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Abstract

Geometric measure and stochastic representations are derived for distributions of
random vectors in R2 which result to be symmetric, when suitably shifted, according
to an arbitrary norm. Integral representations of norm-disc circle numbers are
also introduced by studying the normalizing constants of given density generating
functions, allowing to model heavy and light distribution tails. Cavalieri’s and
Torricelli’s method of indivisibles is sharpened and extended. Various examples
are presented with emphasis on regularly varying vectors. Independent coordinate
representations are proved as well as a thin layers property.

Keywords: Uniform basis, generalized uniform distribution, geometric measure representation,

non-Euclidean arc-length, stochastic representation, log-concave density, regularly varying vec-

tor, spectral measure, tail index

AMS Mathematics Classification: 60E05, 60D05 (primary), 28A50, 28A75, 51F99 (secondary)

1 Introduction

In probability theory and in mathematical statistic, different research areas call for con-
sidering a great variety of geometric objects and for reflecting their essential properties in
suitable probabilistic models. Just to mention two specific directions of such studies, we
refer to data depth analysis and meta density analysis. Data depth analysis finds its roots
already in [81]. A well illustrated insight into the nowadays used methods is given, e.g.,
in [44], where the diversity of geometric objects of interest is pinpointed. Meta density
analysis started with asymptotic distributional studies of multivariate extremes and their
geometry, e.g. in [4].

In the present paper, we focus our attention on geometric objects such as balls or
discs, generated by norms on R2, and study probability distributions that reflect norm
contours on their density level sets. Another question faced in the mentioned papers, and
many others, is whether distribution tails are heavy or light. Several examples of both
types are surveyed, e.g., in [19] and [35].

Norms corresponding to ellipsoids centered at the origin are basic in dealing with the
popular class of elliptically contoured distributions which have been extensively studied
since 1938 in [75], an then [36], [11], [33], [2],[20] and [19]. Note that modeling and
estimating by using elements of the class of logarithmic-concave densities is dealt with,
e.g., in [82] and [1], respectively. We refer to [29],[41], [30] and [16] for regularly varying
distributions, a specific class of heavy tailed distributions.
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The aim of this contribution is to introduce and to describe the family of norm con-
toured distributions in R2 (which are naturally often dealing even with the more general
finite dimensional case) on the one hand and on the other to give a survey of papers
which may be considered the most influential in this field. Special emphasis will be on
geometric and stochastic representations which have been discussed in the past by the au-
thor for several subclasses and specific cases. The geometric measure representations are
essentially based upon the norm-circle intersection proportion function (ipf) of a given
set which is defined in terms of certain non-Euclidean arc-lengths. The choice of the
suitable non-Euclidean geometry will be made in accordance with Theorem 2.11 and the
rotated gradient condition (2.34) in [62]. Because this condition is actually available only
in dimension two, the discussion is restricted to this case throughout the paper. Note
that the differential geometric approach in [62] is closely connected with the perspective
discussed in [10].

Let ‖.‖ denote any norm on R2. Imagine that the level sets of the norm are best adopted
in some sense to a suitably centered cloud of points coming from a two-dimensional data
set of a large sample size. The set K = {x ∈ R2 : ‖x‖ ≤ 1} will be called the unit disc
and its boundary C = ∂K = K̄ \Ko the unit circle with respect to ‖.‖. Because any norm
is positively homogeneous of degree one, for r > 0 we have rK = {rx : x ∈ K} = {x ∈
R2 : ‖x‖ ≤ r} where rx denotes componentwise scalar multiplication. That’s why we call
r the norm-radius of the disc K(r) = rK and C(r) = ∂K(r) the circle of the same radius.

The aim of this paper is to study probability laws whose geometric form of mass
concentration is suitably described by any norm and which allows us modeling heavy
and light distribution tails at the same time. We will derive both geometric measure
representations of those distributions and stochastic representations of the correspond-
ing random vectors. For a general introduction into the basic theoretical material of
geometric measures, we refer to [21], [15], [43], [74] and [38]. Specific norm contoured
distributions have been studied in [77], [24], [47], [79], [46], [73], [53], [48], [22], [25], [76]
and [78]. For a new type of geometric representation of the heteroscedastic normal and of
the homoscedastic ln,p-symmetric distributions in the spirit of the present paper we refer
to [63], [65] and [61], respectively. The specific case p = 1 was dealt with in [27] and
consequences were drawn in [3] for the much more general case of skewed ln,p-symmetric
distributions.

The paper is organized as follows. Section 2 deals with densities having level sets that
are circles w.r.t. any norm. Such density is defined choosing first a density generating
function (dgf) and then determining a suitable normalizing constant. In Section 3, we
derive geometric representations for the corresponding probability distributions which
essentially rely on non-Euclidean or Minkowski arc-length measures. In order to keep
the probabilistic thread of the paper, the differential geometric approach to arc-length
measures is discussed in Appendix A. Moreover, a wide variety of applications of both
Euclidean and non-Euclidean geometric measure representations are surveyed in Section
3. Section 3 presents also stochastic representations of random vectors following a norm
contoured density. The general distribution class will be considered in Section 4. Section
5 deals with examples of dgf’s but also defined in a different way. In Appendix C we
discuss the normalizing constants, which are closely connected with Minkowski space
circle numbers, i.e. with circle numbers of discs w.r.t. arbitrary norms. In Sections 6
and 7, an independent coordinate representation is given based upon non-Euclidean polar
coordinates and certain thin layers properties of the Lebesgue measure are proved as well
as for some new distribution laws. Appendix B is not only devoted to the basics of the
generalized geometric indivisibles method, used throughout this note, but goes beyond it.
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2 Continuous distributions

In the present section, we define a density function having the same level sets of a fixed
norm and such that the levels can be thought as well adopted, in some sense, to the
relative frequencies of those sampled points lying in suitable neighborhoods of the norm
levels. To this end we introduce a function g : R+ → R+ such that

0 < I(g) <∞ where I(g) =

∞∫
0

rg(r)dr.

