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Abstract The exact distributions of many functions of random vectors are
derived in the literature mainly for the case of a Gaussian vector distribution
or under the assumption that the vector follows a spherical or an elliptically
contoured distribution. Numerous standard statistical applications are given
for these cases. Deriving analogous results, if the sample distribution comes
from a large family of probability laws, needs to make use of new analytical
tools from the area of exact distribution theory. The present paper provides
the application of such tools suitable for deriving the exact cumulative distri-
bution functions and density functions of extreme values, products and ratios
in l2,p-symmetrically distributed populations. Accompanying simulation stud-
ies are presented in cases of power-exponentially distributed populations and
for different sample sizes. As an application, well known results on the increas-
ing failure rate properties of extremes from Gaussian samples are extended to
p-power exponential sample distributions.

Keywords Geometric measure representation · l2,p-generalized arc-length
measure · intersection-percentage function · p-power exponential distribution ·
lifetime analysis · IFR property · simulation

1 Introduction

In lifetime analysis, one is interested in answering the question whether or not
a statistic has an increasing failure rate (IFR). If one considers e.g. the max-

K. Müller
University of Rostock, Institute of Mathematics,
Ulmenstraße 69, Haus 3, 18057 Rostock, Germany
E-mail: klaus.mueller@uni-rostock.de

W.-D. Richter
University of Rostock, Institute of Mathematics,
Ulmenstraße 69, Haus 3, 18057 Rostock, Germany
E-mail: wolf-dieter.richter@uni-rostock.de



2 Klaus Müller, Wolf-Dieter Richter

imum or the minimum statistic under the assumption that the sample vector
follows a joint normal distribution, Gupta and Gupta (2001) give a positive
reply. Answering the same question but in case that the sample distribution
comes from a large class of multivariate probability laws needs to make use of
new analytical tools from the area of exact distribution theory. The present
paper provides the application of analytical tools suitable for deriving exact
distributions of several statistics under certain non-standard assumptions and
will particularly give an answer to the question asked above. Moreover, exact
distributions will be compared with simulation results.

The exact distributions of functions of random vectors, like the arithmetical
mean of the vector’s components, i.e. the mean value statistic of a random sam-
ple, the student statistic, the empirical correlation coefficient, and many other
statistics, were derived first in the case of a Gaussian vector distribution and
later under the assumption that the vector follows a spherical or an elliptically
contoured distribution. Numerous standard exact statistical distributions are
derived for these cases, e.g., in Anderson (1984), Fang and Anderson (1990),
Fang and Zhang (1990), and Gupta and Varga (1993). The present paper deals
with exact distributions of extreme values, products, and ratios being special
functions of certain types of random vectors.

Certain ln,p-symmetric distributions have been studied in Schechtman and
Zinn (1990), Rachev and Rüschendorf (1991), Gupta and Song (1997), Song
and Gupta (1997), Szablowski (1998), and Richter (2009). It was shown in
Hyvärinen (2007) and Sinz and Bethge (2008) that ln,p-symmetric distribu-
tions fit natural image data better than the Gaussian one. The special case of
the power-exponential distribution was introduced already in Subbotin (1923).
Just like spherically and elliptically contoured distributions, the ln,p-symmetric
distributions allow modelling of both heavy and light tails. This circumstance
can be of special interest, e.g., in insurance and financial mathematics as well
as in reliability theory and many other fields. For some basics on heavy and
light tails and several applications, we refer to Adler et al (1998), Vázquez
et al (2006), Balkema and Embrechts (2007), and Tang (2008). Exact distri-
butions of certain statistic in ln,p-symmetrically distributed populations were
studied for special cases in Harter (1951), Press (1969), Arnold and Brockett
(1992), Nadarajah (2005a,b), Nadarajah and Gupta (2005), Nadarajah and
Kotz (2005), and Kalke et al (2013), and for some general cases in Arellano-
Valle and Richter (2012) and Günzel et al (2012). Basics on geometric disin-
tegration and on deriving exact distributions under non-standard model as-
sumptions are discussed in Richter (2012).

The aim of the present paper is to derive the cumulative distribution func-
tion (cdf) and the probability density function (pdf) for the extreme values,
products, and ratios of the components of l2,p-symmetrically distributed ran-
dom vectors with arbitrary p > 0 and arbitrary density generating function
(dgf). Furthermore, we will compare the exact results with those generated by
simulation studies of different sample sizes. Finally, we will consider the IFR
property for extreme statistics in the case of l2,p-sample distributions.



Exact distributions 3

A function g : [0,∞) → [0,∞) is called a dgf of an l2,p-symmetric proba-
bility distribution if it satisfies the inequalities

0 <

∞∫
0

rg(rp) dr < ∞.

A two-dimensional random vector X = (X1, X2) with a density

φg,p(x) = C2,g,p g
(
|x|pp

)
, x ∈ R2

is said to follow the l2,p-symmetric distribution Φg,p. Here, the p-functional

|x|p = (|x1|p + |x2|p)
1
p , x = (x1, x2) ∈ R2

denotes the l2,p-norm if p ≥ 1 and, according to Moszyńska and Richter (2012),
an antinorm if p ∈ (0, 1), and C2,g,p is a normalizing constant such that∫

R2

φg,p(x) dx = 1.

For more details concerning the normalizing constants and examples of density
generating functions and their generated distributions, we refer to Kalke et al
(2013).

An important subclass of the l2,p-symmetric distribution class is the class
of power-exponential distributions. Several analytical questions like, e.g., the
determination of the normalizing constant or that of moments are easier to
deal with within this subclass than for certain other elements from the general
class of l2,p-symmetric distributions. Moreover, figures of densities of such dis-
tributions may be easily drawn exactly for elements from the subclass whereas
the general case needs additional assumptions and calculations concerning the
dgf and the corresponding normalizing constant, respectively. Nevertheless,
one may consider figures of these special densities as reflecting general prop-
erties being true in the whole class of l2,p-symmetric distributions. Further,
notice that power-exponentially distributed random vectors have stochasti-
cally independent components which is not the case outside this subclass. As
a consequence, any simulations are easier to be done if random vectors follow a
distribution from within the subclass of power-exponential distributions than
from outside of it. Finally, we mention that p-power exponential distributions
with p ∈ (0, 1) are limiting distributions in certain sampling schemes. For
details, we refer to Steutel and van Harn (2004), Richter (2007), and Kalke
(2013).

