|+ (Ik −∆2)1/2Y < z) = P ((X0,Y
T )T ∈ A∗2(z))

= P
(

(X0,Y
∗T )T ∈ Ã2(z)

)
,

where

Ã2(z) =

(
1 0Tk
0k C−1

)
A∗2(z)

=
{

(x0,y
T )T ∈ Rk+1 : δ|x0|+ (Ik −∆2)1/2Cy < z

}
=
{

(x0,y
T )T ∈ Rk+1 : x0 ≥ 0, δx0 + (Ik −∆2)1/2Cy < z

}
∪ {(x0,y

T )T ∈ Rk+1 : x0 < 0, −δx0 + (Ik −∆2)1/2Cy < z}.
(22)

If

A2(z) =
{

(x0,y
T )T ∈ Rk+1 : x0 > 0, δx0 + (Ik −∆2)1/2Cy < z

}
,

we have Ã2(z) = A2(z) ∪
[( −1 0

0 Ik

)
A2(z)

]
and A2(z) ∩

[( −1 0
0 Ik

)
A2(z)

]
= ∅.

Therefore,

P
(

(X0,Y
∗T )T ∈ Ã2(z)

)
= Φk+1(Ã2(z))

= Φk+1(A2(z)) + Φk+1(
( −1 0

0 Ik

)
A2(z))

= 2Φk+1(A2(z)).

Hence,

P (δ|X0|+ (Ik −∆2)1/2Y < z) = 2Φk+1(A2(z); g(k+1)). (23)

We can represent A2(z) as

A2(z) =
{
y ∈ Rk+1 : aT0 y < 0, aT1 y < z1, ..., a

T
k y < zk

}
where aT0 = (−1,0Tk ), aTi = (δi, (1− δ2

i )
1/2eTi C), i = 1, ..., k, and ei denotes

here the ith unit vector of Rk. The vectors a0,a1, ...,ak are linearly inde-
pendent because the matrix C is a full-rank matrix. Furthermore, we have
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the following equations which together with (21) show that the parameter
vectors a0,a1, ...,ak satisfy (10):

−aT0 ai
||a0||

=
δi
1

= δi, i = 1, ..., k,

aTi aj = δiδj + (1− δ2
i )

1/2eTi CC
Tej(1− δ2

j )
1/2

= δiδj + (1− δ2
i )

1/2eTi Ψej(1− δ2
j )

1/2

= δiδj + (1− δ2
i )

1/2ψi,j(1− δ2
j )

1/2, i, j = 1, ..., k,

and
||ai||2 = δ2

i + (1− δ2
i )ψi,i = δ2

i + (1− δ2
i ) = 1, i = 1, ..., k.

Hence, A2(z) is a cone from the class Ck+1(Ω, δ, z), where Ω is given by (21).
Proposition 2 now follows from (23) and Theorem 1.

3.3 Discussion

It was shown so far in this section that some of the known representations
of skewed elliptically contoured distributions can be derived in a unified ge-
ometric way from Theorem 1. We want to add a few more words on the
opposite direction, that is how Theorem 1 can be derived from any of these
known representations, too. The first proof of Theorem 1 essentially makes
use of representation (16) for the cdf of the skewed elliptically contoured dis-
tribution. As a matter of fact, one can also use Proposition 1 together with
(20) in order to get

P (Z < z) = 2Φk+1(A1(z); g(k+1)),

and can use this last equation instead of (16) in the first proof of Theorem
1. Then, for proving the claim of Theorem 1 in the same way as in the first
proof of Theorem 1, one can use of the fact that A1(z) is a special cone from
the class Ck+1(Ω, δ, z). After that, Lemma 1 and the orthogonal invariance
property of Φk+1(·; g(k+1)) apply.

Similarly, one can prove Theorem 1 starting from Proposition 2. This
proposition together with (23) applies to show P (Z < z) = 2Φk+1(A2(z); g(k+1)).
One can use now this equation instead of (16) in the first proof of Theorem
1, and can perform then the same reasoning as above by exploiting the fact
that A2(z) is a special cone from the class Ck+1(Ω, δ, z).