We call g a density generating function (dgf) and

ϕg, ‖.‖(x) = C(g, ‖.‖)g(‖x‖), x ∈ R2

a norm (level set) contoured density, centered at the origin, if C(g, ‖.‖) ∈ (0,∞)
is a suitable normalizing constant. Later, we discuss in details the consequences of this
assumption, i.e., how the constant C(g, ‖.‖) can be computed for any dgf g and any norm
‖.‖.

The corresponding probability distribution on the Borel σ-field B2 in R2 will be denoted
by Φg, ‖.‖ and the class of all such centered continuous norm contoured distributions by
CCNC, i.e.

CCNC = {Φg, ‖.‖ : g is a dgf and ‖.‖ is a norm on R2}.

Remark 1. In the next section, we introduce a geometric disintegration formula for the
measure Φg, ‖.‖ which makes use of an arc-length measure on the Borel σ-field of subsets
of the norm-circle C. From [62], it is well known that, due to the co-area formula [17],
the usual Euclidean arc-length measure is not suitable in general for this purpose. That’s
why we introduce a suitable non-Euclidean arc-length measure, see Appendix A. Note
that according to [10], see also [23], the given norm-circle solves the isoperimetric problem
w.r.t. this arc-length measure.

As final step in constructing a general norm contoured density, we allow orthogonal
transformations and shifting of a random vector, say X, considered so far. To this end,
let O denote any orthogonal 2× 2-matrix and µ any vector of R2. Set Y = OX + µ. The
density of Y is then

ϕ
(
x; g, ‖.‖, O, µ

)
= ϕg,‖.‖

(
O−1(x− µ)

)
. (1)

Let us denote by CNC the class of all such continuous norm contoured distributions, that
is CNC = {Φg,‖.‖,O,µ} for short.

Note that any density from this class may be generated starting from different norms
because any orthogonally transformed norm-disc is a norm-disc itself. Moreover, for
Gaussian distributions, in [13] different consequences are discussed depending if O is
any regular matrix or just orthogonal. The more general class CNC of centered norm
contoured distributions and the class NC of just norm contoured distributions will be
considered in Section 4.

3 Geometric and stochastic representations

In this section, we consider geometric and stochastic representations of continuous norm
contoured distributions and random vectors having such distributions, respectively.
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The classical principle of Cavalieri states that two regions R1 and R2, located between
two parallel lines l1, l2 in the plane R2, have equal area content if the intersections (”indi-
visibles”) l∩R1 and l∩R2 have the same lengths for arbitrary lines l parallel to l1. Using
in a similar way arc-lengths of intersections of the regions with concentric circles, instead
of parallel lines, may be referred to as a Torricelli modification of Cavalieri’s method.

By sharpening these principles, our intention is to prove that, under certain conditions,
integration of those arc-lengths of indivisibles is equivalent to the determination of the area
contents of the identified regions. Extensions of these principles include the use of non-
Euclidean arc-lengths measures and the introduction of additional functions, assigning to
every indivisible an own weight.

Taking into account both of these two aspects of geometric integration, the ipf of a
Borel set has been proved in [55] and a subsequent series of papers of the author and
several co-authors results to be a very useful tool for analyzing a variety of problems
from probability theory to mathematical statistics. The introduction of this function
is also closely connected with generalizations of the circle number π. The ipf of the
Gaussian distribution law has been faced in [55] whereas spherical, asymmetric l+n,1-, ln,p-
symmetric and elliptically contoured distributions are studied in [57],[27],[59], [61], and
in [65], respectively.

According to [62], the norm-circle ipf of a set is defined as

F‖.‖(A, r) =
ALB([1

r
A] ∩ C)

ALB(C)
, r > 0

where the non-Euclidean arc-length measure ALB is defined in Appendix A. The function
ωC : B2 ∩ C → [0, 1] defined by

ωC(A) =
ALB(A)

ALB(C)

will be called the Minkowski space (R2, ‖.‖B) uniform distribution on C.
The reader, interested in the genesis of the notion of ipf, might additionally have a

look into [54] and [6] where, when reading afterwards, one can feel already the naturalness
of introducing this notion in subsequent research.

Next, we mention some alternative possibilities to represent the Minkowski space uni-
form distributions. To this end, let

CPC(M) =

{
x ∈ R2 :

x

‖x‖
∈M

}
, M ∈ B2 ∩ C,

be the central projection cone generated by the set M , and

sector(M,%) = CPC(M) ∩K(%) = [0, %] ·M

its intersection with the norm-disc of norm-radius %. Moreover, let us recall that the unit
norm-circle C uniquely defines a function RC : [0, 2π)→ R+ by assuming

C = {RC(ϕ) · (cosϕ, sinϕ), ϕ ∈ [0, 2π)}.

Finally, let PolK denote the generalized polar coordinate transformation defined in [62],
Pol∗K its restriction to generalized radius 1, λ the Lebesgue measure, or Euclidean area
content measure on B2, and π(K) the generalized circle number defined in (8), see Ap-
pendix B.
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Theorem 1. For all A ∈ B2 ∩C, the Minkowski space (R2, ‖.‖B) uniform distribution on
C satisfies the following representations:

(a) the angular integral representation

ωC(A) =
1

π(K)

∫
Pol∗−1

K (A)

R2
C(ϕ)dϕ,

(b) the sector measure representation

ωC(A) =
λ(sector(A, 1))

λ(K)
,

(c) the centered norm contoured cone measure representation

ωC(A) = Φg,||.|| (CPC(A)) , for any dgf g.

Proof. The first assertion is a consequence of the proof of Lemma 1 in Appendix B,
because ALB coincides with UC defined in (6), Appendix A. The second representation
follows from the identities ALB(A) = 2λ(sector(A, 1)) and ALB(C) = 2λ(K). For the
last representation, observe that,

F‖.‖ (CPC(A), r) =
ALB

(
[1
r
· CPC(A)] ∩ C

)
ALB(C)

=
ALB(A)

ALB(C)
= ωC(A), for all r > 0.

Hence, for arbitrary dgf g,

Φg, ‖.‖ (CPC(A)) = 2π(K)C (g, ‖.‖)
∞∫

0

r g(r)F‖.‖ (CPC(A), r) dr

= ωC(A) 2π(K)C(g, ‖.‖) I(g) = ωC(A).