To be more concrete, a two-dimensional random vector is said to follow
a power-exponential (or the p-generalized Gaussian or Laplace) distribution
with parameter p > 0 and independent components if it has the density

fp (x) =

 p1−
1
p

2Γ
(

1
p

)
2

exp

{
−|x1|p + |x2|p

p

}
, x = (x1, x2) ∈ R2.
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This distribution was introduced in Subbotin (1923) and corresponds to

the dgf gp(c) = exp
(
− c

p

)
, c ∈ (0,∞). The densities fp are illustrated in Figure

1.1 and their

((
p
1− 1

p

2Γ( 1
p )

)2

e−
1
p

)
-level sets for several parameters p > 0 in Fig-

ure 1.2 (figures are drawn throughout this paper using GeoGebra or several R
or Matlab routines). The a-level sets of the density fp,

{
x ∈ R2 : fp(x) = a

}
⊂

R2, a > 0, are actually the l2,p-circles S2,p(r) =
{
x ∈ R2 : |x|p = r

}
of suitably

chosen p-radius r > 0 and with center 0 ∈ R2. The notion of a p-generalized
radius is motivated by the circumstance that circles S2,p(r) satisfy the repre-
sentation S2,p(r) = r · S2,p with S2,p = S2,p(1). The level sets of general l2,p-
symmetric densities are always l2,p-circles having radii depending on the dgf g.
For the graphs of the one-dimensional marginal densities of the p-generalized
Gaussian distribution, we refer to Figure 1.3.

The distribution Φgp,p is well-known as Laplace distribution if p = 1, Gaus-

sian distribution if p = 2 and continuous uniform distribution on (−1, 1)
×2

in
the limit case p → ∞.

The rest of the paper is organized as follows. In Section 2, the general
method of how to gain exact representations of functions of l2,p-symmetrically
distributed random vectors will be introduced. This method is used in Section
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Fig. 1.1: The various shapes of the pdf fp of p-generalized normal distribution
are shown for different parameters p > 0.
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-level sets of fp are l2,p-unit circles S2,p.
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Fig. 1.3: The pdf ϕp of the one-dimensional p-generalized Gaussian distribution
is visualized for the same parameters p > 0 as in Figure 1.1.

3 to derive the cdf and the pdf of extreme value statistics of l2,p-symmetrically
distributed populations. Further, at the end of Section 3, we present simulation
results for the cdf and the pdf of the maximum statistic in cases of small and
large sample sizes. To this end, we shall use the R-module ’pgnorm’ which
has arisen from Kalke and Richter (2013). In Sections 4 and 5, we follow the
line of Section 3 and get the cdf and the pdf of the product and the ratio
of the components of l2,p-symmetrically distributed random vectors, but their
derivations will not be given as detailed as there. For better orientation, we
will use various symbols for the different statistics studied in Sections 3, 4,
and 5. Afterwards, we consider the IFR property for extreme value statistics.
In the final Section 7, we draw some conclusions from our work done in this
paper.
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2 General method for deriving exact distributions

The method, used in this note to determine exact distributions of certain
functions of a random vector under non-standard assumptions concerning the
distribution of the random vector itself, may be simultaneously viewed un-
der different aspects. The aspects of geometric measure representations and
stochastic representations of corresponding random vectors are emphasized,
e.g., in Richter (2009, 2013). The aspect of dealing with scale mixtures of p-
generalized normal distributions was discussed in some detail in Arellano-Valle
and Richter (2012), Section 3.3. Roughly spoken, l2,p-symmetric distributions
may be written under this point of view as scale mixtures of p-generalized
uniform distributions on l2,p-circles. This allows to compute the mass of a set
A by computing intersections of normalized sets with the l2,p-unit circle. The
aspect of a non-Euclidian generalization of the classical method of indivisi-
bles was discussed to some extent, e.g., in Richter (2012). All these points of
view are closely connected with the method of disintegration and that of us-
ing conditional distributions which are well established in mathematical and
statistical literature and will be considered under some geometric aspect in
Richter (2014a,b), and under rather general assumptions upon the vector dis-
tribution.

In this paper, the actual main idea of how to derive the exact represen-
tations of the cdf of the extreme values, the product and the ratio of the
components of X ∼ Φg,p can be considered as to start from a geometric mea-
sure representation formula for continuous l2,p-symmetric distributions which
follows from Richter (2009). The following function Fp : (0,∞) → [0,∞) is
basic for this geometric representation of Φg,p. It is defined by

r 7→ Fp (A, r) =
ALp,q

(
[r−1A] ∩ S2,p

)
ALp,q (S2,p)

and will be called the l2,p-circle intersection-percentage function (ipf) of the
set A ∈ B2, according to Richter (2007). Here, ALp,q (M) denotes the l2,q-arc-
length of the Borel subset M of S2,p with 1

p+
1
q = 1 which is defined as the lim-

iting value of sums of length of polygons. For technical details concerning this
non-Euclidian arc-length measure, we refer to Richter (2007, 2008a,b, 2009).
Using the notation ωp for the p-generalized uniform distribution on the l2,p-
unit circle S2,p, it was said in these papers that Fp (A, r) = ωp

(
[r−1A] ∩ S2,p

)
.

As first examples, the ipf of cones or double cones with vertex in the origin and
a non-empty interior are positve constants that are less than or equal to 1. Such
constants depend on the argument of the cdf of a p-generalized Student- or
Fisher-statistic, respectively, and are calculated in Richter (2007, 2009) where
p-generalized Student- and Fisher-distributions are derived, respectively. As a

further example, one can consider the l2,p-disc K2,p(ρ) =
{
x ∈ R2 : |x|p ≤ ρ

}
with the center 0 ∈ R2 and the p-radius ρ > 0. Then, Fp (K2,p(ρ), r) = I(0,ρ](r).
This result leads immediately to a p-generalization of the χ2-distribution as
was shown in Richter (2007).
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According to Richter (2009), for arbitrary p > 0, the l2,p-symmetric distri-
bution with dgf g satisfies the geometric measure representation

Φg,p(A) =
1

I2,g,p

∞∫
0

Fp (A, r) rg (r
p) dr, A ∈ B2, (2.1)

with I2,g,p =
∞∫
0

rg (rp) dr. Let T : R2 → R denote an arbitrary statistic and

A(t) =
{
(x1, x2) ∈ R2 : T (x1, x2) < t

}
a sublevel set generated by it. Then the value at the point t of the cdf of T (X)
is

FT,g,p(t) = P (T (X) < t) = Φg,p (A(t)) .