15



Actually, one can use any (possibly yet even unknown) representation of
the skewed elliptical distribution that implies

P (Z < z) = 2Φk+1(C(a0,a1, ...,ak; z); g(k+1))

for just one special cone C(a0,a1, ...,ak; z) from the class Ck+1(Ω, δ, z).
Then, the extension of the claim of Theorem 1 to any cone from the class
Ck+1(Ω, δ, z) follows from Lemma 1.

4 Applications and examples

4.1 Describing independence

General conditions ensuring that sub-vectors of multivariate skewed normal
vectors are mutually independent, follow from Proposition 6 in [7]. Here,
we show that formula (11) applies to derive geometrically stated conditions
under which such independence relations hold.

Remark 1. Let the cdf of the k-dimensional random vector Z satisfy
representation (11) with g(k+1) being the density generator of the nor-
mal distribution, and let Z be partitioned as Z = (Y T

1 , ...,Y
T
h )T where

the sub-vectors have dimensions m1, ...,mh, respectively, m1 + ... + mh =
k. If the linear spaces L(a0,a1, ...,am1), L(am1+1,am1+2, ...,am1+m2),
L(am1+m2+1, ...,am1+m2+m3),
..., L(am1+...+mh−1+1,am1+...+mh−1+2, ...,am1+...+mh

) spanned up by the vectors
in parentheses are orthogonal to each other then Y 1, ...,Y h are independent.
Furthermore, in this case, Y 1 will be skewed normally distributed, whereas
Y 2, ...,Y h are normal random vectors.

Proof. For simplicity, and without loss of generality, we consider the case
h = 3. We suppose that z ∈ Rk+1 is partitioned as z = (yT1 ,y

T
2 ,y

T
3 )T

where y1, y2, y3 have dimensions m1,m2,m3, respectively. We define A1 =(
a0 a1 ... am1

)
,A2 =

(
am1+1 ... am1+m2

)
, andA3 =

(
am1+m2+1 ... ak

)
,

and moreover X ∼ Nk+1(0k+1, Ik+1). Then

P (Z < z) = 2Φk+1(C(a0,a1, ...,ak; z); g(k+1))

= 2P (aT0X < 0, aT1X < z1, ...,a
T
kX < zk)

= 2P (AT1X < (0,yT1 )T , AT2X < y2, A
T
3X < y3)

= 2P (AT1X < (0,yT1 )T ) · P (AT2X < y2) · P (AT3X < y3).
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In the last equation, the independence of AT1X, AT2X, and AT3X was used.

This property follows by considering the distribution of
(
A1 A2 A3

)T
X

and exploiting the orthogonality condition assumed in the Remark 1. Fur-
thermore,

P (Y 1 < y1) = lim
zm1+1→∞

... lim
zk→∞

P (Z < z) = 2P (AT1X < (0,y1
T )T ),

analogously P (Y 2 < y2) = P (AT2X < y2) and P (Y 3 < y3) = P (AT3X <
y3). Indeed, Y 2 and Y 3 are normally distributed. To prove that Y 1 is
skewed normal, one can find an orthogonal (k + 1) × (k + 1)-matrix such

that OA1 =

(
ã0 ã1 ... ãm1

0k−(m1+1) 0k−(m1+1) ... 0k−(m1+1)

)
where ãi ∈ Rm1+1, i =

0, 1, ...,m1. Hence, because of OTX
d
= X,

P (Y 1 < y1) = 2P (AT1X < (0,y1
T )T ) = 2P (AT1O

TX < (0,y1
T )T )

= 2P ((OA1)TX < (0,y1
T )T )

= 2Φm1+1(C(ã0, ã1, ..., ãm1 ;y1); g(k+1))

and thus, Y 1 is a m1-dimensional skewed normal random vector, becauce of
Theorem 1.

Notice that the conditions for independence, which follow from Proposi-
tion 6 in [7], are met if the orthogonality condition from Remark 1 is satisfied.
This follows by considering the equations (10).

4.2 Deriving representations through symmetrization

The present subsection illustrates that one has not necessarily to restrict
considerations of the geometric measure representations for skewed distribu-
tions to cones which include the origin in at least one bounding hyperplane.
To be specific, we derive here a representation of P (Z < z) in terms of
Φk+1-values of sets derived from sets of the type C(a0,a1, ...,ak; z) through
symmetrization.