Theorem 2. For arbitrary norm ‖.‖ and arbitrary dgf g, centered continuous norm con-
toured distributions allow the non-Euclidean indivisibles representation, or geometric dis-
integration formula, that is

Φg,‖.‖(A) = 2π(K)C (g, ‖.‖)
∞∫

0

r g(r)F‖.‖(A, r)dr.

Proof. By definition and by using generalized polar coordinate transformation, with r1

and r2 suitably chosen in [0,∞) we have

Φg, ‖.‖(A) =

∫
A

C (g, ‖.‖) g (‖x‖) dx = C (g, ‖.‖)
r2∫
r1

g(r)

∫
Pol∗−1
‖.‖ (A)

r ·R2
C(ϕ)dϕdr.

Because the inner part of this iterated integral equals UC(A ∩ C(r)), it follows

Φg, ‖.‖(A) = 2π(K)C (g, ‖.‖)
r2∫
r1

r g(r)
UC
(
[1
r
A] ∩ C

)
UC (C)

dr.

Finally, formula (7) in Appendix A applies.
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Theorem 2 was proved for the (multivariate) Gaussian, elliptically contoured and ln,p-
symmetric distributions in [55], [57], [65], and [61], respectively. The asymmetric l+n,1-case
has been dealt with in [27].

There is a broad variety of applications of geometric measure representations as intro-
duced in this paper. Just to mention a few of them, we refer to

• the derivation of high precise large deviation asymptotic results in [55], [6], [49], [69]
and in a series of subsequent papers;

• the geometric approach to finite sample and large deviation properties of ANOVA in [71];

• the evaluation of probabilities of the two-dimensional Gaussian law in [70];

• the construction of an exact modified Student test for two-parameter exponential dis-
tribution in [12];

• the generalizations of chi-square, Student and Fisher distributions and statistics in [58],
[59], [61] and [65];

• the asymptotic expansions for large deviations in [8], [69] and [31];

• the approximation of percentiles of noncentral Chi-square, Student- and Fisher distri-
butions in [31];

• the direct description of probabilities of correct classification in [39], and their descrip-
tion using the doubly non-central Fisher distribution in [40];

• the construction of an exact test in nonlinear regression in [58] and [32];

• the derivation of diverse exact distributions in [35] and [45];

• the geometric representations of skewed distributions in [26], [5] and [72];

• the construction of non-concentric elliptically contoured distributions in [67];

• the construction of generalized von Mises densities in [67] and [14];

• the construction of a class of Gaussian distributed random variables in [66].

The derivation of the ipf has been dealt with in several papers for (shifted) cones and
balls, one- and two-sided cones, half spaces and their intersections, as well as other sets.
General systems of sets with a known ipf are dealt with in [58] and subsequently used in
various situations.

Let us recall that the class of centered continuous norm contoured distributions have
been defined assuming that a suitably chosen normalizing constant C(g, ‖.‖) has been
fixed for a given dgf g. We are now in a position to show how this constant generally looks
like.

Remark 2. From Theorem 2 and Φg, ‖.‖(R2) = 1 we have

C(g, ‖.‖) =
1

2π(K)I(g)
. (2)

A possible statistical consequence of (2) might be that one could try to take into account
it’s validity when one estimates the parameters ||.|| and g determining shape and tail
behaviour of a density, respectively.
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We shall discuss in Appendix C how the Minkowski space circle numbers π(K) can be
evaluated in the general case.

Let us recall that Φg,‖.‖,O,µ (A) , A ∈ B2 denotes the norm contoured probability
law corresponding to the density (1).

Corollary 1. Continuous norm contoured probability measures allow the representation

Φg,‖.‖,O,µ (A) = 2π(K)C(g, ‖.‖)
∞∫

0

r g(r)F‖.‖
(
O−1(A− µ), r

)
dr.

The geometric measure representation in Theorem 2 has a counterpart in terms of

random variables which will be stated and proved now. Note that X
d
= Y means that two

random variables X and Y follow the same distribution law, while X ∼ ω indicates that
the random element X follows the probability distribution ω.

Theorem 3. A random vector satisfying (ξ, η)T ∼ Φg, ‖.‖, for an arbitrary dgf g and any
norm ‖.‖, allows the stochastic representation

(ξ, η)T
d
= Rg · (X, Y )T

where Rg and (X, Y )T = UC are independent, UC ∼ ωC and Rg has the density

fRg(t) =
t g(t)

I(g)
I(0,∞)(t).

Proof. With Rg = ‖(ξ, η)T‖ > 0, a.s., let (X, Y )T = 1
Rg

(ξ, η)T . For A ∈ B2 ∩ C, we have

P
(
(X, Y )T ∈ A

)
= P

(
(ξ, η)T ∈ CPC(A)

)
= Φg, ‖.‖ (CPC(A)) .

Then, from the cone measure representation of ωC , it follows UC ∼ ωC . The cumulative
distribution function (cdf) of Rg at the point t, with t > 0, is

P (Rg < t) = P
(
Rg(X, Y )T ∈ tK

)
= Φg, ‖.‖(tK)

= 2 π(K)C(g, ‖.‖)
∞∫

0

r g(r)F‖.‖(tK, r) dr

= 2 π(K)C(g, ‖.‖)
t∫

0

r g(r) dr,

thus the density of Rg allows the representation

d

dt
P (Rg < t) =

t g(t)

I(g)
, t > 0.

Finally, we consider

P (UC ∈ A) · P (Rg < t) = ωC(A)
1

I(g)

t∫
0

r g(r) dr =
1

I(g)

t∫
0

r g(r)F‖.‖ (CPC(A), r) dr

=
1

I(g)

∞∫
0

r g(r)F‖.‖ (sector(A, t), r) dr

= 2 π(K)C(g, ‖.‖)
∞∫

0

r g(r)F‖.‖ (sector(A, t), r) dr

= Φg, ‖.‖ (sector(A, t)) = P (Rg < t, UC ∈ A)
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proving that Rg and UC are independent

For the special cases of spherical and elliptically contoured distributions, this result has
been dealt with on the basis of Euclidean geometry, e.g., in [75],[36], [11], [33],[2],[20], [19]
and on the basis of non-Euclidean geometry in [65]. For typical applications of stochastic
representations of the given type see, e.g., [19], [52], [34] and [13].