Using (2.1), it follows

FT,g,p(t) =
1

I2,g,p

∞∫
0

ALp,q

(
[r−1A(t)] ∩ S2,p

)
ALp,q (S2,p)

rg(rp) dr.

The constant ALp,q (S2,p) in the last formula can also be interpreted geomet-
rically. It complies with both the suitably defined non-Euclidean arc-length or
circumference of the l2,p-unit circle and two times the area content of K2,p,

i.e. with 2π(p), where the the l2,p-circle number π(p) = 2
(
Γ
(

1
p

))2
/pΓ

(
2
p

)
is

a generalization of the circle number π within the context of a non-Euclidian
geometry, see Richter (2008a,b).

If we are given a concrete statistic T = T (X), which is derived from a
sample vector X ∼ Φg,p, the calculation of ALp,q

(
[r−1A(t)] ∩ S2,p

)
always

yields an integral representation of the cdf FT,p(t).
Let Polp : [0,∞) × [0, 2π) → R2 denote the p-generalized polar coordi-

nate transformation defined in Richter (2007). Let further φ → Pol⋆p (φ) =

Polp (1, φ) be its restriction to r = 1 and Pol⋆p
−1 the corresponding inverse

mapping. According to Richter (2008a,b, 2009), the p-generalized uniform dis-
tribution on S2,p may be represented as

ωp (M) =
1

2π(p)

∫
Pol⋆p

−1(M)

dφ

N2
p (φ)

, M ∈ B2 ∩ S2,p

with Np(φ) = (|cosφ|p + |sinφ|p)
1
p . Hence, an alternative representation of

Φg,p is given by

Φg,p (A(t)) =
1

2π(p)I2,g,p

∞∫
0

∫
Pol⋆p

−1([r−1A(t)]∩S2,p)

dφ

N2
p (φ)

rg(rp) dr.



8 Klaus Müller, Wolf-Dieter Richter

In what follows, we assume that Pol⋆p
−1
(
[r−1A(t)] ∩ S2,p

)
is an interval, say

(γ, δ), where γ = γ(A(t), r) and δ = δ(A(t), r). Then, we shall make use of the
notation Gp (γ, δ) = Fp (A(t), r), i.e.,

Gp (γ, δ) =
1

2π(p)

δ∫
γ

dφ

N2
p (φ)

.

Thus,

FT,g,p(t) =
1

I2,g,p

∞∫
0

Gp (γ, δ) rg(r
p) dr.

As a conclusion, it suffices to determine the ipf of the set A(t) which is gen-
erated by the particular statistic T . To achieve this aim, the l2,q-arc-length
(p-generalized surface content) of the set 1

rA(t)∩ S2,p has to be computed for
each t ∈ R and r > 0, respectively, where 1

p+
1
q = 1. In order to do this, one can

use the integral representation of the p-generalized uniform distribution on S2,p

in combination with the image of the inverse mapping Pol⋆p
−1
(
1
rA(t) ∩ S2,p

)
.

This strategy will be used in Sections 3, 4, and 5 to obtain the exact dis-
tributions of the extreme value, product, and ratio statistic. For some other
examples, we refer to Günzel et al (2012), Kalke et al (2013), and the p-
generalized χ2-, t-, and F -distributions and their g-generalizations in Richter
(2009).

3 Extreme values

The distributions of the extreme values of a finite number of independent and
identically distributed random variables have already been studied in Gumbel
(1958). For the corresponding case of increasing sample size see, e.g., David
(1981). The exact distribution of the maximum of absolutely continuous de-
pendent random variables was considered in Arellano-Valle and Genton (2008)
and Jamalizadeh and Balakrishnan (2010).

In this section, we derive representations for the cdf and the pdf of the max-
imum statistic M , i.e. of M(X) = max {X1, X2}, and the minimum statistic
m, i.e. of m(X) = min {X1, X2}, where X = (X1, X2) ∼ Φg,p with arbitrary
dgf g and parameter p > 0.

The sublevel sets generated by M are

A(t) =
{
(x1, x2) ∈ R2 : max {x1, x2} < t

}
, t ∈ R

(see Figure 3.1). Obviously,

1

r
A(t) =

{(x1

r
,
x2

r

)
∈ R2 : max {x1, x2} < t

}
=

{
(x1, x2) ∈ R2 : max {x1, x2} <

t

r

}
.
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Fig. 3.1: The sublevel sets A(t) in the case T (X) = M(X), which are displayed
for two particular t ∈ R, are rectangular cones with vertices in (t, t) ∈ R2.

The intersections of the sets 1
rA(t) with the l2,p-unit circle S2,p, which are

needed to determine the l2,p-circle ipf of the set A(t), are distinguished in five
cases, see Figure 3.2, since there are substantial differences in the structur
of intersections and, hence, in the structur of ipf if the variable t changes,
respectively. It turns out that, for fixed t, the classification of these typical
situations for r, r > 0, is one and the same for all parameters p > 0. The cases
indicated by a) and e) in Figure 3.2 may be considered as the trivial cases for
which the ipf of A(t) is equal to zero or one, respectively.

Fig. 3.2: The typically distinguished five cases a), b), c), d), and e), which
correspond to typical regions of values of the variable t, are illustrated on the
left for p = 1

2 and on the right for p = 1, and are one and the same for all
parameters p > 0.