Remark 2. If Z ∼ SEk(0,Ω, δ, g
(k+1)) then, for every cone C(a0,a1, ...,ak; z)

from the class Ck+1(Ω, δ, z), the cdf of Z allows the representation

P (Z < z) = Φk+1(C(a0,a1, ...,ak; z)

∪ (Ik+1 −
2

aT0 a0

a0a
T
0 )C(a0,a1, ...,ak; z); g(k+1)). (24)
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Proof. The Householder matrix (Ik+1− 2
aT
0 a0
a0a

T
0 ) mirrors C(a0,a1, ...,ak; z)

on the bounding hyperplane {y ∈ Rk+1 : aT0 y = 0} which contains the origin.
Therefore, C(a0,a1, ...,ak; z) and (Ik+1 − 2

aT
0 a0
a0a

T
0 )C(a0,a1, ...,ak; z) are

disjoint. Furthermore, (Ik+1 − 2
aT
0 a0
a0a

T
0 ) is orthogonal. Hence,

Φk+1((Ik+1 −
2

aT0 a0

a0a
T
0 )C(a0,a1, ...,ak; z)) = Φk+1(C(a0,a1, ...,ak; z))

and thus

Φk+1(C(a0,a1, ...,ak; z) ∪ (Ik+1 −
2

aT0 a0

a0a
T
0 )C(a0,a1, ...,ak; z); g(k+1))

= 2Φk+1(C(a0,a1, ...,ak; z)) = P (Z < z),

where the last equation follows from Theorem 1.

Example 1. Let us recall that the set B̃(t) from Section 1 allows the repre-
sentation B̃(t) = C(a0,a1; z) with a0 = (0,−1)T , a1 = ((1+ρ

2
)1/2, (1−ρ

2
)1/2)T ,

and z = t. The corresponding Householder matrix is therefore (I2 −
2

aT
0 a0
a0a

T
0 ) = ( 1 0

0 −1 ). Hence, the set DOB(t) from Section 1 allows the

representation DOB(t) = C(a0,a1; z) ∪ (I2 − 2
aT
0 a0
a0a

T
0 )C(a0,a1; z).

Example 2. The set A2(z) in the proof of Proposition 2 allows the represen-
tation A2(z) = C(a0,a1, ...,ak; z) with a0 = (−1,0Tk )T . The corresponding

Householder matrix is thus (Ik+1− 2
aT
0 a0
a0a

T
0 ) =

(
−1 0T

0 Ik

)
. After symmetriza-

tion of the cone C(a0,a1, ...,ak; z), we get the set

C(a0,a1, ...,ak; z) ∪ (Ik+1 −
2

aT0 a0

a0a
T
0 )C(a0,a1, ...,ak; z)

= A2(z) ∪
( −1 0

0 Ik

)
A2(z)

=
{

(x0,y
T )T ∈ Rk+1 : x0 ≥ 0, δx0 + (Ik −∆2)1/2Cy < z

}
∪ {(x0,y

T )T ∈ Rk+1 : x0 < 0, −δx0 + (Ik −∆2)1/2Cy < z}
=
{

(x0,y
T )T ∈ Rk+1 : δ|x0|+ (Ik −∆2)1/2Cy < z

}
,

which coincides with (22).
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4.3 Contour plots

The consideration in this subsection is restricted to the case k = 2. We
observe by systematically changing certain parameters how the shape of the
density level sets of a two-dimensional skewed normal vector (Z1, Z2) depends
on the linearly independent vectors a0,a1 and a2. These vectors are normal
to the boundary-planes of that cone in R3 which is used to express the cdf of
(Z1, Z2) according to (11). In comparison with (12), we slightly modify the
notation for this cone and put

C3(a0,a1,a2, z1, z2) :=

{
x ∈ R3 : aT0 x < 0,

aT1
||a1||

x < z1,
aT2
||a2||

x < z2

}
.

This set depends only on the directions of the vectors a0,a1,a2 but not on
their norms what is essentially the same in all previous sections where we
restrict vectors a1, ...,ak to be normalized. Furthermore, in this subsection,
we use Φ3(·) to denote the three-dimensional standard Gaussian measure.

Figure 1 shows density contour plots of two-dimensional skewed normal
distributions having different parameter vectors a0, a1 and a2. For more
figures reflecting the effects of different changes in the vectors a0, a1 and a2,
we refer to Appendix B. Similar contour plots reflecting effects of varying a
correlation coefficient or Madia’s skewness measure are to be found in [14]
and [18], respectively.