Remark 3. The results of this and the previous section can be used for developing
simulation algorithms. For example, if a sample is given of the basis vector UC ∼ ωC , then
we can simulate any vector (ξ, η)T ∼ Φg,‖.‖ just by simulating (or even exact evaluating)
the cdf of Rg. Additionally, next Theorem 4 clarifies how to simulate the angular variable
defined in the transformation PolK . For further information, we refer to [34] where the
Box-Muller method and the Marsaglia-Bray rejecting polar method for the simulation
of the Gaussian distribution are generalized to simulate the p-power exponential (or p-
generalized Gaussian) distribution.

Let us emphasize finally the remarkable fact that the density function fRg does in no
way depend on the underlying norm ‖.‖. Moreover, the stochastic representation derived
in the present section enables us to define a much more general class of norm contoured
distributions which includes the class of continuous distributions as a subclass. This will
be done in the next section.

4 The general distribution class

In the previous section, we have seen that all centered continuous norm contoured dis-
tributed two-dimensional random vectors may be considered as the product of an
univariate non-negative random variable Rg and a Minkowski space (R2, ‖.‖B) uniformly
distributed random vector UC which is independent of Rg. This observation can motivate
the introduction of a more general class of norm contoured distributions. Doing this, we
follow the line in [19], [57], [27] and [61]. We denote by R the set of all nonnegative
random variables defined on the same probability space where Rg and UC are defined.
Let F be any cdf of a non-negative random variable and set

LC(F ) =
{
X : X

d
= R · UC , R ∈ Rwith cdfF, R andUC stochastically independent

}
.

We call LC(F ) the class of random vectors having a centered norm contoured distribution,
taking their values in R2 and with generating variable R having the cdf F . The random
vector UC will be called the uniform basis of this class.

Let us recall that K is a convex body symmetric w.r.t. the origin. Let further O2 be
the set of all orthogonal transformations O : R2 → R2. Then, for any O ∈ O2, OK is a
convex body symmetric w.r.t. the origin and its Minkowski functional 1 ‖.‖O is a norm.
The class N(‖.‖) generated as

N(‖.‖) = {‖.‖O : O ∈ O2} ,

is invariant w.r.t. all orthogonal transformations, and an analogous statement is true for
the class of probability distributions

Φg(‖.‖) =
{

Φg,‖.‖O : O ∈ O2

}
.

1For an introduction and a discussion on the employment of Minkowski functionals in stochastic field,
we refer to [37] and [68], respectively.
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Here, we define
O1Φg,‖.‖O2

= Φg,‖.‖O1O2
, Oi ∈ O2, i ∈ {1,2}.

For every dgf g, we call Φg(‖.‖) a class of centered norm contoured distributions and
denote the collection of all such centered norm contoured distributions CNC. Finally, we
say that a random vector belongs to the class NC of norm contoured distributions if it is
norm contoured distributed after suitably centering it. In case of existence, a density in
this general class may be represented as in (1).

5 Examples

Let us recall that any nonnegative and integrable function on R+ may serve as a dgf.
Thus, in general it is possible to model both heavy and light distribution tails. In this
section, we present some examples of dgf’s which appeal attention in the literature, and
refer additionally to lists of some more examples.

Example 1. Let the dgf be g(r) = I(0,1)(r) then, for an arbitrary norm ‖.‖ on R2, the
density of the norm-radius variable is fR(r) = 2 r I(0,1)(r). Let (ξ, η) be a random vector
being centered norm contoured distributed w.r.t. this norm (and having dgf g). Then
(ξ, η) follows the uniform distribution ωK on the convex body K = {x ∈ R2 : ‖x‖ ≤ 1}.
Let us emphasize that R is not uniformly distributed on the interval (0, 1) but has a
triangular density. Finally, notice that I(g) = 1/2. According to the geometric definition
of the uniform distribution on K, we have

ωK(A) =
λ(A)

λ(K)
, A ∈ K ∩ B2.

For the evaluation of the volume of any convex body, which is needed here, we refer on
the one hand to [50], where the author makes extensively use of methods of the local
theory of Banach spaces for proving inequalities on the volumes of convex bodies in Rn.
Thereby, in particular estimates of generalized Gaussian measures are used to evaluate
certain volumes. On the other hand, we refer to Lemma 1 and Appendix C which present
methods for exactly evaluating λ(K) in the general case.

Example 2. Let the dgf be g(r) = e−r
p/p I(0,∞)(r), with p > 0. Then, for an arbitrary

norm ‖.‖ on R2 the density of the norm-radius variable is

fR(r) =
I(0,∞)(r)

p2/p−1Γ(p/2)
r e−r

p/p.

This means that R follows the χp- or p-generalized χ2-distribution, with two degrees of
freedom (df) defined in [59]. The centered norm contoured random vector (ξ, η) follows
the density function ϕg, ‖.‖(x) = C(g, ‖.‖) e−‖x‖p/p, x ∈ R2, p > 0. This density is the p-
power exponential law if ‖.‖ = |.|p and p ≥ 1 where |(x, y)T |p = (|x|p + |y|p)1/p. The best
known special cases of the power exponential distribution are the Laplace distribution, for

p=1, and the Gaussian distribution, for p = 2. Finally, notice that I(g) = p
2
p
−1Γ(2

p
− 1).

A list of numerous authors who dealt with this distribution class can be found in the
Introduction and in [61].
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Example 3. Let h : R+ → R+ be a convex and nondecreasing function such that
g(r) = I(0,∞)(r) exp{−h(r)} is a dgf. For every norm ‖.‖, the density ϕg,‖.‖(x) =
C(g, ‖.‖)g(‖x‖) is log-concave (and, vice versa, every log-concave density allows the repre-
sentation C exp{−H(x)} where H : R2 → R is convex). We recall that according to [51],
a random vector X, with values in R2, is called log-concave if for all compact nonempty
subsets A,B of R2 and θ ∈ [0, 1],

P (X ∈ θA⊕ (1− θ)B) ≥ P (X ∈ A)θP (X ∈ B)1−θ.