Let us denote the cdf of M(X) by FM,g,p.
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Theorem 1 If t ≤ 0, the cdf of M(X) satisfies the representation

FM,g,p (t) =
1

I2,g,p

∞∫
− p√2t

Gp

(
π + α,

3π

2
− α

)
rg(rp) dr,

and if t > 0,

FM,g,p (t) =
1

I2,g,p

[
t∫
0

rg(rp) dr

+

p√2t∫
t

[
Gp

(
π − α, 3π

2 + α
)
+Gp

(
π
2 − α, α

)]
rg(rp) dr

+
∞∫

p√2t

Gp

(
π − α, 3π

2 + α
)
rg(rp) dr

]
,

where α = α (r, t) = arctan

(
|t|

p
√

rp − |t|p

)
.

Proof Let t ≤ 0 and consider A(t) ∩ S2,p(r), see Figure 3.3.

Fig. 3.3: The typical case b) in Figure 3.2 of the intersection of A(t) and S2,p(r)
is pictured in case of a particular t ≤ 0 and p = 3.

This intersection is not empty if the p-functional of the point (t, t) is less
than or equal to r, i.e.

r ≥ |(t, t)|p = (|t|p + |t|p)
1
p = − p

√
2t.

This inequality describes for which r > 0 we are dealing with a typical sit-
uation which is indicated by b) in Figure 3.2. Let A and B denote the in-
tersection points of S2,p(r) and the boundary ∂A(t) of A(t). The rays start-
ing in the origin and passing through the points A or B build angles of the
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same magnitude α with the x- and y- coordinate axes, respectively. The point
A = (x, t) ∈ S2,p(r) with x ≤ 0 satisfies the equation rp = |(x, t)|pp, hence
x = − p

√
rp − |t|p. It follows

tan (α) =
−t

p
√
rp − |t|p

and α = α (r, t) = arctan

(
−t

p
√

rp − |t|p

)
.

Hence,

Pol∗p
−1 ([r−1A(t)

]
∩ S2,p

)
=

[
π + α,

3π

2
− α

]
,

and the value of the ipf of the set A(t) at the point r is

Gp

(
π + α,

3π

2
− α

)
with α = arctan

(
−t

p
√
rp − |t|p

)
.

Let now t > 0 and consider A(t)∩S2,p(r) first for r according to the typical
situation c) in Figure 3.2 and then according to situation d), see Figures 3.4a
and 3.4b, respectively.

(a) (b)

Fig. 3.4: The typical cases c) and d) in Figure 3.2 of the intersection of A(t)
and S2,p(r) are shown in case of particular t > 0 and p = 3.

In the case c) in Figure 3.2, the point (t, t) is inside of or on the p-circle with
p-radius r, i.e. r ≥ |(t, t)|p = p

√
2t or r ∈ [ p

√
2t,∞). We denote the intersection

points of S2,p(r) and ∂A(t) by A = (x, t) and B = (t, x) with x < 0. The
rays starting in the origin and passing through the points A or B build angles
of the same magnitude β with the negative x- and the negative y-coordinate
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axes, respectively. The points A = (x, t) and B = (t, x) with x < 0 satisfy the
equation rp = |(x, t)|pp, hence x = − p

√
rp − tp. It follows that

tan (β) =
|t|
|x|

=
t

p
√
rp − |t|p

and β = β (r, t) = arctan

(
t

p
√
rp − |t|p

)
.

Consequently,

Pol∗p
−1 ([r−1A(t)

]
∩ S2,p

)
=

[
π − β,

3π

2
+ β

]
,

and the value of the ipf of the set A(t) at the point r is Gp

(
π − β, 3π

2 + β
)
.

Analogously, the case shown in Figure 3.4b and corresponding to the typical
case d) in Figure 3.2 arises if t ≤ r < |(t, t)|p = p

√
2t, i.e. r ∈ [t, p

√
2t). The

angle β is defined in the same way as in Figure 3.4a. The angle γ has the same
magnitude as the length of the interval

[
β′, π

2 − β′] = [π2 − β, β
]
. Thus,

Pol∗p
−1 ([r−1A(t)

]
∩ S2,p

)
=

[
π − β,

3π

2
+ β

]
∪
[π
2
− β, β

]
,

and the ipf is

Gp

(
π − β,

3π

2
+ β

)
+Gp

(π
2
− β, β

)
.

In the last case, which corresponds to the typical case e) in Figure 3.2,
the p-circle with p-radius r belongs completely to the set A(t). Thus, the ipf
equals 1. Finally, notice that α (r, t) = β (r, t). ⊓⊔

Figure 3.5 shows the cdf FM,gp,p for different values of p, according to
Theorem 1.
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Fig. 3.5: The cdf FM,gp,p is visualized for several values of p.
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Corollary 1 If t < 0, then the pdf fM,g,p of M(X) is

fM,g,p(t) =
1

2π(p)I2,g,p

∞∫
− p√2t

rg(rp)β
(
N−2

p

(
3π
2 − α

)
+N−2

p (π + α)
)
dr,

and if t > 0, then

fM,g,p(t) =
1

2π(p)I2,g,p

[
∞∫
t

rg(rp)β
(
N−2

p

(
3π
2 + α

)
+N−2

p (π − α)
)
dr

+

p√2t∫
t

rg(rp)β
(
N−2

p (α) +N−2
p

(
π
2 − α

))
dr

]

where α = α (r, t) = arctan

(
|t|

p
√

rp−|t|p

)
and

β = β (r, t) =
(rp − |t|p)

1
p + |t|p · (rp − |t|p)−

p−1
p

(rp − |t|p)
2
p + t2

.

Proof Let t < 0 and put

P (r, t) = rg(rp)Gp

(
π + α,

3π

2
− α

)
=

1

2π(p)
rg(rp)

3π
2 −α∫

π+α

dφ

N2
p (φ)

.

Making use of the Leibniz integral rule, it follows for fM,g,p(t) = F ′
M,g,p(t)

that

fM,g,p(t) =
1

2π(p)I2,g,p

 ∞∫
− p√2t

∂

∂t
P (r, t) dr −

(
− p
√
2
)
· P
(
− p
√
2t, t

)
where, because of α

(
− p
√
2t, t

)
= π

4 ,

P
(
− p
√
2t, t

)
=

1

2π(p)

(
− p
√
2t
)
· g (2(−t)p) ·

5
4π∫

5
4π

dφ

N2
p (φ)

= 0.