Figure 1: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with a0 = (1, λ, γ)T , a1 =
(0, 1, 0)T , a2 = (0, 0, 1)T . Here, a1⊥a2 and changes are only made in λ.

In the final remarks we describe some observations which can be made
when considering these figures.
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Remark 3. If a1⊥a2, as it is the case in Figures 1 and 2, then the den-
sity contour plot of (Z1, Z2) is always symmetric w.r.t., and the density looks
”skewed into the direction” of the vector (δ1, δ2) = −(cos(∠(a0,a1)), cos(∠(a0,a2))).
From Figure 2 , one may get the impression that ”skewing to the left” in-
creases as the angle between a0 and a1 becomes sharper, i.e. as λ increases.
Moreover, one may argue that ”skewing downwards” increases as the angle
between a0 and a2 becomes sharper, i.e. as γ increases. We let it here an
open problem to give these statements a precise mathematical sense in a
future work.

Remark 4. If there are no restrictions upon the vectors ai, i = 1, 2, 3 then it
is not as easy to uniquely detect general rules on their skewing effects. Still,
the angle between a0 and a1 seems to be related to skewing to the left or right,
and the angle between a0 and a2 seems to be related to skewing downwards or
upwards. Besides, we also obtain an effect of higher or lower concentration
of contour lines which seems to be essentially influenced by the angle between
a1 and a2. Having a closer look onto the contour plots, however, one gets
a visual impression of how all the three effects superimpose. Figures 3 to
7 indicate the great variety of skewing two-dimensional normal densities.
Moreover, if we would change both the signs of λ and γ in Figure 3 and
Figure 4 , then the contour plots would mirror along the x-axis. If we would
choose a2 = (0, 0,−1)T instead of a2 = (0, 0, 1)T , then the contour plots
would mirror along the y-axis. In Figure 6 , one can observe ëxtremeplots
where in the left figure, the angle ∠(a0,a1) is very sharp, in the central figure,
∠(a0,a2) is very sharp, and in the right figure, ∠(a1,a2) is very sharp. In
Figure 7 , the value of all three angles decrease when turning from the left to
the right.
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A

In the following, we prove that if Ω is a symmetric and positive definite k×k
matrix and δ ∈ Rk fulfills δTΩ−1δ < 1, then

(
1 δT

δ Ω

)
is positive definite. To

this end, we denote with Ω1/2 the positive definite square root of Ω and,
furthermore, note that 1− δTΩ−1δ > 0 holds. Therefore,

B =

(
(1− δTΩ−1δ)1/2 δTΩ−1/2

0k Ω1/2

)
is a regular (k + 1)× (k + 1) matrix and

BBT =

(
1 δT

δ Ω

)
,

which implies that
(

1 δT

δ Ω

)
is positive definite.

Furthermore, if Ω is a correlation matrix, then all diagonal elements of
Ω are equal to 1 and the positive definiteness of

(
1 δT

δ Ω

)
implies that δ ∈

(−1, 1)×k

B Figures
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Figure 2: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with a0 = (1, λ, γ)T , a1 =
(0, 1, 0)T , a2 = (0, 0, 1)T . Here, a1⊥a2 and changes are only made in a0. In
the first row, we have additionally a0⊥a1.
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Figure 3: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with a0 = (1, 1, 1)T , a1 =
(0, λ, γ)T , a2 = (0, 0, 1)T . Changes are only in a1 and λ > 0, γ > 0.
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Figure 4: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with a0 = (1, 1, 1)T , a1 =
(0, λ, γ)T , a2 = (0, 0, 1)T . Changes are only in a1 and λ > 0, γ < 0.
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Figure 5: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)) with a0 = (1, 1, γ)T , a1 =
(0, λ, γ)T , a2 = (0, 0,−1)T . Changes are made in a0 and a1.

Figure 6: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)). One of the three angles is chosen par-
ticularly sharp. It is ∠(a0,a1) in the left figure, ∠(a0,a2) in the center figure,
and ∠(a1,a2) in the right figure.
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Figure 7: Contour plot of the density of (Z1, Z2) where P ((Z1, Z2) <
(z1, z2)) = 2Φ3(C3(a0,a1,a2, z1, z2)). All three angles between a0,a1,a2

decrease from the left to the right.
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