Due to a result in [7], a continuous vector X is log-concave iff for all x, y ∈ R2 and
θ ∈ [0, 1], its density f satisfies

ln f (θx+ (1− θ)y) ≥ θ ln f(x) + (1− θ) ln f(y).

It is worthy to be mentioned that such distributions have found considerable attention
both in probability and statistics. For only to mention one paper in each direction, we
refer to [1] and [82]. Finally notice that here I(g) strongly depends on the convex function
h.

For a collection of several further classes of dgf’s we refer to [19] and [35]. Let us
just mention two types of univariate densities having considerable heavy tails: the p-
generalized Cauchy density

fp(t) =
1

π(p)(1 + |t|p)
2
p

, t ∈ R, p > 0

and the p-generalized Student density with n df

fn,p(x) =
pΓ
(
n+1
p

)
2n

1
p Γ
(
n
p

)
Γ
(

1
p

) (1 +
|x|p

n

)−n+1
p

, x ∈ R, p > 0.

In [78], the density fp has been proved to be the ratio distribution for the components
of l2,p-symmetrically distributed vectors. A geometric measure theoretical reproof of this
result was given in [35] for the special cases p ∈ {1, 2} and for the general case of any
p > 0 in [45]. The p-generalized circle number π(p) is defined in [60]. The function fn,p
is log-convex on (0,∞). It was introduced in [59], as the density of a modified Student
statistic, and generalized to the multidimensional case in [3].

The following example deals with a specific class of norm contoured distributions
having heavy tails. The notion of regular variation of a random vector (or its distribution)
is widely used in extreme value theory and has various applications in insurance, finance
and many other fields, see the papers [29],[41],[30],[16] upon which the introductory part
of this example is based. The tail index of X reflects to a certain extent the radial decay
of probability mass, and the spectral measure of X w.r.t. a given norm indicates in which
directions proportions of extreme realizations of X are. At hand of a specific example,
we demonstrate how the spectral measure may change if the norm in a) is replaced by
another one in b).

Example 4. Let the bivariate Cauchy density be given by

fC,2(x) =
1

2π(1 + |x|22)3/2
, x ∈ R2

10



where |x|2 = (x2
1 + x2

2)1/2 denotes the Euclidean norm. According to Theorem 2 (see
also [57] and [35]), the corresponding probability law satisfies the geometric measure
representation

ΦC(A) =

∞∫
0

F|.|2(A, r)
r dr

(1 + r2)3/2
, A ∈ B2. (3)

A random vector X following ΦC allows the stochastic representation X
d
= R · U, where

the nonnegative random variable R and the random vector U, uniformly distributed on
the Euclidean unit circle C2, are independent. For any Borel subset M of C2, set

µu(M ; ‖.‖) =
P (‖X‖ > ux,X/‖X‖ ∈M)

P (‖X‖ > u)
, u > 0, x > 0.

A random vector X is often called regularly varying w.r.t. the norm ‖.‖ if there exist a
positive constant α and a probability law σ, on the Borel σ-field of subsets of the ‖.‖-
unit sphere, such that xαµu(.; ‖.‖) ⇒ σ as u → ∞, where ⇒ means weak convergence.
Moreover, if X is regularly varying with tail index α > 0 w.r.t. a norm ‖.‖ then it is also
regularly varying with the same tail index w.r.t. any other norm, and vice versa.

a) From (3) and the stochastic representation of X, it can immediately be derived
that X is regularly varying w.r.t. the Euclidean norm. To this end, let A(u; ‖.‖) =
{y ∈ R2 : ‖y‖ ≥ u} . Then,

F|.|2 (A(u; |.|2)) = I[u,∞)(r) =

{
0 if 0 ≤ r < u,

1 if r ≥ u,

and P (|X|2 > u) = ΦC (A(u; |.|2)) =
∞∫
u

r dr
(1+r2)3/2

= 1√
1+u2

. Moreover,

P

(
X ∈ A(ux, |.|2),

X

|X|2
∈M

)
= P (X ∈ A(ux, |.|2)) P (U ∈M),

thus

µu(M ; |.|2) =
P (U ∈M)

√
1 + (1/u)2

x
√

1 + (1/(ux))2
and xµu(.; |.|2)⇒ P (U ∈ .), foru→∞,

where M → P (U ∈M) is called the spectral measure of X w.r.t. the norm |.|2, and
the tail index of X equals 1.

b) For studying µu(M ; |.|∞) where |(x1, x2)T |∞ = max{|x1|, |x2|} and M is any Borel
subset of C∞ = {y ∈ R2 : |y|∞ = 1}, we note that

F|.|2 (A(u; |.|∞), r) =
4

π
I[u,
√

2u)(r) arccos
(u
r

)
+ I[

√
2u,∞)(r). (4)

Integrating by parts the integral (3) obtained by replacing F|.|2(A, r) with (4), we
obtain

P (|X|∞ > u) =
4u

π

√
2u∫

u

dr

r2
√

(1− (u/r)2)(1 + r2)
∼ 4

πu

√
2∫

1

dt

t2
√
t2 − 1

(5)

where ∼ means asymptotic equivalence.

11



b1) Let us consider a first particular class of subsets of C∞,

M1(ε) =

{(
cos∞(φ)
sin∞(φ)

)
∈ C∞ :

π

4
− ε ≤ φ <

π

4
+ ε

}
where the generalized trigonometric functions cos∞ and sin∞ are defined in
[59]. The set M1(ε) may be written

M1(ε) =

{
r

(
cosφ
sinφ

)
∈ C∞ :

π

4
− ε ≤ φ <

π

4
+ ε, r suitably chosen from [r0, r1]

}
where ε ∈ (0, π

8
), r0 = (1 + tan2(π

4
− ε))1/2 and r1 =

√
2. Then,

P

(
X ∈ A(ux; |.|∞),

X

|X|∞
∈M1(ε)

)
= ΦC(A)

where
π

4ε
· F|.|2(A, r) =

r − r0

r1 − r0

I[uxr0,uxr1](r) + I(uxr1,∞)(r).