Using the Leibniz integral rule again, we get

∂

∂t
P (r, t) =

1

2π(p)
rg(rp)β

(
N−2

p

(
3π

2
− α

)
+N−2

p (π + α)

)
,

where β = β (r, t) = − ∂
∂tα (r, t) is the partial derivative of α w.r.t. t. This

proves the first part of Corollary 1. The second part t > 0 follows by analogous
considerations. ⊓⊔
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Fig. 3.6: The pdf fM,gp,p of the maximum statistic is shown for several values
of p.

Figure 3.6 shows the pdf fM,gp,p for different values of p, according to
Corollary 1.

Remark 1 In an analogous way as in the proof of Theorem 1, the cdf of M(X)
can be determined specifically for the cases of p ∈ {1, 2}. This way, one gets

FM,g,1 (t) =
1

I2,g,1



∞∫
−2t

(
r
4 + t

2

)
g(r) dr , t ≤ 0

1
4I2,g,1 + 3

4

t∫
0

rg(r) dr

+ 1
4

2t∫
t

(4t− r) g(r) dr + 1
2

∞∫
2t

tg(r) dr

, t > 0

and

FM,g,2 (t) =
1

I2,g,2



∞∫
−
√
2t

(
1
4 + α

π

)
rg(r2) dr , t ≤ 0

1
4I2,g,2 + 3

4

t∫
0

rg(r2) dr

+ 1
2π

√
2t∫
t

(
4β − π

2

)
rg(r2) dr

+ 1
π

∞∫
√
2t

βrg(r2) dr

, t > 0

with α = α (r, t) = arcsin
(

|t|
r

)
while, on the other hand, one gets slightly

different formulae by just specializing the result of Theorem 1 for p = 1 and
p = 2, respectively. Using suitable trigonometric identities, it can be shown,
however, that after some transformations these representations coincide with
those given above.
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Let Fm,g,p and fm,g,p denote the cdf and the pdf of the minimum statistic
m(X), i.e. m(X) = min {X1, X2}, where X = (X1, X2) ∼ Φg,p with arbitrary
dgf g and parameter p > 0.

Corollary 2 The cdf Fm,g,p and the pdf fm,g,p of m(X) satisfy the represen-
tations Fm,g,p(t) = 1 − FM,g,p(−t) and fm,g,p(t) = fM,g,p(−t) for all t ∈ R.

Proof By using the l2,p-symmetry of the distribution of X and continuity of
X, one gets

Fm,g,p(t) = 1− P (min {X1, X2} ≥ t)

= 1− P (max {X1, X2} ≤ −t) = 1− FM,g,p(−t).

The second statement follows by taking the derivative of Fm,g,p with the help
of the chain rule. ⊓⊔

In particular, the pdf of m(X) is the mirror image of the pdf of M(X) in
the mirror line t = 0, see Figure 3.7 and cf. Figure 3.6. Hence, the cdf Fm,g,p of
m(X) is the point reflection of the cdf FM,g,p of M(X) w.r.t. the point

(
0, 1

2

)
.
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Fig. 3.7: The pdf fm,gp,p of the minimum statistic is illustrated for several
values of p.

At the end of this section, we basically present a numerical demonstra-
tion for that our calculations are correct. In Figures 3.8 and 3.9, we compare
the exact cdf’s and pdf’s of M(X) with their simulations which are based
upon samples of different sizes. Originally, all simulations were done for the
power-exponential distribution with different values of the parameter p, p > 0,
using the R-module ’pgnorm’ which has arisen from Kalke and Richter (2013).
However, on this very elementary level of visual inspection, there were no re-
markable differences between all figures made for different values of p, p > 0.
That is why we restrict our visualization of effects of the simulation sample
size n here to the Gaussian case.
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(b) n = 100
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(c) n = 103
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(d) n = 104

Fig. 3.8: For increasing sample sizes n, the simulated cdf F (t) = F̂M,g2,2(t) of
the maximum statistic M(X) from a Gaussian sample approaches the exact
cdf which is shown by a dashed line.

It may be a very rough first conclusion from these particular simulation
results in the integral and the local cases, i.e. for the cdf and the pdf, to formu-
late the impressions that quite large sample sizes are needed for approximating
an exact distribution or density by simulation and, in particular, that local
comparison studies of the present type need in some sense a ten times bigger
sample size than integral ones.

4 Products

In this section, we derive representations of the cdf and the pdf of the product
statistic P (X) = X1 · X2, where X = (X1, X2) ∼ Φg,p with arbitrary dgf g
and parameter p > 0. The special cases p = 1 and p = 2 were considered in
Kalke et al (2013) and some of the references cited therein. The statistic P
generates the sublevel sets

A(t) =
{
(x1, x2) ∈ R2 : x1x2 < t

}
, t ∈ R,
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(d) n = 105

Fig. 3.9: The simulated pdf f(t) = f̂M,g2,2(t) of M(X) in case of a Gaussian
sample, displayed by a histogram plot of relative frequencies, approaches the
exact pdf for inceasing sample sizes n.

Fig. 4.1: The sublevel set A(t) generated by the product statistic is shown for
a negative value of t (on the left side) and a positive value of t (on the right
side).

see Figure 4.1. Let us denote the cdf of P (X) by FP,g,p.
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Theorem 2 The cdf of P (X) satisfies the representation

FP,g,p(t) =


2

I2,g,p

∞∫
p√2
√

|t|

Gp

(
π − α, π

2 + α
)
rg(rp) dr if t ≤ 0

1− 2
I2,g,p

∞∫
p√2

√
t

Gp

(
π − α, π

2 + α
)
rg(rp) dr if t > 0

,

where

α = α (r, t) = arccos


p

√
1
2 −

√
1
4 −

(
|t|
r2

)p
∣∣∣∣∣∣
 p

√
1
2 −

√
1
4 −

(
|t|
r2

)p
, p

√
1
2 +

√
1
4 −

(
|t|
r2

)p∣∣∣∣∣∣
2

.