Consequently,

ΦC(A) =
4ε

π

ln

√
2+

√
2+ 1

2u2x2√
1+tan2(π

4
−ε)+

√
1+tan2(π

4
−ε)+ 1

u2x2

9ux[
√

2−
√

1 + tan2(π
4
− ε)]

∼ const1(ε)

ux

as u→∞, where

const1(ε) =
4ε ln

√
2/
(
1 + tan2(π

4
− ε)

)
π
[√

2−
√

1 + tan2(π
4
− ε)

] .
Finally,

µu (M1(ε); |.|∞) =
ΦC(A)

P (|X|∞ > u)
∼

π
4x
const1(ε)
√

2∫
1

dt
t2
√
t2−1

, asu→∞

and the value of the spectral measure at the set M1(ε) equals

π · const1(ε)/

4

√
2∫

1

dt

t2
√
t2 − 1)


b2) Let us consider now another particular type of subsets of C∞, that is

M2(ε) =

{(
cos∞(φ)
sin∞(φ)

)
∈ C∞ : −ε ≤ φ < ε

}
where ε ∈ (0, π

8
). Then,

P

(
X ∈ A(ux; |.|∞),

X

|X|∞
∈M2(ε)

)
= ΦC(A)

12



where
π

4
· F|.|2(A, r) = arccos

(r0

r

)
I[r0,r1)(r) + I(r1,∞)(r) · ε.

Consequently, ΦC(A) ∼ const2(ε)/(ux) as u→∞ where

const2(ε) =
4

π

ε− arccos 1√
1+tan2 ε√

1 + tan2 ε
+

√
1+tan2 ε∫

1

dt

t2
√

(t2 − 1)1/2

 .
Finally,

µu (M2(ε); |.|∞) =
ΦC(A)

P (|X|∞ > u)
∼ π

4x

const2(ε)
√

2∫
1

dt
t2
√
t2−1

, asu→∞.

Thus, the value of the spectral measure at the set M2(ε) equals

π · const2(ε)/

4

√
2∫

1

dt

t2
√
t2 − 1

 .

Extending the previous example, in the following one we indicate how the tail index
may change if the dgf is replaced by another one.

Example 5. Let the bivariate spherical Pearson type VII density be given by

fPT7;M,m(x) =
M − 1

mπ

(
1 +
|x|22
m

)−M
, x ∈ R2,M > 1,m > 0.

If M = 1 + m/2, we recover the Student density and the Cauchy density if additionally
m = 1. While the spectral measure w.r.t |.|2 is here the same as in Example 4, the tail
index is now 2M − 2.

Example 6. Let a random vector X follow the l2,p-symmetric Pearson type VII density

f
(2,p)
PT7;M,m(x) = D(M,m, p)gM,m,p(|x|p), x ∈ R2, p > 0,M >

2

p
,m > 0

where

D(M,m, p) =
(p/Γ(1

p
))2Γ(M)

4m2/pΓ(M − 2
p
)

and gM,m,p(r) = (1 + rp/m)−M , r ≥ 0.

Define

µu,p(M ; ‖.‖) =
P
(
||X|| > ux, X

‖X‖ ∈M
)

P (‖X‖ > u)
.

Then
xMp−2µu,p(.; |.|p)⇒ P (Up ∈M), asu→∞

where the vector Up follows the l2,p-generalized uniform probability distribution ωp on the
l2,p-unit circle as defined in [60]. Thus, here the tail index is Mp − 2, and the spectral
measure is ωp(.).
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6 Independent coordinate representations

From the theory of ln,p-symmetrically distributed random vectors, it is well known that
their Euclidean coordinates are not independent unless their joint dgf is chosen in a very
specific way. The latter is the case for vectors with a p-power exponential distribution.

Independence of different types of common and generalized polar coordinates of two-
dimensional Gaussian vectors have been discussed, e.g., in [13]. Here, we shall make use
of the Minkowski space polar coordinate transformation PolK : [0,∞)× [0, 2π) → R2 as
defined in [62]. In detail,

x =
cosϕ

MK(ϕ)
, y =

sinϕ

MK(ϕ)

where MK(ϕ) = hK(cosϕ, sinϕ), and J(r, ϕ) = rR2
C(ϕ) is the Jacobian of this transfor-

mation.

In the following theorem we make use of the (p, g)-generalized Chi-distribution χpg(n)
with n df, having the density

fχn,g,p(y) =
y
n
p g(yp)

pIn,g,p
, y > 0.

For more details concerning the derivation of fχn,g,p in the case p = 2 and in the general
case, we refer to [57] and [61], respectively.

Theorem 4. If (ξ, η)T ∼ Φg, ‖.‖ and (R,Ψ)T = Pol−1
K (ξ, η) then

i) the random variables R and Ψ are independent;

ii) Ψ has the density f(ϕ) =
R2
C(ϕ)

2π(K)
, ϕ ∈ [0, 2π), independently of the dgf g,

iii) R follows the (1, g)-generalized Chi-distribution with 2 df, that is R ∼ χ1
g(2).

Proof. The density of the random vector (ξ, η)T is f(ξ,η)(x, y) = C(g, ‖.‖)g(‖(x, y)T‖),
(x, y)T ∈ R2. By the density transformation formula, the density of (R,Ψ) is f(R,Ψ)(r, ϕ) =
C(g, ‖.‖)rg(r)R2

C(ϕ), (r, ϕ)T ∈ [0,∞) × [0, 2π) where C(g, ‖.‖) is known, from Remark
2.

7 Thin layers property

Some of the most immediate applications of the geometric measure representations, given
in Section 3 and Appendix B, as well as the circle numbers defined in Appendix C, deal
with measuring thin layers like

L(r, ε) =
{
x ∈ R2 : r ≤ ‖x‖ ≤ r + ε

}
, ε > 0.

Theorem 5. a) The Lebesgue measure of a thin layer behaves asymptotically as the thick-
ness of the layer and tends to zero as follows λ(L(r, ε)) ∼ 2π(K)rε, ε→ 0+.

b) For continuous dgf g and in the case of thin layers, the norm contoured distributions
behave asymptotically as Φg,‖.‖ (L(r, ε)) ∼ ε (rg(r)) /Ig, ε→ 0+.
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Proof. We start from the representation of the Lebesgue measure given in Corollary 2:

λ(L(r, ε)) = 2π(K)

r2∫
r1

%F||.|| (L(r, ε), %) d% = 2π(K)

r+ε∫
r

% d% = π(K)
[
(r + ε)2 − r2

]
.

This proves part a). For proving part b), Theorems 2 and 1 apply:

Φg,‖.‖ (L(r, ε)) =

r2∫
r1

% g(%)F‖.‖ (L(r, ε), %) d%

Ig
.

Due to the properties of the set L(r, ε), we get Φg,‖.‖ (L(r, ε)) = Ig
−1

r+ε∫
r

% g(%) d%

Appendix A: Non-Euclidean arc-length measures

Let ‖.‖∗ denote the norm being dual to the norm ‖.‖ and K∗ = {x ∈ R2 : ‖x‖∗ ≤ 1} the
corresponding unit disc. Note that, for simplicity, we do not distinguish here between
the vector space E = R2, where the norm ‖.‖ is defined, and the space F = R2 of linear
functionals on E, where ‖.‖∗ is defined. The set B = O(90o)K∗, with

O(90o) =

(
0 −1
1 0

)
,

is the image of K∗ under a map which forces anticlockwise rotation through 90o. The
Minkowski functional of this set is the norm ‖x‖B = inf {λ > 0 : x ∈ λB} , x ∈ R2. It
was proven in [10], see also [23], that C solves the isoperimetric problem in (R2, ‖.‖B),
what means that K maximizes the area content among all sets circumscribed by simple
closed curves of the same ‖.‖B-arc-length as C. In what follows, we consider curves being
subsets of the norm-circles C(r), r > 0 as being subsets of the Minkowski space (R2, ‖.‖B)
and will measure their arc-lengths with respect to the metric geometry of this space.
General metric geometries are studied, e.g., in [9]. Encouraging early remarks on the
usage of suitable non-Euclidean geometries can be found in [28]. To start with, let M
be an element of B2 ∩ C, % > 0, and let Zn = {z0, z1, ..., zn} denote a successive positive
oriented partition of %M . The Minkowski space arc-length of %M is then well defined by

ALB(%M) = sup

{
n∑
j=1

‖zj − zj−1‖B : Zn is any partition of %M

}

and may be denoted in similarity to the standard differential-geometric approach as

ALB(%M) =

∫
Φ

‖(x′(ϕ), y′(ϕ))‖B dϕ,

where Φ is the suitably defined angular range of integration. Alternatively, we may write

ALB(%M) =

∫
X+

+

∫
X−

 ‖(1, y′(x))‖B dx
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with ranges X+ and X− reasonably chosen from the x-axis in order to describe those
parts of %M corresponding to positive and negative values of y, respectively. The reader
may check the correctness of such definitions by standard techniques. One may call this
approach to defining an arc-length measure the differential geometric or a global one.

Going back to [59], the following approach to defining an arc-length measure may be
alternatively called a local one. The function f(M,%) = λ(sector(M,%)) may be called a
sector-measure. In this setting,

UC(%M) =
∂

∂%
f(M,%) (6)

could be considered as another arc-length measure compared with the one previously
considered. However, as a consequence of the considerations given in [62], this locally
defined arc-length measure and the globally one are the same, i.e.

UC(%M) = ALB(%M), M ∈ B2 ∩ C, % > 0. (7)

This measure is fundamental for deriving the geometric disintegration formulas in Section
3. Note that different strategies of measuring arc-lengths and generalizing the circle
number π in Minkowski spaces are discussed in [80]. An alternative to the one chosen here
could be to measure the circumference of a norm-circle w.r.t. the geometry generated by
the corresponding norm-disc itself instead of the rotated dual one. The strategy followed
here takes into account basic consequences of the co-area formula of measure theory and
may be considered as a non-Euclidean method of indivisibles generalizing that of Cavalieri
which was modified by Torricelli. For more details on this and the co-area formula, we
refer to [61],[62],[64] and [17], respectively.

Still another possibility to assign an arc-length measure to the boundary of a convex
body M ⊂ R2 is to define its K-based Minkowski length in the spirit of [42] by

MLK(M) = lim
ε→+0

λ(M ⊕ εK)− λ(M)

ε
.

Here, A ⊕ B denotes the Minkowski addition of two subsets A,B ⊂ R2, and K is a
centrally symmetric convex body. Then, from K ⊕ εK = (1 + ε)K we have

MLK(K) =
d

d%
λ (K(%))

∣∣∣∣
%=1

= 2λ(K) = UC(C).

Appendix B: A non-Euclidean sharpening and extension of Cavalieri’s and Torri-
celli’s method of indivisibles

Cavalieri’s and Torricelli’s method deals with conditions that are assumed to be satisfied
by the arc-lengths of what they call the indivisibles of two regions, to ensure equality of
the two regions area contents. Their method, however, does not describe the area con-
tents of the regions of interest in terms of integrals of suitably defined arc-lengths. Thus,
our approach extends the classical principle just w.r.t. this aspect of sharpening, i.e. by
proving a corresponding integral representation. Proofs in cases when the indivisibles are
parts of Euclidean norm circles can be found in [55] and [57]. Proving the mentioned
equality of integrals in rather general cases, we make use of non-Euclidean arc-lengths
measures thus also generalizing the classical principle w.r.t. this circumstance. As al-
ready mentioned, a geometric disintegration formula may be alternatively considered as
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a generalization of the method of indivisibles of Cavalieri combined with the Fubini’s
method of interchanging order of integration. Both these methods, however, do originally
and intrinsically not have any connection with measuring arc-lengths in a non-Euclidean
way.

Although in this paper, we are mainly interested in probability distributions, we re-
strict our considerations here to an analysis of the area content measure, which is the
dominating measure of all elements from the distribution class CNC. After showing a
disintegration property of the Lebesgue measure, one may turn to the continuous norm
contoured distributions, see Section 3. To start with, we consider a bounded Borel set,
A ∈ [K(r2) \K(r1)] ∩ B2, 0 ≤ r1 < r2 <∞.