Proof Consider the intersection 1
rA(t) ∩ S2,p. Let P = (x11 , x22) and Q =

(x12 , x21) denote the intersection points of S2,p and the boundary ∂
(
1
rA(t)

)
of 1

rA(t), see Figure 4.2.

Fig. 4.2: The intersections of 1
rA(t) and S2,p are displayed for p = 1, a specific

r > 0 and a particular t ≤ 0 (left side) as well as a particular t > 0 (right
side).

The solutions of the corresponding equation system x1x2 = t
r2 and |x1|p+

|x2|p = 1 are for i = 1, 2

xi1 =
p

√√√√1

2
−

√
1

4
−
(
|t|
r2

)p

and xi2 =
p

√√√√1

2
+

√
1

4
−
(
|t|
r2

)p

.
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Furthermore, 1
rA(t) ∩ S2,p is the empty set if r ≤ p

√
2
√

|t|. The angles α1 and
α2, see Figure 4.2, satisfy the equations

α1 = arccos
(xi1

d

)
and α2 = arccos

(xi2

s

)
,

where d = |(x11 , x22)|2 = |(x12 , x21)|2 = s, and α1 + α2 = π
2 . As 1

rA(t) ∩ S2,p

in the case t ≤ 0 is the reflection on the ordinate axis of 1
rA(t)∩S2,p from the

case t > 0 , the angles of interest have the same magnitudes in both cases.
Analogously to the proof of Theorem 1,

Pol∗−1
p

([
r−1A(t)

]
∩ S2,p

)
= [π − α1,

π

2
+ α1] ∪ [2π − α1,

3π

2
+ α1]

if t ≤ 0 and

Pol∗−1
p

([
r−1A(t)

]
∩ S2,p

)
= [0, 2π] \ ([α2, α1] ∪ [π + α2, π + α1])

if t > 0. Hence, if t ≤ 0, the ipf is

Fp (A(t), r) = Gp

(
π − α1,

π

2
+ α1

)
+Gp

(
2π − α1,

3π

2
+ α1

)
which coincides for symmetry reasons with

2Gp

(
π − α1,

π

2
+ α1

)
=

1

π(p)

π
2 +α1∫

π−α1

dφ

N2
p (φ)

.

If t > 0,

Fp(A(t), r) = 1− 1

π(p)

α1∫
α2

dφ

N2
p (φ)

= 1− 2Gp (α2, α1)

= 1− 2Gp

(π
2
− α1, α1

)
= 1− 2Gp

(
π − α1,

π

2
+ α1

)
,

since N−2
p

(
π
2 + φ

)
= N−2

p (φ). ⊓⊔

Figure 4.3 shows the cdf FP,gp,p for different values of p.

Corollary 3 The value of the pdf fP,g,p of P (X) at the point t ∈ R\ {0} is

fP,g,p(t) =
1

I2,g,p · π(p)

∞∫
p√2
√

|t|

rg(rp)β
(
N−2

p

(π
2
+ α

)
+N−2

p (π − α)
)
dr,
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Fig. 4.3: The cdf FP,gp,p of the product statistic is shown for several values of
p.

where α = α (r, t) = arccos

 p

√
1
2−

√
1
4−(

|t|
r2
)
p√(

1
2−

√
1
4−(

|t|
r2
)
p
) 2

p
+

(
1
2+

√
1
4−(

|t|
r2
)
p
) 2

p

, and

β = β (r, t) =

(
r2
√
1− 4

(
|t|
r2

)p)−1

((
1
2 − 1

2

√
1− 4

(
|t|
r2

)p) 2
p

+

(
1
2 + 1

2

√
1− 4

(
|t|
r2

)p) 2
p

) .

Proof Let t < 0 and put

P (r, t) = rg(rp)

π
2 +α∫

π−α

dφ

N2
p (φ)

.

Using the Leibniz integral rule, it follows

fP,g,p(t) =
1

I2,g,p · π(p)

 ∞∫
p√2

√
−t

d

dt
P (r, t) dr −

(
− p
√
2

2
√
−t

)
P
(

p
√
2
√
−t, t

) .

With α
(

p
√
2
√
−t, t

)
= π

4 , we have

P
(

p
√
2
√
−t, t

)
=

p
√
2
√
−tg

(
2(−t)

p
2

) 3π
4∫

3π
4

dφ

N2
p (φ)

= 0.
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Making use of the Leibniz integral rule again, we receive

∂

∂t
P (r, t) = rg(rp)β

(
N−2

p

(π
2
+ α

)
+N−2

p (π − α)
)

,

where β = β (r, t) = ∂
∂tα (r, t) is the partial derivative of α w.r.t. t. This

proves the first part of Corollary 3. In an analogous manner, case t > 0 has
been considered. ⊓⊔

Figure 4.4 shows the pdf fP,gp,p for several values of p.
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Fig. 4.4: The pdf fP,gp,p of the product statistic P of a two-dimensional p-
generalized normally distributed random vector is plotted for several values of
p.

Similarly as in Remark 1, the cdfs and pdfs of P (X) resulting from spe-
cializing Theorem 2 and Corollary 3 in the cases p = 1 and p = 2 can be trans-
formed into the corresponding representations given in Kalke et al (2013) by
using some trigonometric identities. Analogous statements hold for the cdf and
the pdf of the ratio statistic R(X) and are given in Theorem 3 and Corollary
4 below.

For the same reasons as at the end of Section 3, we restrict our visualization
to the Gaussian case. Furthermore, only the sample sizes n = 100 in case of
cdf and n = 103 in case of pdf will be considered (see Figures 4.5a and 4.5b),
since all the figures for other sample sizes n reflect similar effects as at the end
of Section 3. For corresponding illustrations for the ratio, see Figures 5.5a and
5.5b.

5 Ratios

In this section, we derive representations of the cdf and the pdf of the ratio
statistic R, i.e. of R(X) = X1

X2
, where X = (X1, X2) ∼ Φg,p with arbitrary dgf

g and parameter p > 0. The special cases p = 1 and p = 2 were considered in
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(a) The simulated cdf F (t) = F̂P,g2,2(t) of
P (X) and exact cdf of P (X) for a Gaussian
sample of size n = 102 are displayed and re-
flect the correctness of our results numeri-
cally.
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(b) The simulated pdf f(t) = f̂P,g2,2(t) of
P (X) for a Gaussian sample of size n = 103

is close to the exact one.