Lemma 1. The Lebesgue measure satisfies the disintegration formulas

λ(A) =

r2∫
r1

ALB (A ∩ C(r)) dr andλ(A) =

r2∫
r1

r

 ∫
Pol∗−1

K ([ 1
r
A]∩C)

R2
C(ϕ)dϕ

 dr.

Proof. Let M ∈ B2 ∩ C and r1 ≤ %1 < %2 ≤ r2. The collection σ∗ of all sets

A = A(M,%1, %2) = sector(M,%2) \ sector(M,%1)

is a semi algebra in R2. The smallest algebra generated by σ∗ will be denoted A.

The finitely additive set function on A, λ∗(A) =
%2∫
%1

UC (A ∩ C(r)) dr, allows because of

A(M,%1, %2)∩C(r) = r ·M the representation λ∗(A) =
%2∫
%1

UC(rM) dr. Changing the Carte-

sian with the generalized polar coordinates, the Lebesgue measure of A can be written
as

λ(A) =

%2∫
%1

 ∫
Pol∗−1

K (M)

r R2
C(ϕ) dϕ

 dr.

From
d

dr
λ (sector(M, r)) = r

∫
Pol∗−1

K (M)

R2
C(ϕ) dϕ = UC(rM)

we have λ(A) =
%2∫
%1

UC(rM)dr. Hence, λ(A) = λ∗(A), ∀A ∈ A. Thus, by measure extension

theorem, λ(A) =
r2∫
r1

UC(A ∩ C(r)) dr. Theorem 2.11 in [62] enables us to switch from UC

to ALB what ends the proof

Let π(K) denote the norm-circle number which can be assigned to any norm-disc K(r)
of norm-radius r > 0 according to [62]. The well known Euclidean area content and the
Minkowski space (R2, ‖.‖B) circumference properties of the norm-discs K(r) are reflected
by the equations

π(K) = λ(K) =
1

2
ALB(C). (8)

For determining the volume of a convex body, see [50]. The following corollary is now an
immediate consequence of Lemma 1.
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Corollary 2. For arbitrary norm, the Lebesgue measure allows the geometric disintegra-

tion formula λ(A) = 2π(K)
r2∫
r1

rF‖.‖(A, r) dr.

The basic disintegration idea behind this corollary has been extended in Theorem
2 to norm contoured distributions, which are absolutely continuous with respect to the
Lebesgue measure.

Appendix C: Circle numbers of norm discs

In this paper, we have explained the basic analytical and geometric structure of norm
contoured distributions in R2. According to Remark 2, the normalizing constant C(g, ‖.‖)
strongly depends upon which value takes the circle number function K → π(K) “at the
point”K. Let us recall that the function π(.) was studied in [60] and [62] and other papers,
someone here mentioned. For a number called circle number of a norm-disc, the initial
properties are expressed in the equations (8). Note, however, that several more properties
of circle numbers have been discussed in [62] and that additional aspects of defining circle
numbers are discussed in [68].

Remark 4. It is an immediate consequence of the angular integral representation of
the uniform distribution on the unit circle C of the Minkowski space (R2, ‖.‖B) that

π(K) =
2π∫
0

R2
C(ϕ) dϕ.

Remark 5. Note that, due to (8), at the same time λ(K) =
2π∫
0

R2
C(ϕ) dϕ is a formula for

the area content of a convex body in R2 symmetric w.r.t. the origin.

Example 7. We consider the norm ‖(x, y)‖ which admits the values |x|+|y| and
√
x2 + y2

if (x, y) belongs to Q1 ∪ Q3 or Q2 ∪ Q4, respectively, and the norm dual to it, ‖(x, y)‖∗,
which admits the values max {|x|, |y|} and

√
x2 + y2 if (x, y) belongs to Q1∪Q3 or Q2∪Q4,

respectively, where Q1, ..., Q4 are the anticlockwise ordered quadrants of R2.

Let K and K∗ denote the unit discs generated by the norms ‖.‖ and ‖.‖∗, respectively.

The norm ‖(x, y)‖B corresponding to B =

(
0 −1
1 0

)
K∗ admits the values (x2 + y2)1/2

and max {|x|, |y|} if (x, y) belongs to Q1∪Q3 or Q2∪Q4, respectively. The area content
of K(r) = r ·K = {(x, y) ∈ R2 : ‖(x, y)‖ ≤ r} is f(K, r) = λ (K(r)) = 1

2
πr2 + r2. Thus,

π(K) = 1+π/2. Note that this result can be reasonably considered as a linear combination
π(K) = (π(1) + π(2))/2 of l2,p-circle numbers π(p), p ∈ {1, 2}.

Remark 6. A straightforward generalization of the norm considered in the latter example
is the norm ‖(x, y)‖ which admits the values |(x, y)|α and |(x, y)|β if (x, y) belongs to
Q1 ∪Q3 or Q2 ∪Q4, respectively, with (α, β) ∈ [1,∞)×2.

Let us recall that a subset C of R2 is called a cone with vertex 0 whenever tx ∈ C
for every x ∈ C and t ≥ 0. Every closed convex cone C in R2 containing no half-space,
with vertex in 0 and non-empty interior, will be called a sector of R2. According to the
definition 1.7 of a “complete fan”in [18], a finite collection C of sectors in R2 will be called
a fan if its members have pairwise disjoint interiors and their union is R2.
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Example 8. We consider a fan C =
k⋃
i=1

Ci and assume that a convex body K symmetric

w.r.t. the origin in R2 is given, with a certain function R, by

K = {r · (cosϕ, sinϕ), 0 ≤ r ≤ R(ϕ), ϕ ∈ Pol∗−1(Ci), i = 1, ..., k}.

We assume further that Ki are norm-discs having generalized circle numbers π(Ki) and
satisfying

Ki ∩ Ci = K ∩ Ci, i = 1, ..., k.

Then π(K) is a linear combination of the generalized circle numbers π(Ki), i = 1, ..., k.
Note that here Pol∗ denotes the restriction of the usual polar coordinate transformation
to the radius 1 and Pol∗−1 the map being inverse to it. Special cases of this example are
polygonal circle discs considered in [68].
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