Fig. 4.5

Kalke et al (2013) and some of the references cited therein. Further, it is shown
in Szablowski (1998) that ratios of l2,p-symmetric random variables follow a
p-generalized Cauchy distribution. We consider the sublevel sets

A(t) =

{
(x1, x2) ∈ R2 :

x1

x2
< t

}
, t ∈ R,

which are generated by the statistic R, see Figure 5.1.

Fig. 5.1: In the case of the ratio, if t ≤ 0, the sublevel set A(t) and, if t > 0,
its complement are double cones with vertex in the origin.

Let us denote the cdf of R(X) by FR,p.

Theorem 3 The cdf of R(X) satisfies the representation

FR,p(t) =
1

π(p)

π∫
π
2 −arctan t

dφ

N2
p (φ)

= 2Gp

(π
2
− arctan t, π

)
, t ∈ R.
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Proof Because of A(t) = 1
rA(t), r > 0, A(t) is a double cone with vertex in

the origin. Hence, the quantity

ALp,q

(
r−1 [A(t) ∩ S2,p(r)]

)
does not depend on the radius variable r. Therefore,

FR,p(t) = Φg,p(A(t)) = Fp(A(t), 1).

In particular, the cdf is independent of the dgf g.
We consider A(t)∩S2,p, see Figure 5.2. Since the set A(t)∩S2,p is centrally

symmetric w.r.t. the origin, in both cases t ≤ 0 and t > 0 it is enough to
determine one of the two intersection points of the line x2 = x1

t with the
l2,p-unit circle S2,p:

P1 =

(
t

(1 + |t|p)1/p
,

1

(1 + |t|p)1/p

)
and P2 =

(
−t

(1 + |t|p)1/p
,

1

(1 + |t|p)1/p

)
.

(a) t ≤ 0 (b) t > 0

Fig. 5.2: The intersection of A(t) and S2,p is visualized for p = 1
2 and a

particular t ≤ 0 as well as a particular t > 0.

The ray starting in the origin and passing through the point P1 builds an
angle of the magnitude α with the x2-coordinate axis. The magnitude of the
angle, which is built by the ray starting in the origin and passing through
the point P2 with the negative x1-coordinate axis, is π

2 − α and it holds α =
arctan (|t|). Analogously to the proof of Theorem 1, it follows

Pol∗−1
p (A(t) ∩ S2,p) =

{[
π
2 + α, π

]
∪
[
3π
2 + α, 2π

]
, if t ≤ 0[

π
2 − α, π

]
∪
[
3π
2 − α, 2π

]
, if t > 0

.
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From arctan (−t) = − arctan (t) it follows

Pol⋆p
−1 (A(t) ∩ S2,p) =

[π
2
− arctan t, π

]
∪
[
3π

2
− arctan t, 2π

]
.

Hence,

FR,p(t) =
1

2π(p)

 π∫
π
2 −arctan t

dφ

N2
p (φ)

+

2π∫
3π
2 −arctan t

dφ

N2
p (φ)


= Gp

(π
2
− arctan t, π

)
+Gp

(
3π

2
− arctan t, 2π

)
.

Because of the π-periodicity of the absolute values of the trigonometric func-
tions, the function Np is also π-periodic. ⊓⊔

Corollary 4 The pdf fR,p of R(X) is

fR,p(t) =
1

π(p)
(1 + |t|p)−2/p , t ∈ R,

i.e. R(X) is p-generalized Cauchy distributed.

Proof It follows from Theorem 3 that

fR,p(t) =
1

π(p)
(−1)(N2

p

(
π
2 − arctan (t)

)
)−1(−1)

1

1 + t2

=
1

π(p)

(∣∣∣∣ 1√
1 + t2

∣∣∣∣p + ( |t|√
1 + t2

)p)−2/p
1

1 + t2

=
1

π(p)
(1 + |t|p)−2/p.

⊓⊔

Figures 5.3 and 5.4 show the cdf FR,p and the pdf fR,p for different values
of p, respectively.

6 Application to failure rates

In this section, we deal with failure rates of the extreme value statistics. The
IFR property was generally studied in Glaser (1980) and for the special cases
of the minimum and maximum statistics of a multivariate normal distribution
e.g. in Gupta and Gupta (2001). For the case p = 1, this result was proved
recently in Nekoukhou and Alamatsaz (2012). In Batún-Cutz et al (2013), it
was asked whether or not the IFR property of the extreme value statistics
may also be verified in the case of a general l2,p-symmetric vector distribution.
Here, we are going to answer this question to a certain extent.
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Fig. 5.3: The cdf FR,p of the p-generalized Chauchy distribution is shown for
several values of p.
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Fig. 5.4: A plot of the pdf fR,p of p-generalized Chauchy distribution is shown
for several values of p.

A statistic T with cdf FT (t) and pdf fT (t) is said to possess an IFR-
distribution if the failure rate

λT (t) =
fT (t)

1− FT (t)
, t ∈ R,

is a monotonically increasing function. Equivalently, the cdf FT (t) has IFR iff
ln (1− FT (t)) is a concave function. Because of

d2

dt2
ln (1− FT (t)) = −f ′

T (t) (1− FT (t)) + (fT (t))
2

(1− FT (t))
2 ,
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(a) The illustrations of the simulated cdf

F (t) = F̂R,g2,2(t) of R(X) and exact cdf of
R(X) for a Gaussian sample of size n = 102

verify the accuracy of our results numeri-
cally.
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(b) Simulated pdf of the p-generalized
Cauchy distribution is calculated after a
simulation of the pdf f(t) = f̂R,g2,2(t) of
R(X) for a Gaussian sample of size n =
103, and compared with the exact pdf of a
p-generalized Cauchy random variable.

Fig. 5.5

FT (t) has IFR iff for all t ∈ R

f ′
T (t) (1− FT (t)) + (fT (t))

2 ≥ 0. (6.1)

Theorem 4 If p ≥ 1, then the maximum statistic M(X) of a bivariate p-
power exponentially distributed random vector X satisfies the IFR-property.

Proof According to Batún-Cutz et al (2013), the pdf of M(X) given in Corol-
lary 1 can be transformed into the representation

fM,gp,p(t) = 2ϕp(t)Φp(t), t ∈ R,

where ϕp(t) = Cpe
− |t|p

p is the pdf and Φp(t) =
t∫

−∞
ϕp(s) ds is the cdf of a

p-power exponential distribution and Cp = p
1− 1

p

2Γ( 1
p )

is the corresponding nor-

malizing constant. If t < 0, then

f ′
M,gp,p(t) = 2ϕp(t)[Φp(t) · (−t)

p−1
+ ϕp(t)] ≥ 0,

for arbitrary p > 0. Hence, (6.1) is fulfilled. From now on, let t > 0. Then,

f ′
M,gp,p(t) = 2ϕp(t)[ϕp(t)− tp−1Φp(t)]

and, therefore, (6.1) is satisfied iff I1(t) ≥ 0 where

I1(t) = tp−1Φp(t)[Φ
2
p(t)− 1] + ϕp(t)[1 + Φ2

p(t)].
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Note that

lim
t→0+

I1(t) =
5

4
Cp =

5p
p−1
p

8Γ
(

1
p

)
iff p ≥ 1. Hence, limt→0+ I1(t) > 0 if p ≥ 1. It remains to prove that there is
no t > 0 such that I1(t) = 0. Put

JlS(t) =
ϕp(t)

tp−1
and JrS(t) =

Φp(t)[1− Φ2
p(t)]

1 + Φ2
p(t)

.

Now we have to show that JlS(t) ̸= JrS(t) for all t > 0. By partial integration,

1− Φp(t) = JlS(t) + Cp(1− p)

∞∫
t

z−pe−
zp

p dz,

hence,

JrS(t)− JlS(t) = (1− Φp(t))

(
1− 1− Φp(t)

1 + Φ2
p(t)

)
− JlS(t)

< (1− Φp(t))− JlS(t) = Cp(1− p)

∞∫
t

z−pe−
zp

p dz ≤ 0

if p ≥ 1. Therefore, it follows

f ′
M,gp,p(t)

(
1− FM,gp,p(t)

)
+
(
fM,gp,p(t)

)2
> 0

for all t ∈ (0,∞) and p ≥ 1 and the IFR-property is proven if p ≥ 1. ⊓⊔

In case of p ∈ (0, 1), we just refer to Figure 6.1 and point out that, in
general, the maximum statistic has neither a monotonically increasing nor a
monotonically decreasing failure rate for all positive arguments.
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Fig. 6.1: The failure rates of the maximum statistic of a bivariate p-power
exponentially distributed random vector are shown for several values of p. (M)
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Corollary 5 If p ≥ 1, then the minimum statistic m(X) of a bivariate p-
power exponentially distributed random vector X satisfies the IFR-property.

Proof According to Glaser (1980), a statistic T satisfies the IFR-property iff

η′T (t) > 0 for all t ∈ R, where ηT (t) = − f ′
T (t)

fT (t) . Therefore, η
′
M (t) > 0 for all

t ∈ R and p ≥ 1. Because of

ηm(t) = −
f ′
m,gp,p(t)

fm,gp,p(t)
=

f ′
M,gp,p

(−t)

fM,gp,p(−t)
= −ηM (−t),

it is

η′m(t) =
d

dt
(−ηM (−t)) = η′M (−t) > 0 ∀t ∈ R ∀p ≥ 1.

Hence, the minimum statistic m has the IFR-property if p ≥ 1. ⊓⊔

7 Conclusion

In this paper, we demonstrate how a geometric method of deriving exact distri-
butions of functions of random vectors, which follow an l2,p-symmetric distri-
bution with an arbitrary density generating funktion g, works. This method is
used to obtain the cumulative distribution function of the maximum, min-
imum, and product statistic of l2,p-symmetrically distributed populations.
To give another example of application, the known fact that ratios of l2,p-
symmetrically distributed random variables follow a p-generalized Cauchy dis-
tribution, is proved that way. Furthermore, the probability density functions
are determined in all cases and all results are numerically checked by a simu-
lation for power-exponentially distributed populations. Finally, the increasing
failure rate property is considered for extreme value statistics.
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Anderson T (1984) An introduction to multivariate statistical analysis, 2nd
edn. Wiley, New York

Arellano-Valle R, Genton M (2008) On the exact distribution of the max-
imum of absolutely continuous dependent random variables. Stat Probab
Lett 78:27–35

Arellano-Valle R, Richter WD (2012) On skewed continuous ln,p-symmetric
distributions. Chil J Stat 3(2):193–212

Arnold B, Brockett P (1992) On distributions whose component ratios are
cauchy. Am Stat 46(1):25–26



Exact distributions 29

Balkema A, Embrechts P (2007) High risk scenarios and extremes: a geometric
approach. European Mathematical Society Publishing House, Seminar for
Applied Mathematics, Zürich
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Moszyńska M, Richter WD (2012) Reverse triangle inequality. anti-
norms and semi-antinorms. Stud Sci Math Hung 49(1):120–138, DOI
10.1556/SScMath.49.2012.1.1192

Nadarajah S (2005a) On the product and ratio of laplace and bessel random
variables. J Appl Math 4:393–402

Nadarajah S (2005b) Sums, products, and ratios of non-central beta variables.
Commun Stat, Theory Methods 34:89–100



30 Klaus Müller, Wolf-Dieter Richter

Nadarajah S, Gupta A (2005) On the product and ratio for the elliptically
symmetric pearson type vii distribution. Random Oper and Stoch Equ
13(2):139–146

Nadarajah S, Kotz S (2005) Linear combinations, products and ratios of t
random variables. Allg Stat Arch 89(3):263–280

Nekoukhou V, Alamatsaz M (2012) A family of skew-symmetric laplace dis-
tributions. Stat Papers 53:685–696, DOI 10.1007/s00362-011-0372-7

Press S (1969) The t-ratio distribution. J Am Stat Assoc 64:242–252
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